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Abstract—Deciding the numerous parameters involved in 
designing a competent artificial neural network is a complicated task. 
The existence of several options for selecting an appropriate 
architecture for neural network adds to this complexity, especially 
when different applications of heterogeneous natures are concerned. 
Two completely different applications in engineering and medical 
science were selected in the present study including prediction of 
workpiece's surface roughness in ultrasonic-vibration assisted turning 
and papilloma viruses oncogenicity. Several neural network 
architectures with different parameters were developed for each 
application and the results were compared. It was illustrated in this 
paper that some applications such as the first one mentioned above 
are apt to be modeled by a single network with sufficient accuracy, 
whereas others such as the second application can be best modeled 
by different expert networks for different ranges of output. 
Development of knowledge about the essentials of neural networks 
for different applications is regarded as the cornerstone of 
multidisciplinary network design programs to be developed as a 
means of reducing inconsistencies and the burden of the user 
intervention.

Keywords—Artificial Neural Network, Malignancy Diagnosis, 
Papilloma Viruses Oncogenicity, Surface Roughness, Ultrasonic 
Vibration-Assisted Turning.

I. INTRODUCTION

RTIFICIAL neural network (ANN) has found many  
applications in various disciplines of science and 

technology. Typical examples are manufacturing and 
mechanical engineering [1]-[4], optimization of various 
parameters resulting in optimal production yield [5]-[10], food 
and agricultural industries [11],[12], economics [13] and 
medical sciences [14]-[17] to name but a few. The common 
practice in developing neural networks is currently focused on 
dedicated application-oriented networks being trained for 
single-domain processing. Artificial neural networks in their 
present status are in fact expert domain-based systems. In this 
respect they are similar to their intelligent counterparts, expert 
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systems. In a sense, both ANNs and expert systems   are 
practically developed for very narrow ranges of applications. 
This is in direct contradiction to the basic purpose of ANNs to 
emulate the human brain's inference faculties.  It is basically 
expected that an ANN be apt to be trained in different skills, 
while the present ANNs can each deal at most with processes 
exhibiting a good deal of cohesion. The existing shells, of 
course, provide platforms for developing expert networks in 
practically unlimited ranges of applications. However, each 
skill needs its dedicated network to be sufficiently trained for 
that skill. The data obtained through experiments exhibit 
considerably nonlinear correlation.  Training of networks for 
different domains of application is thus too much time 
consuming whereas, in spite of this deficiency, satisfactory 
results are hardly achieved. This is more critical for 
heterogeneous domains as the network parameters should 
accordingly be changed for different applications. There are 
numerous options to be decided upon when training a 
network. Genetic algorithms are currently used for optimizing 
the network parameters. Whereas may be of assistance in 
getting around to deciding the network parameters, this is not,  
in its present form, an adequate substitute for the user 
intervention.  A thorough grasp of the ANN performance for 
different domain-based applications is most desirable. This 
streamlines the expectations from ANNs and considerably 
saves time and effort required for designing dedicated 
networks and also paves the way for development of more 
intelligently efficient algorithms. Development of knowledge 
about the essentials of neural networks for different 
applications is regarded as the cornerstone of multidisciplinary 
network design programs to be developed as a means of 
reducing inconsistencies and the burden of the user 
intervention. 
 The authors developed several ANNs for two completely 
different applications, which are briefly explained in this 
paper. These applications include prediction of surface 
roughness of 1.1191 steel in ultrasonic vibration-assisted 
turning (UAT) and malignancy diagnosis or, to be more 
specific, prediction of papilloma-viruses oncogenicity.  
 Vibration-assisted machining has not yet sufficiently 
benefitted from advanced tools such as artificial neural 
network modelers. Application of ANN was partially 
undertaken in [4]. A more thorough study was done by the 
authors of present paper on the efficiency of different 
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networks for UAT surface roughness prediction. The results 
are briefly described in this paper. 
 The prognosis of papilloma virus infection is of critical 
importance because cervical carcinoma remains one of the 
most common malignancies in the world. Around 500,000 
new sufferers are diagnosed and more than 200,000 deaths 
from cervical cancer are reported annually [18]. Application 
of advanced tools such as ANNs to papilluma virus infection 
is, in turn, of great importance.  
 The performance of the developed ANNs intentionally 
selected from two heterogeneous domains of engineering and 
medical science was investigated in the present study. This 
was done by a critical appraisal of these networks against the 
available results. It has been illustrated that whereas some 
problems such as UAT surface roughness prediction can be 
accurately modeled by a single network; some other problems 
like oncogenicity prediction can be best modeled with 
different specialized networks for different risk levels. 

