
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1443


Abstract—Thousands of organisations store important and

confidential information related to them, their customers, and their
business partners in databases all across the world. The stored data
ranges from less sensitive (e.g. first name, last name, date of birth) to
more sensitive data (e.g. password, pin code, and credit card
information). Losing data, disclosing confidential information or
even changing the value of data are the severe damages that
Structured Query Language injection (SQLi) attack can cause on a
given database. It is a code injection technique where malicious SQL
statements are inserted into a given SQL database by simply using a
web browser. In this paper, we propose an effective pattern
recognition neural network model for detection and classification of
SQLi attacks. The proposed model is built from three main elements
of: a Uniform Resource Locator (URL) generator in order to generate
thousands of malicious and benign URLs, a URL classifier in order
to: 1) classify each generated URL to either a benign URL or a
malicious URL and 2) classify the malicious URLs into different
SQLi attack categories, and a NN model in order to: 1) detect either a
given URL is a malicious URL or a benign URL and 2) identify the
type of SQLi attack for each malicious URL. The model is first
trained and then evaluated by employing thousands of benign and
malicious URLs. The results of the experiments are presented in
order to demonstrate the effectiveness of the proposed approach.

Keywords—Neural Networks, pattern recognition, SQL injection

attacks, SQL injection attack classification, SQL injection attack
detection.

I. INTRODUCTION

ATABASE is a data structure that stores organised
information and has multiple tables, which may each

include several different fields. For instance, a company
database may embrace tables for products, employees, and
financial records. Each of these tables would have different
fields that are relevant to the information stored in that table.
Thousands of organisations store important and confidential
information in databases all across the world. The stored data
ranges from personal information such as first name, last
name, date of birth, student identification number, staff
identification number, home address, work address, mobile
phone number, national insurance number, email address, and
job title to more sensitive information such as username,
password, pin code, and credit card information.

CIA triad, which stands for Confidentiality, Integrity, and

Dr Naghmeh Moradpoor Sheykhkanloo is with the School of Science,

Engineering, and Technology (SET), Abertay University, Bell Street, Dundee,
Scotland, United Kingdom (phone: +44 (0) 1382 308353; fax: +44 (0) 1382
308663; e-mail: n.moradpoor@abertay.ac.uk).

Availability, is a well-known model that can be used to
develop a security policy in any organisation. It was proposed
in order to identify problem areas and necessity solutions for
computer and information security. Confidentiality is a set of
rules that limits or restricts access to certain type of
information, Integrity, assures the accuracy of information
during its full life-cycle, and Availability certifies that the
information is accessible at a required level of performance.

If a given database is attacked the CIA’s elements can be
violated. For instance, the data in the database can be
disclosed to unauthorised users, which is a failure in
Confidentiality element of the CIA triad, or in worst-case
scenario, it can be modified, which is a failure in Integrity
element of the CIA triad, by the hackers or completely wiped
out from the database, which is a failure in Availability
element of the CIA triad. Therefore, it is important for any
organisation to protect their databases in order to prevent any
loss to themselves and to their customers.

Nearly all e-commerce sites use databases in order to store
information related to customers, products, and financial
records with which the data can be easily searched, modified,
and updated. Sorting website data in a database provides
flexibility as a vital factor for e- commerce sites and other
types of dynamic websites.

SQL is a programming language, which is designed for
managing data, including data definition, data insertion, data
removal, and data modification, in a Relational Database
Management System (RDBMS) [18].

SQLi attack is a code injection technique in which hackers
try to disclose, modify or remove data from a given database
by simply using SQL language and web browser. SQLi attack
has been rated as the number-one attack among top ten web
application threats on Open Web Application Security Project
(OWASP) [13]. OWASP is an open community dedicated to
enabling organisations to consider, develop, obtain, function,
and preserve applications that can be trusted. SQLi attack
takes advantages of inappropriate or poor coding of web
applications that allows hackers to inject crafted SQL
commands into say a login form in order to gain un-authorised
access to data within a given database [14]. If the inputs from
user are not properly sanitised, a hacker can generate crafted
SQL commands and can inject them into the database in order
to pass the login barrier and see what lies behind it. Generally
speaking, the SQLi attack is a technology vulnerability that
comes from dynamic script language such as Hypertext
Processor (PHP), Active Server Pages (ASP), Java Server

A Pattern Recognition Neural Network Model for
Detection and Classification of SQL Injection

Attacks
Naghmeh Moradpoor Sheykhkanloo

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1444

pages (JSP), and Common Gateway Interface (CGI).
In this paper, a pattern recognition neural network model

for detection and classification of SQLi attack is proposed in
which the proposed model is able to: 1) identify the malicious
URLs from the benign URLs and 2) detect the type of SQLi
attack for the malicious URLs.

