
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1443

  
Abstract—Thousands of organisations store important and 

confidential information related to them, their customers, and their 
business partners in databases all across the world. The stored data 
ranges from less sensitive (e.g. first name, last name, date of birth) to 
more sensitive data (e.g. password, pin code, and credit card 
information). Losing data, disclosing confidential information or 
even changing the value of data are the severe damages that 
Structured Query Language injection (SQLi) attack can cause on a 
given database. It is a code injection technique where malicious SQL 
statements are inserted into a given SQL database by simply using a 
web browser. In this paper, we propose an effective pattern 
recognition neural network model for detection and classification of 
SQLi attacks. The proposed model is built from three main elements 
of: a Uniform Resource Locator (URL) generator in order to generate 
thousands of malicious and benign URLs, a URL classifier in order 
to: 1) classify each generated URL to either a benign URL or a 
malicious URL and 2) classify the malicious URLs into different 
SQLi attack categories, and a NN model in order to: 1) detect either a 
given URL is a malicious URL or a benign URL and 2) identify the 
type of SQLi attack for each malicious URL. The model is first 
trained and then evaluated by employing thousands of benign and 
malicious URLs. The results of the experiments are presented in 
order to demonstrate the effectiveness of the proposed approach. 

 
Keywords—Neural Networks, pattern recognition, SQL injection 

attacks, SQL injection attack classification, SQL injection attack 
detection. 

I. INTRODUCTION  

ATABASE is a data structure that stores organised 
information and has multiple tables, which may each 

include several different fields. For instance, a company 
database may embrace tables for products, employees, and 
financial records. Each of these tables would have different 
fields that are relevant to the information stored in that table. 
Thousands of organisations store important and confidential 
information in databases all across the world. The stored data 
ranges from personal information such as first name, last 
name, date of birth, student identification number, staff 
identification number, home address, work address, mobile 
phone number, national insurance number, email address, and 
job title to more sensitive information such as username, 
password, pin code, and credit card information.  

CIA triad, which stands for Confidentiality, Integrity, and 
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Availability, is a well-known model that can be used to 
develop a security policy in any organisation. It was proposed 
in order to identify problem areas and necessity solutions for 
computer and information security. Confidentiality is a set of 
rules that limits or restricts access to certain type of 
information, Integrity, assures the accuracy of information 
during its full life-cycle, and Availability certifies that the 
information is accessible at a required level of performance.  

If a given database is attacked the CIA’s elements can be 
violated. For instance, the data in the database can be 
disclosed to unauthorised users, which is a failure in 
Confidentiality element of the CIA triad, or in worst-case 
scenario, it can be modified, which is a failure in Integrity 
element of the CIA triad, by the hackers or completely wiped 
out from the database, which is a failure in Availability 
element of the CIA triad. Therefore, it is important for any 
organisation to protect their databases in order to prevent any 
loss to themselves and to their customers.  

Nearly all e-commerce sites use databases in order to store 
information related to customers, products, and financial 
records with which the data can be easily searched, modified, 
and updated. Sorting website data in a database provides 
flexibility as a vital factor for e- commerce sites and other 
types of dynamic websites.  

SQL is a programming language, which is designed for 
managing data, including data definition, data insertion, data 
removal, and data modification, in a Relational Database 
Management System (RDBMS) [18].  

SQLi attack is a code injection technique in which hackers 
try to disclose, modify or remove data from a given database 
by simply using SQL language and web browser. SQLi attack 
has been rated as the number-one attack among top ten web 
application threats on Open Web Application Security Project 
(OWASP) [13]. OWASP is an open community dedicated to 
enabling organisations to consider, develop, obtain, function, 
and preserve applications that can be trusted. SQLi attack 
takes advantages of inappropriate or poor coding of web 
applications that allows hackers to inject crafted SQL 
commands into say a login form in order to gain un-authorised 
access to data within a given database [14]. If the inputs from 
user are not properly sanitised, a hacker can generate crafted 
SQL commands and can inject them into the database in order 
to pass the login barrier and see what lies behind it. Generally 
speaking, the SQLi attack is a technology vulnerability that 
comes from dynamic script language such as Hypertext 
Processor (PHP), Active Server Pages (ASP), Java Server 
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pages (JSP), and Common Gateway Interface (CGI).  
In this paper, a pattern recognition neural network model 

for detection and classification of SQLi attack is proposed in 
which the proposed model is able to: 1) identify the malicious 
URLs from the benign URLs and 2) detect the type of SQLi 
attack for the malicious URLs. 

The remainder of this paper is organised as follows. In 
Sections II & III, seven popular types of SQLi attack as well 
as related work for SQLi attack detection and prevention are 
discussed. The proposed neural network-based model for 
detection and classification of SQLi attacks is discussed and 
detailed in Section IV. Sections V and VI include the 
implementations and captured results, respectively followed 
by conclusions of the work in Section VII, acknowledgments 
and references. 

II. SQL INJECTION ATTACK TYPES 

In this section, we discuss the seven popular types of SQLi 
attack which all are backed up with an example for each. 
There are countless variations for different SQLi attack types 
which can be generated by piecing together the different SQLi 
attacks. However, in this section, in order to give a clear 
understanding of different types of SQLi attack, we discuss a 
single representation of each attack along with the related 
signature(s) and the possible solution(s) to prevent it. A 
comprehensive classification for SQLi attacks and 
countermeasures can be found in [1]. 