II. ANNS FOR PREDICTION OF SURFACE ROUGHNESS IN UAT
 An extensive literature is available on ANNs, for example 
[1]-[17]. For further applied and fundamental literature, 
references [19]-[28] may be consulted.  

The multilayer perceptrons (MLPs) are the most common 
networks used for innumerable applications, in spite of their 
relatively low rate of training and large chunks of data 
required for this purpose. The main merit is that they are easy 
to use. As will be illustrated later in this section, they yield 
sufficiently and in many cases more accurate results compared 
with other networks such as general feed forward, recurrent 
and modular neural networks. 
 A MLP was primarily selected for modeling the surface 
roughness in UAT. Ultrasonic-vibration assisted turning or 
machining is an advanced technique of metal cutting practice. 
It has several advantages compared with the conventional 
machining processes, including reduced machining forces and 
stresses, higher surface finish, less tool wear and closer 
dimensional and geometrical tolerances. Additionally, 
vibration assisted cutting changes the brittle machining of 
hard-to-cut materials such as ceramics, glass and superalloys 
to ductile machining, leading to feasible cutting of these 
materials. Vibration cutting has already been applied to 
various machining processes such as turning, drilling, milling, 
grinding, honing, lapping and electrodischarge machining 
[29].  

A typical MLP, as depicted in Fig. 1, consists of a layer of 
input neurons serving as a data gateway to the network, one or 
more hidden layers of neurons processing the data received 
from the input layer and finally a layer of output neurons 
receiving the processed data and providing the final responses. 
In this figure Ij (j=1-n) denotes the input, m is the number of 
neurons in the hidden layer and Oj (j=1-k) is the output. The 
network is trained how to correlate the input and output 
through numerous data furnished by the user in a supervised 
training process.   

In the model adopted for the surface roughness, the number 
of input neurons was n= 4 and the single output was the 
surface roughness, Ra. Eighty one exemplifiers were 
employed for training of the network.  

In order to model surface roughness in UAT, the results of 
full factorial experiments for 1.1191 steel adopted from [4] 
were employed. In a full factorial design of experiments 
(DOE), eighty one different experiments would be required 
for three levels of four UAT parameters. In fact, the correct 
form of permutation of these parameters determines the 
number of the experiments. The UAT parameters and their 
triple levels are described later in this section. 

I1
O1

I2

                                                                                        O2

I3 .  .
                               .   ..                    .                 .           .
          .                 Ok
In

Input Layer     Hidden Layer   Output Layer 

Fig. 1 A typical multilayer perceptron 

The output of MLP was naturally different depending on 
the network parameters. The surface roughness values 
obtained from the trained MLP with the following parameters 
for the test data again adopted from [4] are given in Table I: 
one hidden layer, five processing elements in the hidden layer, 
TanhAxon as the transfer function both in the hidden and the 
output layers, step size 1.00 for the hidden layer and 0.10 for 
the output layer, learning momentum rate of 0.7 for both 
layers, threshold value as an indication of acceptable error 
0.01, and epochs number 342. The experimental results and 
the errors between these and MLP results are also presented in 
this table. The UAT parameters in this table are a (µm), 
ultrasonic vibration; d (mm), depth of cut; fr (mm/rev ), feed 
rate and vc, cutting speed. The surface roughness is denoted 
by Ra (µm). 

TABLE I
TEST RESULTS FOR PREDICTING SURFACE ROUGHNESS OF 1.1191

STEEL IN UAT
Ra µm % a µm d mm fr

mm/rev 
vc

m/min Exper
.

MLP Error 

6 0.5 0.14 3.78 1.37 1.54 12..3 
12 0.6 0.14 8.83 1.03 1.13 9.7 
12 0.7 0.14 10.8 1.37 1.16 15.3 
16 0.8 0.28 17.66 3.74 4.08 9.1 
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In order to improve the results, several other options were 
tried as follows: using randomized data, cross validation, 
using genetic algorithm to optimize the network parameters, 
decreasing the threshold value, replacing TanhAxon with 
SigmoidAxon as new transfer function, and using more 
hidden layers. No improvement could be achieved; instead in 
some cases much worse results were obtained.  

Several other networks were also tried among which some 
exhibited better results. They were generalized feed forward 
(GF), modular neural network (MNN), recurrent network 
(RN), time-lag recurrent network (TRN), and fuzzy logic 
network (FLN). The results and the errors between these and 
the experimental results are given in Table II. The UAT 
parameters were as the same as those presented in Table I. 