The remainder of this paper is organised as follows. In
Sections II & III, seven popular types of SQLi attack as well
as related work for SQLi attack detection and prevention are
discussed. The proposed neural network-based model for
detection and classification of SQLi attacks is discussed and
detailed in Section IV. Sections V and VI include the
implementations and captured results, respectively followed
by conclusions of the work in Section VII, acknowledgments
and references.

II. SQL INJECTION ATTACK TYPES

In this section, we discuss the seven popular types of SQLi
attack which all are backed up with an example for each.
There are countless variations for different SQLi attack types
which can be generated by piecing together the different SQLi
attacks. However, in this section, in order to give a clear
understanding of different types of SQLi attack, we discuss a
single representation of each attack along with the related
signature(s) and the possible solution(s) to prevent it. A
comprehensive classification for SQLi attacks and
countermeasures can be found in [1].

A. Tautologies

Tautology SQLi attack is a type of attack in which hackers
try to bypass authentication, identify injectable parameters
and/or extract data from a given database by simply using
WHERE clause conditions which are always be evaluated to
true. For instance: “WHERE password = ‘x’ OR ‘x’ = ‘x’” or
“WHERE password = ‘x’ OR 1=1”. In the example below,
hackers execute a tautology SQLi attack against a back-end
database by filling the “Username” textbox with “ ‘or 1=1 --“
in a sample login page:

SELECT “accounts” FROM “users” WHERE username =
“‘or 1=1 -- “ AND password =”” AND pin =””

In the above example, as the WHERE clause is always
evaluated to true, the database displays the entire rows from
the “account” column of the “users” table on the hacker’s
screen.

Signature: Given that the tautology SQLi attack always
starts with a string terminator (‘) followed by the OR operators
and a condition that is always evaluated to TRUE, the possible
signatures for this type of SQLi attack are the string terminator
“‘”, OR, =, LIKE and SELECT.

Prevention: The tautology SQLi attack can be prevented by
strictly validating user inputs on user side and blocking
queries containing tautological condition WHERE clauses on
database side.

B. Illegal/logically Incorrect Queries

Illegal/logically incorrect queries SQLi attack is a type of
attack in which hackers try to identify injectable parameters,

perform database finger-printing, and/or extract data from
databases by providing illegal/logically incorrect queries. In
Illegal/logically incorrect queries SQLi attack, logical errors,
type errors as well as syntax errors are the most popular
queries that hackers try to generate from a vulnerable login
page in an attempt to obtain information about a back-end
database. The example below reveals how generated type
errors can help hackers to get useful information from a back-
end Microsoft SQL Server database.

SELECT “accounts” FROM “users” WHERE username =
“” AND password = “” AND pin = “convert (int, (select top 1
name from sysobjects where xtype = ‘u’))”

In the above example, the query tries to extract the first user
table name from “sysobjects” where “xtype = ‘u’” and then
converts it to integer. By assuming that the back-end database
is a Microsoft SQL Server, the generated query contains
illegal type conversions therefore it makes the database to
throw the following error:

“Microsoft OLE DB Provider for SQL Server
(0x80040E07) Error converting nvarchar value ’CreditCards’
to a column of data type int.” This error message can provide
the following useful information for hackers. First, it reveals
that the back-end database is a Microsoft SQL. This can aid
attackers narrowing down all their attempts to a single type of
database. Second, the above error message discloses the type
of the first defined table in “sysobjects” metadata database,
which is “nvarchar”.Third, it exposes the name of the first
defined table in “sysobjects” metadata database, which is
“CreditCards”.

Signature: There are several ways to perform
Illegal/logically incorrect SQLi attack against a given
database. This includes employing all the possible incorrect
conversions and incorrect logics in SQL world. Therefore, the
possible signatures for this type of attack are: invalid
conversions (CONVERT (TYPE)), incorrect logics, using
AND operator to perform incorrect logics, using ORDERBY,
and incorrectly terminating the string using (‘), etc.

Prevention: Strictly validating user inputs on user side and
stopping/sanitising the generated error messages such as
logical errors, type errors and syntax errors from a given
database are the two effective countermeasures for preventing
the Illegal/logically incorrect queries SQLi attack.

C. Piggy-Backed Query

Piggy-backed query SQLi attack is a type of attack in which
hackers aim to extract data, add or modify data, perform
denial of service attack and/or execute remote commands on a
back-end database by taking advantages of database
misconfiguration where executing multiple statements in a
single query is allowed.

The example below shows how the piggy-backed query
SQLi can be sent by hackers through a user interface to the
related back-end database.

SELECT “accounts” FROM “users” WHERE username =
“john1390” AND password = “ ’; drop table users --“ AND
pin = “123”

When the above query arrives at the database, it compiles

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1445

the first query and then recognises the delimiter “;”, which
makes the second query runs right after the first query.
Running the second query results in dropping the table “users”
form the database and thus wipes all the information from the
database.