A. Tautologies 

Tautology SQLi attack is a type of attack in which hackers 
try to bypass authentication, identify injectable parameters 
and/or extract data from a given database by simply using 
WHERE clause conditions which are always be evaluated to 
true. For instance: “WHERE password = ‘x’ OR ‘x’ = ‘x’” or 
“WHERE password = ‘x’ OR 1=1”. In the example below, 
hackers execute a tautology SQLi attack against a back-end 
database by filling the “Username” textbox with “ ‘or 1=1 --“ 
in a sample login page:  

SELECT “accounts” FROM “users” WHERE username = 
“‘or 1=1 -- “ AND password =”” AND pin =””  

In the above example, as the WHERE clause is always 
evaluated to true, the database displays the entire rows from 
the “account” column of the “users” table on the hacker’s 
screen.  

Signature: Given that the tautology SQLi attack always 
starts with a string terminator (‘) followed by the OR operators 
and a condition that is always evaluated to TRUE, the possible 
signatures for this type of SQLi attack are the string terminator 
“‘”, OR, =, LIKE and SELECT.  

Prevention: The tautology SQLi attack can be prevented by 
strictly validating user inputs on user side and blocking 
queries containing tautological condition WHERE clauses on 
database side. 

B. Illegal/logically Incorrect Queries 

Illegal/logically incorrect queries SQLi attack is a type of 
attack in which hackers try to identify injectable parameters, 

perform database finger-printing, and/or extract data from 
databases by providing illegal/logically incorrect queries. In 
Illegal/logically incorrect queries SQLi attack, logical errors, 
type errors as well as syntax errors are the most popular 
queries that hackers try to generate from a vulnerable login 
page in an attempt to obtain information about a back-end 
database. The example below reveals how generated type 
errors can help hackers to get useful information from a back-
end Microsoft SQL Server database. 

SELECT “accounts” FROM “users” WHERE username = 
“” AND password = “” AND pin = “convert (int, (select top 1 
name from sysobjects where xtype = ‘u’))” 

In the above example, the query tries to extract the first user 
table name from “sysobjects” where “xtype = ‘u’” and then 
converts it to integer. By assuming that the back-end database 
is a Microsoft SQL Server, the generated query contains 
illegal type conversions therefore it makes the database to 
throw the following error:  

“Microsoft OLE DB Provider for SQL Server 
(0x80040E07) Error converting nvarchar value ’CreditCards’ 
to a column of data type int.” This error message can provide 
the following useful information for hackers. First, it reveals 
that the back-end database is a Microsoft SQL. This can aid 
attackers narrowing down all their attempts to a single type of 
database. Second, the above error message discloses the type 
of the first defined table in “sysobjects” metadata database, 
which is “nvarchar”.Third, it exposes the name of the first 
defined table in “sysobjects” metadata database, which is 
“CreditCards”. 

Signature: There are several ways to perform 
Illegal/logically incorrect SQLi attack against a given 
database. This includes employing all the possible incorrect 
conversions and incorrect logics in SQL world. Therefore, the 
possible signatures for this type of attack are: invalid 
conversions (CONVERT (TYPE)), incorrect logics, using 
AND operator to perform incorrect logics, using ORDERBY, 
and incorrectly terminating the string using (‘), etc.  

Prevention: Strictly validating user inputs on user side and 
stopping/sanitising the generated error messages such as 
logical errors, type errors and syntax errors from a given 
database are the two effective countermeasures for preventing 
the Illegal/logically incorrect queries SQLi attack.  

C. Piggy-Backed Query 

Piggy-backed query SQLi attack is a type of attack in which 
hackers aim to extract data, add or modify data, perform 
denial of service attack and/or execute remote commands on a 
back-end database by taking advantages of database 
misconfiguration where executing multiple statements in a 
single query is allowed.  

The example below shows how the piggy-backed query 
SQLi can be sent by hackers through a user interface to the 
related back-end database. 

SELECT “accounts” FROM “users” WHERE username = 
“john1390” AND password = “ ’; drop table users --“ AND 
pin = “123” 

When the above query arrives at the database, it compiles 
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the first query and then recognises the delimiter “;”, which 
makes the second query runs right after the first query. 
Running the second query results in dropping the table “users” 
form the database and thus wipes all the information from the 
database.  

Signature: Given the above example and explanations, the 
signature for the piggy-backed query SQLi attack is delimiter 
“;”.  

Prevention: Strictly validating user inputs on user side and 
avoiding multiple statement executions on a database by 
scanning all queries for delimiter “;”on database side are two 
countermeasures for the piggy-backed query SQLi attacks. 
However, most databases in the world don’t require a 
delimiter “;” for multiple statement executions therefore, 
scanning a query for a delimiter cannot guarantee the 
prevention of piggy-backed query SQLi attack. 

D. Union Query 

Union query SQLi attack is a type of attack in which 
hackers try to bypass authentication and/or extract data from a 
back-end database by merging two separate SQL SELECT 
queries, which have nothing in common, using UNION 
SELECT statement. The example below shows how the union 
query SQLi attack can be sent by hackers through a user 
interface to the related back-end database. 

SELECT “accounts” FROM “users” WHERE username = 
“” “UNION SELECT “cardNumber” from “CreditCard” 
where accountNumber = “40654”--“ AND password =”” AND 
pin =”” 

In the above example, the first “SELECT” query returns the 
null set, while the second “SELECT” query returns 
“cardNumber” for account “40654”. Thus, after running the 
above statement, the “cardNumber” for account “40654” will 
be displayed on the hacker’s screen.  

Signature: Given the above example and explanations, the 
signature for the union query SQLi attacks is the UNION and 
UNION SELECT meta characters of SQL. 

Prevention: strictly validating user inputs on user side and 
blocking multiple query executions in a single statement on 
database side are the two effective countermeasures for 
preventing the union query SQLi attacks. 