It is clear from the results presented in Tables I and II that 
the maximum error occurring in MLP prediction is much 
lower than other networks. Additionally, MLP's prediction 
errors have smoother and more uniform distribution. 

TABLE II
TEST RESULTS OF DIFFERENT NETWORKS FOR UAT SURFACE

ROUGHNESS
GF MNN RN TRN FLN 

Ra
µm

Err.
%

Ra
µm

Err.
%

Ra
µm

Err.
%

Ra
µm

Err.
%

Ra
µm

Err.
%

1.39 1.4 1.44 5 1.74 26.9 1.49 8.7 1.7 24.1 
1.51 46.6 1.37 37 1.8 74.8 1.59 54.4 1.3 26.2 
1.56 13.9 1.4 1.6 1.12 18.2 1.62 18.2 1.4 2.2 
3.85 2.9 3.9 4.3 4.7 25.7 3.73 0.3 4.06 8.6 
GF: generalized feed forward, MNN: modular neural network, RN: recurrent 
network, TRN: time-lag recurrent network, FLN: fuzzy logic network 

It should be noted that surface roughness in practice is 
expresses in discrete values rather than continuous values. In 
turning and milling operations surface roughness values are 
usually 0.32, 0.8, 1.6, 3.2, 6.3, 12.5 and 25 m. It can be said 
that surface roughness in these operations occurs in six 
different ranges as follows: (1) 0.32- 0.8, (2) 0.8-1.6, (3) 1.6- 
3.2, (4) 3.2-6.3, (5) 6.3-12.5, and (6) 12.5- 25 m. The surface 
roughness occurred in the experiments and predicted by 
different networks can thus be concluded as in Table III. It is 
evident from this table that MLP, GF and MNN could 
correctly predict the surface roughness ranges. An error in the 
order of 9-16 µm as having occurred in MLP's prediction 
(Table 1) is quite acceptable in machining practice especially 
in the presence of non-violated surface- roughness range as an 
additional criterion.  

TABLE III
EXPERIMENTAL AND PREDICTIVE RESULTS FOR SURFACE

ROUGHNESS OF WORKPIECES IN UAT
Exper. MLP GF MNN RN TRN FLN 

2 2 2 2 3 2 3 
2 2 2 2 3 2 2 
2 2 2 2 2 3 2 
4 4 4 4 4 4 4 

MLP: multilayer perceptron, GF: generalized feed forward, MNN: modular 
neural network, RN: recurrent network, TRN: time-lag recurrent network, 
FLN: fuzzy logic network 

III. ANN FOR MALIGNANCY DIAGNOSIS
 The application of ANN in medical sciences is most 
exemplified by disease diagnosis. However, a prerequisite to 
the prediction of papilloma viruses oncogenicity is an in-depth 
knowledge about the biochemical and structural 
characteristics of viruses, required for classification of 
tumorgenic viruses. Application of ANN for this classification 
needs further effort. This was partially undertaken by the 
authors in the present study and several networks were 
developed and evaluated for prediction of papilloma viruses 
oncogenicity level.  In this classification, viruses are identified 
as high, moderate or low. 
 The human papilloma viruses (HPVs) are DNA viruses 
which cause epithelial hyperplasias ranging from benign 
papillomas to premalignant lesions. These lesions can develop 
into squamous cell carcinomas [30], [31]. HPV infection is in 
most cases sexually transmitted and is usually transient. 
However, it persists in some cases and progress to cervical 
cancer. Cervical cancer results in the death of  approximately 
273000 women per year. This toll has the second place after 
breast cancer. For these reasons, the study of high risk HPV 
early genes E6 and E7 is of key importance in cancer 
investigations. High-risk HPVs, including HPV-16 and HPV-
18, are associated with squamous intraepithelial lesions that 
can progress to cervical carcinomas. Approximately 40 
among over 100 different HPV types specifically infect 
anogenital tract mucosa. More than 70% of cervical cancer are 
however caused by the high-risk genotypes 16 and 18. In fact, 
cervical papilloma viruses oncogenicity can be caused by 
persistent high risk HPVs infection which in turn is due to the 
expression of E6 and E7 oncogenes. These two early HPV 
genes are of critical importance to tumor formation. Low risk 
HPVs E6 and E7 have weaker transforming effect compared 
with moderate and high risk HPVs. Biochemical studies can 
best provide evidences of the involvement of E6 and E7 in 
malignancy. [32]-[42] 

The information about HPV sequences and papilloma virus 
data required to develop and train ANN were collected from 
renowned data bases such as DNA Data Bank of Japan 
(DDBJ) [43] and Expasy Data base [44]. The acquired 
parameters were as follows: the oncogenicity level of viruses, 
E6 and E7 content, amino acid number, molecular weight, 
theoretical pI, different amino acids, sulfur content, extinction 
coefficient, estimated half-life,  instability index, aliphatic 
index, and grand average of hydropathicity (GRAVY). The 
level of virus was used as the only output of the network for 
each exemplifier. Other parameters amounting to 34 were 
used as the input to the network. In other words, number of 
input neurons was n=34 (Fig. 1). The number of exemplifiers 
used for training of the network was 234. For the sake of 
space limit the data collected from the data bases could not be 
presented here. The above mentioned data banks may be 
consulted in this regard. 