Signature: Given the above example and explanations, the
signature for the piggy-backed query SQLi attack is delimiter
“;”.

Prevention: Strictly validating user inputs on user side and
avoiding multiple statement executions on a database by
scanning all queries for delimiter “;”on database side are two
countermeasures for the piggy-backed query SQLi attacks.
However, most databases in the world don’t require a
delimiter “;” for multiple statement executions therefore,
scanning a query for a delimiter cannot guarantee the
prevention of piggy-backed query SQLi attack.

D. Union Query

Union query SQLi attack is a type of attack in which
hackers try to bypass authentication and/or extract data from a
back-end database by merging two separate SQL SELECT
queries, which have nothing in common, using UNION
SELECT statement. The example below shows how the union
query SQLi attack can be sent by hackers through a user
interface to the related back-end database.

SELECT “accounts” FROM “users” WHERE username =
“” “UNION SELECT “cardNumber” from “CreditCard”
where accountNumber = “40654”--“ AND password =”” AND
pin =””

In the above example, the first “SELECT” query returns the
null set, while the second “SELECT” query returns
“cardNumber” for account “40654”. Thus, after running the
above statement, the “cardNumber” for account “40654” will
be displayed on the hacker’s screen.

Signature: Given the above example and explanations, the
signature for the union query SQLi attacks is the UNION and
UNION SELECT meta characters of SQL.

Prevention: strictly validating user inputs on user side and
blocking multiple query executions in a single statement on
database side are the two effective countermeasures for
preventing the union query SQLi attacks.

E. Stored Procedures

Stored procedure SQLi attack is a type of attack in which
hackers aim to perform privilege escalation, denial of service
and/or remote commands using stored procedures related to a
given type of database. The example below displays how the
stored procedure SQLi attack can be sent by hackers through
user interface to the back-end database.

SELECT “accounts” FROM “users” WHERE username =
“LIKE ‘1’ or ‘1’=’1’” AND password = ” ; exec
master.dbo.xp_cmdshell ‘dir c:\temp*.sql ’ SHUTDOWN; --“
AND pin = ””

In the above example, “exec master.dbo.xp_cmdshell ‘dir
c:\temp*.sql ’” statement displays all the file in “c:\temp”
directory that have a “.sql” extension to the hacker. This
command then follows by executing the “SHUTDOWN”

command with which the back-end database will be shutdown.
Signature: Taking into account the above example and

explanations, the signature for the stored procedure SQLi
attack is as same as the piggy-backed query SQLi attacks,
given that both attacks are similar in using delimiter “;” and
stored procedure keywords such as (SHUTDOWN, exec,
xp_cmdshell(), sp_execwebtask ()) .

Prevention: Strictly validating user inputs on user side,
using a low privileged account to run a database on database
side, executing stored procedures with a safe interface on
database side, and giving proper roles and privileges to stored
procedures, which are being used in a user application form,
are some countermeasures to block and/or reduce the chance
of a successful stored procedure SQLi attack.

F. Inference

Inference SQLi attack is a type of attack in which hackers
aim to identify injectable parameters, extract data from a
database and/or determine database scheme by testing the
possible vulnerabilities of a back-end database when no data
returns to an end-user from a slightly secured website.

There are two popular inference SQLi attacks as follows.

1) Inference Blind SQLi Attack

Inference blind SQLi attack is an error-based attack in
which hackers try to force a back-end database to throw an
error message by asking true-false questions.

The example below reveals how the inference blind SQLi
attack can be sent by hackers through a user interface to the
back-end database.

SELECT “accounts” FROM “users” WHERE username =
“LIKE ‘1’ or ‘1’=’1’; IF SYSTEM_USER = ‘sa’ SELECT 1/0
ELSE 5; --“ AND password =”” AND pin =””

In the above example, hackers try to obtain the back-end
database behaviour by sending an “IF ELSE” statement in
which a division by zero will be executed on the database if
the current user is a system administrator, “sa”. As division by
zero is undefined and has no meaning, running the above
query forces the back-end database to throw an error if the
current user is a system administrator, “sa”, or else a valid
instruction would be executed, “ELSE 5”.

2) Inference Timing SQLi Attack

Inference timing SQLi attack is a time-based attack in
which hackers employ time delay in order to make difference
between true and false responses from a back-end database.
For instance, a true response received from a given database
means that the time delay was executed successfully while a
false response means hackers weren’t successful to execute
the time delay.

The following example represents how the inference timing
SQLi attack can be generated by hackers via a user interface to
the related database.

SELECT “accounts” FROM “users” WHERE username =
“john1390 and 1>0 WAITFOR 5 --“ AND password = “”
AND pin = “”

In the above example, hackers try to work out the behaviour
of the back-end database by injecting an always true

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1446

statement, “1>0”, along with “WAITFOR” keyword, which is
a popular keyword for issuing the inference timing SQLi
attack.