E. Stored Procedures 

Stored procedure SQLi attack is a type of attack in which 
hackers aim to perform privilege escalation, denial of service 
and/or remote commands using stored procedures related to a 
given type of database. The example below displays how the 
stored procedure SQLi attack can be sent by hackers through 
user interface to the back-end database. 

SELECT “accounts” FROM “users” WHERE username = 
“LIKE ‘1’ or ‘1’=’1’” AND password = ” ; exec 
master.dbo.xp_cmdshell ‘dir c:\temp\*.sql ’ SHUTDOWN; --“ 
AND pin = ”” 

In the above example, “exec master.dbo.xp_cmdshell ‘dir 
c:\temp\*.sql ’” statement displays all the file in “c:\temp” 
directory that have a “.sql” extension to the hacker. This 
command then follows by executing the “SHUTDOWN” 

command with which the back-end database will be shutdown.  
Signature: Taking into account the above example and 

explanations, the signature for the stored procedure SQLi 
attack is as same as the piggy-backed query SQLi attacks, 
given that both attacks are similar in using delimiter “;” and 
stored procedure keywords such as (SHUTDOWN, exec, 
xp_cmdshell(), sp_execwebtask ()) .  

Prevention: Strictly validating user inputs on user side, 
using a low privileged account to run a database on database 
side, executing stored procedures with a safe interface on 
database side, and giving proper roles and privileges to stored 
procedures, which are being used in a user application form, 
are some countermeasures to block and/or reduce the chance 
of a successful stored procedure SQLi attack. 

F. Inference 

Inference SQLi attack is a type of attack in which hackers 
aim to identify injectable parameters, extract data from a 
database and/or determine database scheme by testing the 
possible vulnerabilities of a back-end database when no data 
returns to an end-user from a slightly secured website.  

There are two popular inference SQLi attacks as follows. 

1) Inference Blind SQLi Attack  

Inference blind SQLi attack is an error-based attack in 
which hackers try to force a back-end database to throw an 
error message by asking true-false questions.  

The example below reveals how the inference blind SQLi 
attack can be sent by hackers through a user interface to the 
back-end database. 

SELECT “accounts” FROM “users” WHERE username = 
“LIKE ‘1’ or ‘1’=’1’; IF SYSTEM_USER = ‘sa’ SELECT 1/0 
ELSE 5; --“ AND password =”” AND pin =”” 

In the above example, hackers try to obtain the back-end 
database behaviour by sending an “IF ELSE” statement in 
which a division by zero will be executed on the database if 
the current user is a system administrator, “sa”. As division by 
zero is undefined and has no meaning, running the above 
query forces the back-end database to throw an error if the 
current user is a system administrator, “sa”, or else a valid 
instruction would be executed, “ELSE 5”.  

2) Inference Timing SQLi Attack  

Inference timing SQLi attack is a time-based attack in 
which hackers employ time delay in order to make difference 
between true and false responses from a back-end database. 
For instance, a true response received from a given database 
means that the time delay was executed successfully while a 
false response means hackers weren’t successful to execute 
the time delay.  

The following example represents how the inference timing 
SQLi attack can be generated by hackers via a user interface to 
the related database.  

SELECT “accounts” FROM “users” WHERE username = 
“john1390 and 1>0 WAITFOR 5 --“ AND password = “” 
AND pin = “” 

In the above example, hackers try to work out the behaviour 
of the back-end database by injecting an always true 
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statement, “1>0”, along with “WAITFOR” keyword, which is 
a popular keyword for issuing the inference timing SQLi 
attack.  

Signature: Addressing the above example and explanations, 
the possible signatures for the inference SQLi attack, 
including both interface blind and interface timing, are: using 
delimiter “;” with AND operator, using IF ELSE conditional 
operator, and using WAITFOR.  

Prevention: Strictly validating user inputs on user side, 
carefully crafting error messages return from databases on 
database side as well as patching/hardening databases can 
prevent the inference SQLi attacks. 

G. Alternate Encoding 

Alternate encoding SQLi attack is a type of attack in which 
hackers try to obscure their injected commands by using 
encodings techniques such as ASCII, hexadecimal, Unicode 
character encoding, etc. The following example reveals how 
the alternate encoding SQLi attack can be generated by 
hackers and then sent via a user interface to the back-end 
database. 

SELECT “accounts” FROM “users” WHERE username = 
“john1390; exec (char (Ox73687574646j776e)) --" AND 
password =”” AND pin = “” 

In the above example, hackers try to obscure their attacks 
by using ASCII hexadecimal alternate of “char 
(Ox73687574646j776e)”, which is equal to “SHUTDOWN. 
When the above SQL query bypasses the validation and 
reaches the back-end database, it will be translated to 
“SHUTDOWN” and run straightaway on the back-end 
database. The same technique can be employed by hackers to 
find replacement for any bad characters, for instance single 
quote (“ ‘ ”) or “ ' Or 1=1 -- ”, in order to cover their attack 
and circumvent the validation. 

Signature: Given the above example and explanations, the 
possible signatures for the alternate encoding SQLi attack are: 
exec (), Char (), ASCII (), BIN (), HEX (), UNHEX (), 
BASE64 (), DEC (), ROT13 (), etc.  

Prevention: Strictly validating user inputs on user side, for 
instance prohibiting any usage of meta-characters e.g. “Char 
()”, etc. and treating all meta-characters as normal characters 
on database side can prevent the alternate encoding SQLi 
attack. 

All the above types of SQLi attack along with their 
signatures and preventions are listed in Table I. 