The extinction coefficient indicates how much light a 
protein absorbs at a certain wavelength.
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The half-life is the time taken for half of the protein in a cell 
to disappear after its synthesis in the cell. The instability index 
is a measure of the stability of protein in a test tube. The
aliphatic index of a protein is the relative volume occupied by 
aliphatic side. The GRAVY of protein is the sum of 
hydropathy values of all the amino acids, divided by the 
number of residues in the sequence. For a more 
comprehensive definition of these parameters, classic 
literature may be consulted. 

For the purpose of modeling the oncogenicity level, also a 
MLP similar to the modeling of UAT surface roughness was 
primarily selected. The network was trained several times with 
the test data adopted from the aforementioned databases. The 
oncogenicity level obtained from the trained MLP with the 
following parameters are given in Table IVdenoted by  MLP1 
prediction: one hidden layer, four processing elements in the 
hidden layer, TanhAxon as the transfer function in both the 
hidden and output layers, step size 1.00 for the hidden layer 
and 0.10 for the output layer, learning momentum rate of 0.7 
for both layers, and epochs number 97. In Table IV, the three 
high, moderate and low oncogenicity levels are indicated by 
three normalized figures 0.1, 0.5 and 0.9, respectively. The 
error between the predicted and the database results are also 
presented.

TABLE IV
TEST RESULTS FOR PREDICTING THE ONCOGENICITY LEVEL

MLP1 
Prediction 

MLP2 
Prediction 

No
.

Databas
e

Output Level Error% Level Error% 
1 0.5 0.43 7  0.49 2 
2 0.5 0.43 7  0.49 2 
3 0.5 0.43 7  0.49 2 
4 0.5 0.49 2  0.52 6 
5 0.5 0.17 66  0.08 83.6 
6 0.5 0.26 48  0.56 12 
7 0.1 0.13 30  0.09 10 
8 0.1 0.16 60  0.10 0 
9 0.1 0.16 60  0.10 0 

10 0.1 0.16 60  0.10 0 
11 0.1 0.16 60  0.10 0 
12 0.1 0.12 20  0.09 10 
13 0.9 0.85 5.5  0.90 0 
14 0.9 0.80 11  0.88 2 
15 0.9 0.82 9  0.87 3 
16 0.9 0.86 4.4  0.91 1 
17 0.9 0.80 11  0.87 3 
18 0.9 0.81 10  0.87 3 

In order to improve the results, several other options were 
also tried. The results were different from the view point of 
error, in contrary to the UAT surface roughness model where 
no improvement or even worse results were achieved. 
Training the network with randomized data resulted in no 
improvement. Mixed results, in some cases improvement and 

in others worse results were achieved with cross validation 
and internal test. Using genetic algorithm to optimize the 
network parameters, replacing TanhAxon with SigmoidAxon 
as new transfer function, and using more hidden layers 
indicated no obvious improvement. Decreasing the threshold 
value from 0.01 to 0.001 led to considerable decrease in the 
error, as indicated in Table IV as MLP2 prediction. No 
noticeable improvement in the results could be achieved by 
further decrease in the threshold. Instead any further decrease 
resulted in much longer training time. 

 Among several other networks tried for modeling the 
oncogenicity level, generalized feed forward (GF), modular 
neural network (MNN), and RBF/GRNN/PNN network 
yielded acceptable results which are presented in Table V. 
These networks were trained for a threshold of 0.0001 and 
20000epochs.

 TABLE V
TEST RESULTS OF DIFFERENT NETWORKS FOR ONCOGENICITY

PREDICTION
GF MNN RBF/GRNN/PNN 

No Level Err
.