Signature: Addressing the above example and explanations,
the possible signatures for the inference SQLi attack,
including both interface blind and interface timing, are: using
delimiter “;” with AND operator, using IF ELSE conditional
operator, and using WAITFOR.

Prevention: Strictly validating user inputs on user side,
carefully crafting error messages return from databases on
database side as well as patching/hardening databases can
prevent the inference SQLi attacks.

G. Alternate Encoding

Alternate encoding SQLi attack is a type of attack in which
hackers try to obscure their injected commands by using
encodings techniques such as ASCII, hexadecimal, Unicode
character encoding, etc. The following example reveals how
the alternate encoding SQLi attack can be generated by
hackers and then sent via a user interface to the back-end
database.

SELECT “accounts” FROM “users” WHERE username =
“john1390; exec (char (Ox73687574646j776e)) --" AND
password =”” AND pin = “”

In the above example, hackers try to obscure their attacks
by using ASCII hexadecimal alternate of “char
(Ox73687574646j776e)”, which is equal to “SHUTDOWN.
When the above SQL query bypasses the validation and
reaches the back-end database, it will be translated to
“SHUTDOWN” and run straightaway on the back-end
database. The same technique can be employed by hackers to
find replacement for any bad characters, for instance single
quote (“ ‘ ”) or “ ' Or 1=1 -- ”, in order to cover their attack
and circumvent the validation.

Signature: Given the above example and explanations, the
possible signatures for the alternate encoding SQLi attack are:
exec (), Char (), ASCII (), BIN (), HEX (), UNHEX (),
BASE64 (), DEC (), ROT13 (), etc.

Prevention: Strictly validating user inputs on user side, for
instance prohibiting any usage of meta-characters e.g. “Char
()”, etc. and treating all meta-characters as normal characters
on database side can prevent the alternate encoding SQLi
attack.

All the above types of SQLi attack along with their
signatures and preventions are listed in Table I.

Related work for SQLi attacks detection and prevention are
addressed in the next section.

III. RELATED WORK FOR SQL INJECTION ATTACK; DETECTION

AND PREVENTION

In this section, we address the earlier work related to the
SQLi attack detection and prevention techniques as follows.

Authors in [2] employed the Support Vector Machine
(SVM) for SQLi attack classification and detection. The
performance of their proposed technique was measured based
on the different parameters such as accuracy, detection time,

training time, True Positive Rate (TPR), True Negative Rate
(TNR), False Positive Rate (FPR) and False Negative Rate
(FNR). Based on the captured results their proposed model
shows 96.47% accuracy in SQLi attack detection.

Authors in paper [3] proposed a static analysis tool for
checking Java Database Connectivity (JDBC) in order to
verify the correctness of dynamically generated query strings.
JDBC is the JavaSoft application of a standard application
programming interface (API) that allows Java programs to
first connect to and then access to database management
systems. Based on their captured results, their proposed JDBC
checker either flags potential errors or verify their absence in
dynamically generated SQL queries with low false positive
rate.

In order to detect the SQLi attacks, [4] proposed a query
tokenisation algorithm assuming that there is no way for
someone performing SQLi attack without inserting space,
single quote, and/or double dashes in a query. By taking into
account this assumption, they designed two arrays: one for the
original query and one for the injected query, where each
element is a token obtained from the related query. At the end,
they captured the lengths of the resulting arrays from two
queries and compared them having said that if two arrays have
the same length there is no SQL injection otherwise there is
injection.

In order to prevent SQLi attack, [5] proposed Random4
encryption algorithm in which user inputs, e.g. usernames and
passwords, convert into cipher text using a lookup table. The
encrypted keys can then be stored in database and compared
with the input values received from users in order to prevent
illegal access through SQL injection. For performance
evaluation, they used password cracking techniques such as
brute force attack and dictionary attacks to crack the keys
stored in the database. They have also compared their proposal
with the existing algorithms such as AMNESIA [8], SQL rand
[10], SQL DOM [9], WAVES [11], and SQL check [12] in
terms of encoding, detection and prevention.