Related work for SQLi attacks detection and prevention are 
addressed in the next section.  

III. RELATED WORK FOR SQL INJECTION ATTACK; DETECTION 

AND PREVENTION  

In this section, we address the earlier work related to the 
SQLi attack detection and prevention techniques as follows.  

Authors in [2] employed the Support Vector Machine 
(SVM) for SQLi attack classification and detection. The 
performance of their proposed technique was measured based 
on the different parameters such as accuracy, detection time, 

training time, True Positive Rate (TPR), True Negative Rate 
(TNR), False Positive Rate (FPR) and False Negative Rate 
(FNR). Based on the captured results their proposed model 
shows 96.47% accuracy in SQLi attack detection. 

Authors in paper [3] proposed a static analysis tool for 
checking Java Database Connectivity (JDBC) in order to 
verify the correctness of dynamically generated query strings. 
JDBC is the JavaSoft application of a standard application 
programming interface (API) that allows Java programs to 
first connect to and then access to database management 
systems. Based on their captured results, their proposed JDBC 
checker either flags potential errors or verify their absence in 
dynamically generated SQL queries with low false positive 
rate.  

In order to detect the SQLi attacks, [4] proposed a query 
tokenisation algorithm assuming that there is no way for 
someone performing SQLi attack without inserting space, 
single quote, and/or double dashes in a query. By taking into 
account this assumption, they designed two arrays: one for the 
original query and one for the injected query, where each 
element is a token obtained from the related query. At the end, 
they captured the lengths of the resulting arrays from two 
queries and compared them having said that if two arrays have 
the same length there is no SQL injection otherwise there is 
injection.  

In order to prevent SQLi attack, [5] proposed Random4 
encryption algorithm in which user inputs, e.g. usernames and 
passwords, convert into cipher text using a lookup table. The 
encrypted keys can then be stored in database and compared 
with the input values received from users in order to prevent 
illegal access through SQL injection. For performance 
evaluation, they used password cracking techniques such as 
brute force attack and dictionary attacks to crack the keys 
stored in the database. They have also compared their proposal 
with the existing algorithms such as AMNESIA [8], SQL rand 
[10], SQL DOM [9], WAVES [11], and SQL check [12] in 
terms of encoding, detection and prevention. 

Authors in [6] proposed a Service Based SQL Injection 
Detection (SBSQLID) method for detection of SQL injection 
vulnerabilities which includes three elements of input 
validator, query analyser, and error service. The proposed 
SBSQLID positioned between a given application server and 
the associated database. The input validator retrieves the user 
inputs from the web application form and passes them into the 
set of injection characters for pattern matching. Thus, if the 
pattern matching returns false, the users would be able to work 
with the web application otherwise they would be disallowed. 
After validating the user inputs, the user inputs will be passed 
to the query analyser for syntactic and semantic structure 
verification. The last elements of their proposal is an error 
service with which any error messages form the database 
server will be generalised and then sent back to the application 
server in order to stop attackers for receiving any Meta data 
information from the database. 
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TABLE I 
SQL INJECTION ATTACK TYPES, SIGNATURES, PREVENTIONS 

No Type of SQLi attack  Signature Prevention 

1 Tautologies ‘, OR, =, like, select  
-Strictly validating user inputs on user side 
-Blocking queries containing tautological condition WHERE clauses on database side 

2 
Illegal/logically 
incorrect queries 

invalid conversions (CONVERT 
(TYPE)), incorrect logics, AND, 
ORDERBY, ‘ 

-Strictly validating user inputs on user side  
-Stopping and/or sanitising the generated error messages (e.g. logical errors, type errors and 
syntax errors) from a given database  

3 Piggy-backed query ; 
-Strictly validating user inputs on user side 
-Avoiding multiple statement executions on a database by scanning all queries for delimiter 
“;”on database side 

4 Union queries UNION, UNION SELECT 
-Strictly validating user inputs on user side 
-Blocking multiple query executions in a single statement on database side 

5 Stored procedures 
;, Stored procedure keywords 
(SHUTDOWN, exec, 
xp_cmdshell(), sp_execwebtask()) 

-Strictly validating user inputs on user side  
-Using a low privileged account to run a database on database side 
-Executing stored procedures with a safe interface on database side  
-Giving proper roles and privileges to stored procedures being used in a user application form 

6 
Inference SQLi 
attack 

;, AND, IF ELSE, WAITFOR 
-Strictly validating user inputs on user side 
-Carefully crafting error messages return from databases on database side 
-Patching/hardening databases  

7 Alternate encoding 
exec (), Char (), ASCII (), BIN (), 
HEX (), UNHEX (), BASE64 (), 
DEC (), ROT13 () 

-Strictly validating user inputs on user side, for instance prohibiting any usage of meta-
characters e.g. “Char ()” , etc. 
-Treating all meta-characters as normal characters on database side  

 
Authors in [7] proposed a translation and validation-based 

solution for SQL injection attacks named as TransSQL, with 
which SQL requests are automatically translated to the 
Lightweight Directory Access Protocol (LDAP) equivalent 
requests. LDAP is a protocol for accessing directories while 
SQL is a query language for databases. Both queries, SQL and 
LDAP-equivalent, are then executed on SQL database and 
LDAP database, respectively. At the end, TransSQL checks 
the difference in responses from both databases in order to 
detect and then block SQL injection attempts.  