%

Leve
l

Err.
%

Level Err. 
%

1 0.49 2 0.50 0 0.48 4 
2 0.49 2 0.50 0 0.47 6 
3 0.48 4 0.50 0 0.47 6 
4 0.62 26 0.52 4 0.47 6 
5 0.08 84 0.14 72 0.40 20 
6 0.13 74 0.19 62 0.48 4 
7 0.10 0 0.10 0 0.12 20 
8 0.14 40 0.11 1 0.12 20 
9 0.15 50 0.11 1 0.12 20 

10 0.15 50 0.11 1 0.12 20 
11 0.09 10 0.10 0 0.12 20 
12 0.90 0 0.08 20 0.13 30 
13 0.91 1 0.90 0 0.75 15 
14 0.90 0 0.91 1 0.82 9 
15 0.90 0 0.89 1 0.76 16 
16 0.90 0 0.91 1 0.71 22 
17 0.91 1 0.90 0 0.80 11 
18 0.90 0 0.89 1 0.74 18 
GF: generalized feed forward, MNN: modular neural network

As is clear from Table IV the results of MLP2 are quite 
acceptable except for the result No. 5. This odd result was 
persistent for all other options and networks. This may be due 
to ill-conditioned or wrong data. However, the 
RBF/GRNN/PNN network could even predict oncogenicity 
level for this item within an acceptable tolerance of error.

The results presented in Tables IV and V show a tendency 
towards classification of results depending on the 
oncogenicity level, as follows: The RBF/GRNN/PNN network 
can best predict moderate oncogenicity levels. High risks are 
best predicted by multilayer perceptron and modular neural 
network. Low risk can be best predicted by multilayer 
perceptron, generalized feed forward and modular neural 
network. Ignoring the single ill-conditioned test sample, 
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multilayer perceptron can predict all risk levels, reliably. For 
further reliability other competent networks as described 
above can be consulted.  

IV. CONCLUSION
  The surface roughness of steel workpieces machined in 
ultrasonic-vibration assisted turning and cervical papilloma-
viruses oncogenicity as showcases of completely different 
subjects were selected in this study. Several predictive models 
were developed for them using different artificial neural 
network architectures and parameters. The results of appraisal 
of these networks can be concluded as follows: 
 A multilayer perceptron with one hidden layer and 
TanhAxon as the transfer function could predict surface 
roughness of steel components in ultrasonic-vibration assisted 
turning with an error in the range of 9 to 16%. This is 
acceptable for the machining practices.  
 Changing the network parameters, for instance increasing 
the number of hidden layers, decreasing the threshold, 
changing the transfer function, randomizing the data and cross 
validation led to no better results, whereas in some cases 
worse results were also obtained. This is an indication of 
highly nonlinear nature of the problem. 
 Several other networks were also tried among which some 
exhibited better results. They were generalized feed forward, 
modular neural network, recurrent network, time-lag recurrent 
network, and fuzzy logic network. However, the results 
obtained from the multilayer network were more accurate 
together with smoother distribution of error. 
 As far as the ranges of surface roughness are concerned 
rather than its exact numerical value, which is more common 
in industry, multilayer perceptron, generalized feed forward, 
and modular neural network could correctly predict the 
surface roughness. In this case, decision about the appropriate 
architectures should be made on the basis of their 
compatibility with other applications in hand, and training 
time. Non-violated range of surface roughness can be used as 
an additional criterion for assessing the model prediction 
error.
 A multilayer perceptron similar to that developed for UAT 
surface roughness predicting model could not yield 
satisfactory results. In this case, however, ten times decreasing 
the threshold resulted in much improved output. Ignoring one 
single ill-conditioned exemplifier, the error in the response of 
the rectified network was in the range of 0 to 12%.  
 Generalized feed forward, modular neural network and 
RBF/GRNN/PNN also could acceptably model the 
oncogenicity level when trained with 100 times decreased 
threshold and 20000 epochs. The last mentioned network 
could even deal with the single ill-conditioned and predict the 
relevant response  with 20%  error. 

 The performance of the networks might be classified as 
follows: High risk levels were best predicted by multilayer 
perceptron and modular neural network within 0-10% and 0-
20% ranges of error, respectively. The RBF/GRNN/PNN 
could best predict moderate risk oncogenicity levels within an 
error range of 4 to 6% disregarding the ill-conditioned 
exemplifier. Low risk could be best predicted by multilayer 

perceptron, generalized feed forward and modular neural 
network within 0-3%, 0-1% and 0-1% ranges of error. 
Ignoring the single ill-conditioned test sample, prediction of 
multilayer perceptron for all risk levels may be taken into 
consideration and for the final judgment about the risk levels 
other competent networks as described above is consulted. 

In order to further the objectives of the present study, an 
intelligent and multidisciplinary program can be developed on 
the basis of the information to be gained on the essentials of 
different applications by similar investigations. This program 
helps automatically design expert neural network architecture 
for each application.
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