Authors in [6] proposed a Service Based SQL Injection
Detection (SBSQLID) method for detection of SQL injection
vulnerabilities which includes three elements of input
validator, query analyser, and error service. The proposed
SBSQLID positioned between a given application server and
the associated database. The input validator retrieves the user
inputs from the web application form and passes them into the
set of injection characters for pattern matching. Thus, if the
pattern matching returns false, the users would be able to work
with the web application otherwise they would be disallowed.
After validating the user inputs, the user inputs will be passed
to the query analyser for syntactic and semantic structure
verification. The last elements of their proposal is an error
service with which any error messages form the database
server will be generalised and then sent back to the application
server in order to stop attackers for receiving any Meta data
information from the database.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1447

TABLE I
SQL INJECTION ATTACK TYPES, SIGNATURES, PREVENTIONS

No Type of SQLi attack Signature Prevention

1 Tautologies ‘, OR, =, like, select
-Strictly validating user inputs on user side
-Blocking queries containing tautological condition WHERE clauses on database side

2
Illegal/logically
incorrect queries

invalid conversions (CONVERT
(TYPE)), incorrect logics, AND,
ORDERBY, ‘

-Strictly validating user inputs on user side
-Stopping and/or sanitising the generated error messages (e.g. logical errors, type errors and
syntax errors) from a given database

3 Piggy-backed query ;
-Strictly validating user inputs on user side
-Avoiding multiple statement executions on a database by scanning all queries for delimiter
“;”on database side

4 Union queries UNION, UNION SELECT
-Strictly validating user inputs on user side
-Blocking multiple query executions in a single statement on database side

5 Stored procedures
;, Stored procedure keywords
(SHUTDOWN, exec,
xp_cmdshell(), sp_execwebtask())

-Strictly validating user inputs on user side
-Using a low privileged account to run a database on database side
-Executing stored procedures with a safe interface on database side
-Giving proper roles and privileges to stored procedures being used in a user application form

6
Inference SQLi
attack

;, AND, IF ELSE, WAITFOR
-Strictly validating user inputs on user side
-Carefully crafting error messages return from databases on database side
-Patching/hardening databases

7 Alternate encoding
exec (), Char (), ASCII (), BIN (),
HEX (), UNHEX (), BASE64 (),
DEC (), ROT13 ()

-Strictly validating user inputs on user side, for instance prohibiting any usage of meta-
characters e.g. “Char ()” , etc.
-Treating all meta-characters as normal characters on database side

Authors in [7] proposed a translation and validation-based

solution for SQL injection attacks named as TransSQL, with
which SQL requests are automatically translated to the
Lightweight Directory Access Protocol (LDAP) equivalent
requests. LDAP is a protocol for accessing directories while
SQL is a query language for databases. Both queries, SQL and
LDAP-equivalent, are then executed on SQL database and
LDAP database, respectively. At the end, TransSQL checks
the difference in responses from both databases in order to
detect and then block SQL injection attempts.

Authors in [8] proposed AMENSIA, Analysis and
Monitoring for NEutralising SQL Injection Attacks, to detect
and prevent SQLi attacks by combining static analysis and
runtime monitoring. The static analysis was used in order to
analyse the web-application codes and automatically build a
model of the legitimate queries that a given application can
generate. Then, the runtime monitoring was employed in order
to monitor all dynamically generated queries and check if they
are different from the static generated model. At the end, the
queries that violate the static model were classified as SQLi
attacks and prevented from accessing the database.

Authors in [9] proposed SQL Domain Object Model
(DOM) for compile time checking instead of runtime checking
of dynamic SQL statements. Their proposed SQL DOM is a
set of classes that are shortly typed to a database scheme and
is employed in order to generate dynamic SQL statements.
Using these classes, the application developer is able to build
dynamic SQL statements through manipulation of objects,
which are strongly typed to the database, without the need for
string manipulations.

In order to detect and prevent SQLi attacks, [10] proposed a
randomised SQL query language, SQLrand, with which the
SQL standard keywords were manipulated by attaching a
randomised as well as a hard to guess integer to them. To
achieve probability and security, their proposal consists of a
proxy server sits between the client and the database which
receives randomised SQL quires from the client and de-

randomised them before they pass to the database. Based on
the captured results, the latency overhead, that imposed on
each query using SQLrand, is negligible thus doesn’t sacrifice
the performance.

Authors in [11] proposed a Web Application Vulnerability
and Error Scanner (WAVES) as a security assessment tool in
order to identify poor coding practices that render web
applications vulnerable to attacks such as SQL injections and
cross-site scripting. Having said that their goal was to adopt
software-engineering techniques to design a security
assessment tool, a number of software testing techniques
including dynamic analysis, black-box testing, fault injection,
and behaviour monitoring was described and took into account
in WAVES tool. At the end, WAVES was compared with
other tools. The comparison shows that WAVES is a feasible
platform for assessing web application security.

Authors in [12] proposed SQLCHECK, which is a runtime
checking algorithm, to prevent SQLi attacks. Their proposed
algorithm was evaluated on real-world web applications with
real-world attack data as input value. Based on the captured
results, the SQLCHECK produces no false negative or false
positive. It also has low run-time overhead and can be applied
straightforwardly to web applications written in different
languages.

In [16], we proposed a neural network model for SQLi
attack detection where our proposed technique was successful
to classify a given URL as either a benign URL or a malicious
URL by taking into the account the popular SQLi attack
keywords and the popular SQLi attack URL patterns. In this
paper, we improve our earlier work [16] by adding another
level of intelligence to our previous proposed neural network
model in which our new proposal is able to 1) identify the
malicious URLs from the benign URLs 2) detect the type of
SQLi attack for the malicious URLs.