Authors in [8] proposed AMENSIA, Analysis and 
Monitoring for NEutralising SQL Injection Attacks, to detect 
and prevent SQLi attacks by combining static analysis and 
runtime monitoring. The static analysis was used in order to 
analyse the web-application codes and automatically build a 
model of the legitimate queries that a given application can 
generate. Then, the runtime monitoring was employed in order 
to monitor all dynamically generated queries and check if they 
are different from the static generated model. At the end, the 
queries that violate the static model were classified as SQLi 
attacks and prevented from accessing the database.  

Authors in [9] proposed SQL Domain Object Model 
(DOM) for compile time checking instead of runtime checking 
of dynamic SQL statements. Their proposed SQL DOM is a 
set of classes that are shortly typed to a database scheme and 
is employed in order to generate dynamic SQL statements. 
Using these classes, the application developer is able to build 
dynamic SQL statements through manipulation of objects, 
which are strongly typed to the database, without the need for 
string manipulations. 

In order to detect and prevent SQLi attacks, [10] proposed a 
randomised SQL query language, SQLrand, with which the 
SQL standard keywords were manipulated by attaching a 
randomised as well as a hard to guess integer to them. To 
achieve probability and security, their proposal consists of a 
proxy server sits between the client and the database which 
receives randomised SQL quires from the client and de-

randomised them before they pass to the database. Based on 
the captured results, the latency overhead, that imposed on 
each query using SQLrand, is negligible thus doesn’t sacrifice 
the performance.  

Authors in [11] proposed a Web Application Vulnerability 
and Error Scanner (WAVES) as a security assessment tool in 
order to identify poor coding practices that render web 
applications vulnerable to attacks such as SQL injections and 
cross-site scripting. Having said that their goal was to adopt 
software-engineering techniques to design a security 
assessment tool, a number of software testing techniques 
including dynamic analysis, black-box testing, fault injection, 
and behaviour monitoring was described and took into account 
in WAVES tool. At the end, WAVES was compared with 
other tools. The comparison shows that WAVES is a feasible 
platform for assessing web application security. 

Authors in [12] proposed SQLCHECK, which is a runtime 
checking algorithm, to prevent SQLi attacks. Their proposed 
algorithm was evaluated on real-world web applications with 
real-world attack data as input value. Based on the captured 
results, the SQLCHECK produces no false negative or false 
positive. It also has low run-time overhead and can be applied 
straightforwardly to web applications written in different 
languages.  

In [16], we proposed a neural network model for SQLi 
attack detection where our proposed technique was successful 
to classify a given URL as either a benign URL or a malicious 
URL by taking into the account the popular SQLi attack 
keywords and the popular SQLi attack URL patterns. In this 
paper, we improve our earlier work [16] by adding another 
level of intelligence to our previous proposed neural network 
model in which our new proposal is able to 1) identify the 
malicious URLs from the benign URLs 2) detect the type of 
SQLi attack for the malicious URLs.  

Our proposed neural network-based model for detection and 
classification of SQLi attacks is discussed in the next section. 
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Fig. 1 Components of the proposed neural network-based model for detection and classification of SQLi attacks 
 

 

Fig. 2 Network Architecture for the Neural Network component of the proposed model 
 

IV. PROPOSED NEURAL NETWORK-BASED MODEL FOR 

DETECTION AND CLASSIFICATION OF SQL INJECTION ATTACKS 

Our proposed neural network-based model for detection and 
classification of SQLi attacks is built from three main 
elements of a URL generator, a URL classifier, and a neural 
network model. All the components of the proposed model are 
depicted in Fig. 1 and detailed as follows. 

A. A URL Generator 

The URL generator part of the proposed neural network-
based model for detection and classification of SQLi attacks 
has two components of “Benign URLs” and “Malicious 
URLs”, Fig. 1. The benign URLs are the real URLs which are 
the most popular URL addresses in the UK and haven been 
captured from [17]. The malicious URLs are generated by 
adding the list of the popular SQLi attack signatures from 
Table I to the benign URLs, where seven popular SQLi attacks 
and their signatures haven been taken into account. As it is 
detailed in Table I, seven popular SQLi attacks comprising: 
Tautologies, Illegal/logically incorrect queries, Piggy-backed 
query, Union queries, Stored procedures, Inference SQLi 
attack, and Alternate encoding attacks, with different 
signatures such as: “‘, OR, =, LIKE, SELECT” signatures for 
Tautologies, “;” signature for Piggy-backed query, “UNION, 
UNION SELECT” signatures for Union queries, etc.  

B. A URL Classifier 

The URL classifier part of the proposed neural network-
based model for detection and classification of SQLi attacks 
has three components of “Benign”, “Malicious” and “Type of 
attack”. Therefore, the URL classifier part of the proposed 
model is responsible to 1) classify each generated URL from 
the URL generator in the previous stage to either a benign 
URL or malicious URL and 2) detect the type of attack for 

each malicious URL. The type of attack for the malicious 
URLs could be: “Tautologies”, “Illegal/logically” “Incorrect 
Queries”, “Piggy-backed Query”, “Union Queries”, “Stored 
Procedures”, “Inference SQLi Attack”, or “Alternate 
Encoding”. Please refer to Table I for more specification for 
each type of SQLi attack in terms of signatures and prevention 
techniques.  

The URL classifier part of the proposed neural network-
based model for detection and classification of SQLi attacks is 
also in charge of converting the generated URLs, malicious 
and benign, into strings of logic, 1 as true and 0 as false, 
where “1” represent the malicious URLs and the type of attack 
while “0” represent the benign URLs. The mathematical 
explanations of the above assumptions are detailed as follows. 