Our proposed neural network-based model for detection and
classification of SQLi attacks is discussed in the next section.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1448

Fig. 1 Components of the proposed neural network-based model for detection and classification of SQLi attacks

Fig. 2 Network Architecture for the Neural Network component of the proposed model

IV. PROPOSED NEURAL NETWORK-BASED MODEL FOR

DETECTION AND CLASSIFICATION OF SQL INJECTION ATTACKS

Our proposed neural network-based model for detection and
classification of SQLi attacks is built from three main
elements of a URL generator, a URL classifier, and a neural
network model. All the components of the proposed model are
depicted in Fig. 1 and detailed as follows.

A. A URL Generator

The URL generator part of the proposed neural network-
based model for detection and classification of SQLi attacks
has two components of “Benign URLs” and “Malicious
URLs”, Fig. 1. The benign URLs are the real URLs which are
the most popular URL addresses in the UK and haven been
captured from [17]. The malicious URLs are generated by
adding the list of the popular SQLi attack signatures from
Table I to the benign URLs, where seven popular SQLi attacks
and their signatures haven been taken into account. As it is
detailed in Table I, seven popular SQLi attacks comprising:
Tautologies, Illegal/logically incorrect queries, Piggy-backed
query, Union queries, Stored procedures, Inference SQLi
attack, and Alternate encoding attacks, with different
signatures such as: “‘, OR, =, LIKE, SELECT” signatures for
Tautologies, “;” signature for Piggy-backed query, “UNION,
UNION SELECT” signatures for Union queries, etc.

B. A URL Classifier

The URL classifier part of the proposed neural network-
based model for detection and classification of SQLi attacks
has three components of “Benign”, “Malicious” and “Type of
attack”. Therefore, the URL classifier part of the proposed
model is responsible to 1) classify each generated URL from
the URL generator in the previous stage to either a benign
URL or malicious URL and 2) detect the type of attack for

each malicious URL. The type of attack for the malicious
URLs could be: “Tautologies”, “Illegal/logically” “Incorrect
Queries”, “Piggy-backed Query”, “Union Queries”, “Stored
Procedures”, “Inference SQLi Attack”, or “Alternate
Encoding”. Please refer to Table I for more specification for
each type of SQLi attack in terms of signatures and prevention
techniques.

The URL classifier part of the proposed neural network-
based model for detection and classification of SQLi attacks is
also in charge of converting the generated URLs, malicious
and benign, into strings of logic, 1 as true and 0 as false,
where “1” represent the malicious URLs and the type of attack
while “0” represent the benign URLs. The mathematical
explanations of the above assumptions are detailed as follows.

Let a URL characteristic ݎ௜ generated by the URL generator
is defined by a random variable	ܴ௜:

ܴ௜= ൜
1, if	discovered	by	the	SQLi	signature	detectors	
0, if	not	discovered	by	the	SQLi	signature	detector	 (1)

Let C be a random variable representing the generated URL
class, malicious or benign:

Cϵ {malicious, benign}

Every generated URL (malicious and benign) is assigned a

vector defined by ିݎ ൌ ሺݎଵ, ,ଶݎ , … , ௜ being the resultݎ ௡ሻ withݎ
of the i-th random variable	ܴ௜.

Let a malicious URL characteristic ݐ௜ generated by the URL
generator is defined by a random variable	 ௜ܶ:

௜ܶ=൜
1, if	discovered	by	the	SQLi	attack	type	detectors	

0, if	not	discovered	by	the	SQLi	atatck	type	detector									(2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1449

Let D be a random variable representing the type of the
malicious URLs: “Tautologies”, “Illegal/logically Incorrect
Queries”, “Piggy-backed Query”, “Union Queries”, “Stored
Procedures”, “Inference SQLi Attack”, or “Alternate
Encoding”:

D߳ {Tautologies, Illegal/logically incorrect queries, Piggy-
backed query, Union queries, Stored procedures, Inference
SQLi attack, Alternate encoding}

Every generated malicious URL is assigned a vector
defined by ିݐ ൌ ሺݐଵ, ,ଶݐ , … , ௜ being the result of theݐ ௡ሻ withݐ
t-th random variable	ܴ௜.

C. A Neural Network (NN) Model

The neural network model part of the proposed neural
network-based model for detection and classification of SQLi
attacks comprises n layers (n hidden layers or neurons) with x
number of input nodes and y number of output nodes. The
model uses the benign and malicious URLs, which are
generated by the URL generator and classified by the URL
classifier from the previous sections, Fig. 1, for training,
validating, and testing. Thus, as it is depicted in Fig. 1, the
neural network model has three components of training,
validating and testing. For simplicity these three components
are put together in two groups of training components and
validating/testing components and described as follows.

1) Training Components

 ‘Input’ matrix: this matrix includes the data that our
proposed neural network model uses in training phase. It
comprises all the benign and malicious URLs generated
by the URL generator part of our proposed model.

 ‘Target’ matrix: this matrix includes all the decisions
including (malicious or benign) as well as the type of the
SQLi attack (Tautologies, Illegal/logically incorrect
queries, Piggy-backed query, Union queries, Stored
procedures, Inference SQLi attack, Alternate encoding)
for each string of data stored in ‘Input’ matrix.

 Fitness network: this is the neural network with n neurons
in n hidden layer in which the data from ‘Input’ and
‘Target’ matrixes will be used for training, validating and
testing, consequently.

2) Validating/Testing Components

 ‘Sample’ matrix: this matrix contains sample data from
‘Input’ matrix discussed in the previous section. The
trained neural network model uses ‘Sample’ data as input
in validation phase.

 ‘Output’ matrix: this matrix contains output data for the
data represented in ‘Sample’ matrix. The trained neural
network model predicts the output value for ‘Sample’
matrix and stores it in ‘Output’ matrix. Thus, it predicts a
given URL either being a benign URL or a malicious
URL. It also predicts the type of the SQLi attack for the
malicious URL.

 The implementation of the proposed neural network-
based model for detection and classification of SQLi
attacks is discussed in the next section.

V. IMPLEMENTATIONS

In this paper, a neural network-based model for detection
and classification of SQLi attacks is proposed which includes
three elements of a URL generator, a URL classifier and a
neural network model, Fig. 1. All three elements are
implemented as follows.

A. A URL Generator

As it was discussed in the previous section, the URL
generator element of the proposed neural network-based
model for detection and classification of SQLi attacks includes
two main components: 1) “Benign URLs” and 2) “Malicious
URLs”, Fig. 1. The “Benign URLs” include a list of the most
popular URLs in the UK while the “Malicious URLs” are
generated by adding the SQLi attack signatures to the benign
URLs.

For the “Benign URLs”, we have taken into account the top
500 popular website addresses in the UK, which has been
captured from [17], while the malicious URLs are generated
by adding the SQLi attack signatures from Table I to the
benign URLs.

For instance, addressing the unique signatures for
“Illegal/logically Incorrect Queries” from Table I, a generated
malicious URL could be a benign URL that had been
combined with word “convert” and word “int”, or adding “ ‘,
OR, =, like, select” signature to any benign URL could
generate a malicious URL which could be identified as a
“Tautologies” attack, etc.

The total number of the benign URLs in our implemented
scenario is 500. The total number of the malicious URLs
comes to 12,500 after considering all the signatures from
seven popular SQLi attacks, Table I.

B. A URL Classifier

As it was discussed in the previous section, the classifier
part of our proposed neural network-based model for detection
and classification of SQLi attacks is in charge of: 1)
classifying each URL generated by the URL generator to
either a benign URL or a malicious URL and 2) detecting the
type of SQLi attack for each malicious URL. These two tasks
have been coded and implemented based on the strings of
logic, where 1 represents as true/malicious and 0 represents as
false/benign, by allocating two vectors, ିݎ ൌ ሺݎ଴, ,ଵݎ , … , ଷଵሻݎ
and ିݐ ൌ 	 ሺݐ଴, ,ଵݐ , … , .଻ሻ, to each URLݐ

For instance, addressing the signature for “Inference SQLi
Attack” from Table I, if a URL includes: “;”, “and”, “if” and
“else”, it will be classified as a malicious URL with
“00000000000101000000110000000000” value for ିݎ in
which ݎଵଷ represents “;” ݎଵଵ represents “and” ݎଶ଴ represents
“if” ݎଶଵ represents “else”. Moreover, as it is an “Inference
SQLi attack”, attack type 6, the value for ିݐ vector is
“00000010”, etc. The components of the ିݎ and ିݐ vectors
have been revealed in Tables II and III, respectively.

C. A Neural Network (NN) Model

As it was discussed in the previous section, the neural
network model of the proposed scheme includes three

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1450

components of training, validating, and testing. It comprises of
n layers (n hidden layers or n neurons) with x number of input
nodes and y number of output nodes and uses the benign and
malicious URLs, which are generated by the URL generator
and classified by the URL classifier, for training, validating
and testing.