Let a URL characteristic ݎ௜ generated by the URL generator 
is defined by a random variable	ܴ௜: 

 

ܴ௜= ൜
1, if	discovered	by	the	SQLi	signature	detectors	
0, if	not	discovered	by	the	SQLi	signature	detector	  (1) 

 

Let C be a random variable representing the generated URL 
class, malicious or benign: 

 
Cϵ {malicious, benign} 

 
Every generated URL (malicious and benign) is assigned a 

vector defined by ିݎ ൌ ሺݎଵ, ,ଶݎ , … ,  ௜ being the resultݎ ௡ሻ withݎ
of the i-th random variable	ܴ௜. 

Let a malicious URL characteristic ݐ௜ generated by the URL 
generator is defined by a random variable	 ௜ܶ: 

 

௜ܶ=൜
1, if	discovered	by	the	SQLi	attack	type	detectors	

0, if	not	discovered	by	the	SQLi	atatck	type	detector									(2) 
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Let D be a random variable representing the type of the 
malicious URLs: “Tautologies”, “Illegal/logically Incorrect 
Queries”, “Piggy-backed Query”, “Union Queries”, “Stored 
Procedures”, “Inference SQLi Attack”, or “Alternate 
Encoding”: 

D߳ {Tautologies, Illegal/logically incorrect queries, Piggy-
backed query, Union queries, Stored procedures, Inference 
SQLi attack, Alternate encoding} 

Every generated malicious URL is assigned a vector 
defined by ିݐ ൌ ሺݐଵ, ,ଶݐ , … ,  ௜ being the result of theݐ ௡ሻ withݐ
t-th random variable	ܴ௜. 

C. A Neural Network (NN) Model 

The neural network model part of the proposed neural 
network-based model for detection and classification of SQLi 
attacks comprises n layers (n hidden layers or neurons) with x 
number of input nodes and y number of output nodes. The 
model uses the benign and malicious URLs, which are 
generated by the URL generator and classified by the URL 
classifier from the previous sections, Fig. 1, for training, 
validating, and testing. Thus, as it is depicted in Fig. 1, the 
neural network model has three components of training, 
validating and testing. For simplicity these three components 
are put together in two groups of training components and 
validating/testing components and described as follows. 

1) Training Components  

 ‘Input’ matrix: this matrix includes the data that our 
proposed neural network model uses in training phase. It 
comprises all the benign and malicious URLs generated 
by the URL generator part of our proposed model. 

 ‘Target’ matrix: this matrix includes all the decisions 
including (malicious or benign) as well as the type of the 
SQLi attack (Tautologies, Illegal/logically incorrect 
queries, Piggy-backed query, Union queries, Stored 
procedures, Inference SQLi attack, Alternate encoding) 
for each string of data stored in ‘Input’ matrix.  

 Fitness network: this is the neural network with n neurons 
in n hidden layer in which the data from ‘Input’ and 
‘Target’ matrixes will be used for training, validating and 
testing, consequently.  

2) Validating/Testing Components 

 ‘Sample’ matrix: this matrix contains sample data from 
‘Input’ matrix discussed in the previous section. The 
trained neural network model uses ‘Sample’ data as input 
in validation phase.  

 ‘Output’ matrix: this matrix contains output data for the 
data represented in ‘Sample’ matrix. The trained neural 
network model predicts the output value for ‘Sample’ 
matrix and stores it in ‘Output’ matrix. Thus, it predicts a 
given URL either being a benign URL or a malicious 
URL. It also predicts the type of the SQLi attack for the 
malicious URL. 

 The implementation of the proposed neural network-
based model for detection and classification of SQLi 
attacks is discussed in the next section. 

V. IMPLEMENTATIONS 

In this paper, a neural network-based model for detection 
and classification of SQLi attacks is proposed which includes 
three elements of a URL generator, a URL classifier and a 
neural network model, Fig. 1. All three elements are 
implemented as follows.  

A. A URL Generator 

As it was discussed in the previous section, the URL 
generator element of the proposed neural network-based 
model for detection and classification of SQLi attacks includes 
two main components: 1) “Benign URLs” and 2) “Malicious 
URLs”, Fig. 1. The “Benign URLs” include a list of the most 
popular URLs in the UK while the “Malicious URLs” are 
generated by adding the SQLi attack signatures to the benign 
URLs.  

For the “Benign URLs”, we have taken into account the top 
500 popular website addresses in the UK, which has been 
captured from [17], while the malicious URLs are generated 
by adding the SQLi attack signatures from Table I to the 
benign URLs.  

For instance, addressing the unique signatures for 
“Illegal/logically Incorrect Queries” from Table I, a generated 
malicious URL could be a benign URL that had been 
combined with word “convert” and word “int”, or adding “ ‘, 
OR, =, like, select” signature to any benign URL could 
generate a malicious URL which could be identified as a 
“Tautologies” attack, etc.  

The total number of the benign URLs in our implemented 
scenario is 500. The total number of the malicious URLs 
comes to 12,500 after considering all the signatures from 
seven popular SQLi attacks, Table I.  

B. A URL Classifier  

As it was discussed in the previous section, the classifier 
part of our proposed neural network-based model for detection 
and classification of SQLi attacks is in charge of: 1) 
classifying each URL generated by the URL generator to 
either a benign URL or a malicious URL and 2) detecting the 
type of SQLi attack for each malicious URL. These two tasks 
have been coded and implemented based on the strings of 
logic, where 1 represents as true/malicious and 0 represents as 
false/benign, by allocating two vectors, ିݎ ൌ ሺݎ଴, ,ଵݎ , … ,  ଷଵሻݎ
and ିݐ ൌ 	 ሺݐ଴, ,ଵݐ , … ,   .଻ሻ, to each URLݐ

For instance, addressing the signature for “Inference SQLi 
Attack” from Table I, if a URL includes: “;”, “and”, “if” and 
“else”, it will be classified as a malicious URL with 
“00000000000101000000110000000000” value for ିݎ in 
which ݎଵଷ represents “;” ݎଵଵ represents “and” ݎଶ଴ represents 
“if” ݎଶଵ represents “else”. Moreover, as it is an “Inference 
SQLi attack”, attack type 6, the value for ିݐ vector is 
“00000010”, etc. The components of the ିݎ and ିݐ vectors 
have been revealed in Tables II and III, respectively. 

C. A Neural Network (NN) Model  

As it was discussed in the previous section, the neural 
network model of the proposed scheme includes three 
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components of training, validating, and testing. It comprises of 
n layers (n hidden layers or n neurons) with x number of input 
nodes and y number of output nodes and uses the benign and 
malicious URLs, which are generated by the URL generator 
and classified by the URL classifier, for training, validating 
and testing.  

 
TABLE II 

ASSIGNED VECTORS TO THE SQLI ATTACK SIGNATURES 

Vectors SQLi attack signatures 

r଴ ‘ 

rଵ or 

rଶ = 

rଷ like 

rସ select 

rହ convert 

r଺ int 

r଻ char 

r଼ varchar 

rଽ nvarchar 

rଵ଴ incorrect logics 

rଵଵ and 

rଵଶ orderby 

rଵଷ ; 

rଵସ union 

rଵହ union select 

rଵ଺ shutdown 

rଵ଻ exec 

rଵ଼ xp_cmdshell () 

rଵଽ sp_execwebtask () 

rଶ଴ if 

rଶଵ else 

rଶଶ waitfor 

rଶଷ -- 

rଶସ ascii () 

rଶହ bin () 

rଶ଺ hex () 

rଶ଻ unhex () 

rଶ଼ base64 () 

rଶଽ dec () 

rଷ଴ rot13 () 

rଷଵ * 

 
TABLE III 

ASSIGNED VECTORS TO THE SQLI ATTACK TYPE 

Vectors SQLi attack type 

t଴ Benign 

tଵ Tautologies 

tଶ Illegal/logically incorrect queries 

tଷ Piggy-backed query 

tସ Union queries 

tହ Stored procedures 

t଺ Inference SQLi attack 

t଻ Alternate encoding 

 
In our implementations, we have implemented a neural 

network model of 10 layers (10 hidden nodes or 10 neurons) 
in which 70%, 15% and 15% of the total benign and malicious 
URLs for training, validating and testing, respectively. 
MATLAB [15], which is popular software for the numerical 

calculations and formulas with the vast library of functions 
and algorithms, is used in order to develop, train, validate and 
test the proposed neural network model. The training and 
validating components of the proposed model are configured 
as follows. 

1) Training Components  

 ‘Input’ matrix: this matrix is a logical n x32 matrix where 
the data represented in strings of logics; 1 as true and 0 as 
false.  

 ‘Target’ matrix: this matrix is a logical nx8 matrix where 
the data represented in logics; 1 as malicious and 0 as 
benign. 

 Fitness network: this is the neural network with 10 
neurons in hidden layer in which 70%, 15%, and 15% of 
the data from ‘Input’ and ‘Target’ matrixes will be used 
for training, validating and testing, respectively. 

2) Validating/Testing Components 

 ‘Sample’ matrix: this matrix is a logical nx32 matrix 
contains sample data from the ‘Input’ matrix.  

 ‘Output’ matrix: this matrix is a logical nx8 matrix 
contains output data for the data represented in ‘Sample’ 
matrix. The trained neural network predicts the output 
value for ‘Sample’ matrix, in terms of a URL being 
benign or malicious and the type of SQLi attack for a 
malicious URL, and stores it in the ‘Output’ matrix.  

The captured results are discussed in the next section. 

VI. RESULTS 

As it was discussed in the previous section, the proposed 
neural network-based model for detection and classification of 
the SQLi attacks includes three main elements of: 1) a URL 
generator, in order to generate thousands of benign and 
malicious URLs, 2) a URL classifier, in order to classify a 
given URL as a malicious URL or a benign URL and also to 
identify the type of SQLi attack for a given malicious URL, 
and 3) a neural network model.  

In order to capture the performance of the proposed neural 
network-based model for detection and classification of SQLi 
attacks, we have considered 13,000 URLs, which includes 500 
benign URLs and 12,500 malicious URLs.  

The 500 benign URLs are the real URLs which are the top 
500 popular website addresses in the UK while the malicious 
URLs are generated by adding the SQLi signatures from Table 
I. into the benign URLs using PHP. The 13,000 URLS, 
including 500 benign URLs and 12,500 malicious URLs, are 
then classified into either benign URLs or malicious URLs by 
using the URL classifier part of the proposed model. The 
classifier also detects the type of the SQLi for each malicious 
URL based on the seven popular SQLi attack types form 
Tbale.2. At the end we train, evaluate, and then test the neural 
network model using MATLAB [15]. In our implementations, 
the neural network model has 10 hidden layers, 32 input 
features, 8 output layer, and 8 output features, Fig. 2. The 
captured results are as follows.  

The confusion matrices for training, validating, and testing 
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are shown in Figs. 3, 4, 5, respectively. In Fig. 6, we have also 
captured the total confusion matrix in which the training, 
validation, and testing matrices are all combined. 

The numbers of the correct response are shown in green 
squares while the numbers of the incorrect response are shown 
in the red squares. The grey squares at the end of each row and 
each column illustrate the percentages of the accuracies (upper 
numbers) and inaccuracies (bottom numbers) for output 
classes and target classes, respectively. The lower-right blue 
squares illustrate the overall accuracies (upper numbers) and 
overall inaccuracies (bottom numbers) by taking into account 
the accuracies and inaccuracies in output classes and target 
classes. 

As they are depicted in Figs. 3-5 and based on the 
configurations in our implemented scenario, the 13,000 URLs 
(500 benign URLs plus 12,500 malicious URLs) are scattered 
in three phases of training, validating, and testing with 
distribution rates of 70%, 15%, and 15%, respectively. By 
taking into account the distribution rates in three phases: 
 The training phase receives 9,100 out of 13,000 URLs. 

This includes 0 benign URLs and 9,100 malicious URLs 
while the former is 0%, and the latter is 96.0% of the total 
URLs used in this phase. The malicious URLs consisting 
of 358 URLs from SQLi type2, 1752 URLs from SQLi 
type3, 349 URLs from SQLi type4, 691 URLs from SQLi 
type5, 1071 URLs from SQLi type6, 1736 URLs from 
SQLi type7, and 2775 URLs from SQLi type8. 

 The validating phase receives 1,950 out of 13,000 URLs. 
This includes 0 benign URLs and 1,950 malicious URLs 
while the former is 0%, and the latter is 96.4% of the total 
URLs used in this phase. The malicious URLs consisting 
of 85 URLs from SQLi type2, 374 URLs from SQLi 
type3, 69 URLs from SQLi type4, 157 URLs from SQLi 
type5, 202 URLs from SQLi type6, 386 URLs from SQLi 
type7, and 606 URLs from SQLi type8. 

 The testing phase receives 1,950 out of 13,000 URLs. 
This includes 0 benign URLs and 1,950 malicious URLs 
while the former is 0%, and the latter is 96.9% of the total 
URLs used in this phase. The malicious URLs consisting 
of 57 URLs from SQLi type2, 374 URLs from SQLi 
type3, 78 URLs from SQLi type4, 156 URLs from SQLi 
type5, 227 URLs from SQLi type6, 378 URLs from SQLi 
type7, and 619 URLs from SQLi type8. 

Addressing the captured percentages of the incorrect 
responses in the red squares, Figs. 3-6, as well as the overall 
percentages of the accuracies and inaccurate in blue squares, 
we can say that the outputs for all three phases are correct. 
This includes overall 96% accuracy and 4% of inaccuracy for 
training phase, overall 96.4% accuracy and 3.6% of 
inaccuracy for validation phase, and overall 96.9% accuracy 
and 3.1% of inaccuracy for testing phase. Therefore, the 
proposed model is trained correct and hence, it performs 
correct. 

The Receiver Operating Characteristic (ROC) curves for 
training, validating, and testing is shown in Figs. 7, 8, 9, 
respectively. We have also captured the ROC curve for all 
three sets of training, validating, and testing in Fig. 10. The 

colored lines in each axis represent the ROC curves for each 
of three sets. The ROC curve is a plot of the true-positive rate 
(sensitivity) against the false-positive rate (specificity).  
In our implementations, the true-positive rate (sensitivity) is 
the percentages of the correct classifications for all 13,000 
URLs including benign URLs and malicious URLs, where 
class1 is a class allocated to the benign URLs while class2 to 
class8 are allocated to type 2 to type 8 of SQLi attacks, all 
correspondingly. Additionally, the false-positive rate 
(specificity) is the percentages of the incorrect classifications 
for any of 13,000 URLs. A perfect test would show points in 
the upper-left corner, with 100% sensitivity (i.e. 
classifying/predicting all the URLs in their correct classes of 
class1 to class8) and 100% specificity (i.e. not 
classifying/predicting any URL in any wrong classes).  

Addressing Figs. 7-10, the proposed model has a good 
performance in terms of true positive rate as well as false 
positive rate which have only 0.1 incorrectness for class 8 
(type 8 of SQLi attacks).  

Network performance is measured in terms of mean squared 
error, and shown in log scale. It rapidly decreased as the 
network was trained. Mean Squared Error is the average 
squared difference between output and targets. Thus, lower 
values are better and zero means no error. Fig. 11 shows how 
the network performance improved for each three sets. The 
version of the network that did best on is at the end of three 
phases of training, validation and testing. 

 

 

Fig. 3 Confusion matrix for training 
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Fig. 4 Confusion matrix for validating 
 

 

Fig. 5 Confusion matrix for testing 
 

 

Fig. 6 Confusion matrix for all (training, validating, and testing) 
 

 

Fig. 7 ROC curve for training 
 

 

Fig. 8 ROC curve for validation 

 

 

Fig. 9 ROC curve for testing  
 

 

Fig. 10 ROC curve for all ((training, validating, and testing)) 
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Fig. 11 Network Performance 

VII. CONCLUSION  

In this paper, a neural network-based model for detection 
and classification of SQLi attacks is proposed. The proposed 
model includes three components of: a URL generator, a URL 
classification, and a neural network model. The neural 
network part of the proposed model uses the benign and 
malicious URLs, which are generated by the URL generator 
and then classified by the URL classifier into seven popular 
SQLi attack types, during the three phases of training, 
validating, and testing.  

The proposed neural network model is successful to 1) 
detect the malicious URLs from the benign URLs 2) classify 
the malicious URLs based on their signatures into different 
classes by taking into account the signatures of the seven 
popular SQLi attacks. Additionally, based on the captured 
results, the proposed neural network model for detection and 
classification of the SQLi attack shows a good performance in 
terms of accuracy, true-positive rate as well as false-positive 
rate. 
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