TABLE II

ASSIGNED VECTORS TO THE SQLI ATTACK SIGNATURES

Vectors SQLi attack signatures

r଴ ‘

rଵ or

rଶ =

rଷ like

rସ select

rହ convert

r଺ int

r଻ char

r଼ varchar

rଽ nvarchar

rଵ଴ incorrect logics

rଵଵ and

rଵଶ orderby

rଵଷ ;

rଵସ union

rଵହ union select

rଵ଺ shutdown

rଵ଻ exec

rଵ଼ xp_cmdshell ()

rଵଽ sp_execwebtask ()

rଶ଴ if

rଶଵ else

rଶଶ waitfor

rଶଷ --

rଶସ ascii ()

rଶହ bin ()

rଶ଺ hex ()

rଶ଻ unhex ()

rଶ଼ base64 ()

rଶଽ dec ()

rଷ଴ rot13 ()

rଷଵ *

TABLE III

ASSIGNED VECTORS TO THE SQLI ATTACK TYPE

Vectors SQLi attack type

t଴ Benign

tଵ Tautologies

tଶ Illegal/logically incorrect queries

tଷ Piggy-backed query

tସ Union queries

tହ Stored procedures

t଺ Inference SQLi attack

t଻ Alternate encoding

In our implementations, we have implemented a neural

network model of 10 layers (10 hidden nodes or 10 neurons)
in which 70%, 15% and 15% of the total benign and malicious
URLs for training, validating and testing, respectively.
MATLAB [15], which is popular software for the numerical

calculations and formulas with the vast library of functions
and algorithms, is used in order to develop, train, validate and
test the proposed neural network model. The training and
validating components of the proposed model are configured
as follows.

1) Training Components

 ‘Input’ matrix: this matrix is a logical n x32 matrix where
the data represented in strings of logics; 1 as true and 0 as
false.

 ‘Target’ matrix: this matrix is a logical nx8 matrix where
the data represented in logics; 1 as malicious and 0 as
benign.

 Fitness network: this is the neural network with 10
neurons in hidden layer in which 70%, 15%, and 15% of
the data from ‘Input’ and ‘Target’ matrixes will be used
for training, validating and testing, respectively.

2) Validating/Testing Components

 ‘Sample’ matrix: this matrix is a logical nx32 matrix
contains sample data from the ‘Input’ matrix.

 ‘Output’ matrix: this matrix is a logical nx8 matrix
contains output data for the data represented in ‘Sample’
matrix. The trained neural network predicts the output
value for ‘Sample’ matrix, in terms of a URL being
benign or malicious and the type of SQLi attack for a
malicious URL, and stores it in the ‘Output’ matrix.

The captured results are discussed in the next section.

VI. RESULTS

As it was discussed in the previous section, the proposed
neural network-based model for detection and classification of
the SQLi attacks includes three main elements of: 1) a URL
generator, in order to generate thousands of benign and
malicious URLs, 2) a URL classifier, in order to classify a
given URL as a malicious URL or a benign URL and also to
identify the type of SQLi attack for a given malicious URL,
and 3) a neural network model.

In order to capture the performance of the proposed neural
network-based model for detection and classification of SQLi
attacks, we have considered 13,000 URLs, which includes 500
benign URLs and 12,500 malicious URLs.

The 500 benign URLs are the real URLs which are the top
500 popular website addresses in the UK while the malicious
URLs are generated by adding the SQLi signatures from Table
I. into the benign URLs using PHP. The 13,000 URLS,
including 500 benign URLs and 12,500 malicious URLs, are
then classified into either benign URLs or malicious URLs by
using the URL classifier part of the proposed model. The
classifier also detects the type of the SQLi for each malicious
URL based on the seven popular SQLi attack types form
Tbale.2. At the end we train, evaluate, and then test the neural
network model using MATLAB [15]. In our implementations,
the neural network model has 10 hidden layers, 32 input
features, 8 output layer, and 8 output features, Fig. 2. The
captured results are as follows.

The confusion matrices for training, validating, and testing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1451

are shown in Figs. 3, 4, 5, respectively. In Fig. 6, we have also
captured the total confusion matrix in which the training,
validation, and testing matrices are all combined.

The numbers of the correct response are shown in green
squares while the numbers of the incorrect response are shown
in the red squares. The grey squares at the end of each row and
each column illustrate the percentages of the accuracies (upper
numbers) and inaccuracies (bottom numbers) for output
classes and target classes, respectively. The lower-right blue
squares illustrate the overall accuracies (upper numbers) and
overall inaccuracies (bottom numbers) by taking into account
the accuracies and inaccuracies in output classes and target
classes.

As they are depicted in Figs. 3-5 and based on the
configurations in our implemented scenario, the 13,000 URLs
(500 benign URLs plus 12,500 malicious URLs) are scattered
in three phases of training, validating, and testing with
distribution rates of 70%, 15%, and 15%, respectively. By
taking into account the distribution rates in three phases:
 The training phase receives 9,100 out of 13,000 URLs.

This includes 0 benign URLs and 9,100 malicious URLs
while the former is 0%, and the latter is 96.0% of the total
URLs used in this phase. The malicious URLs consisting
of 358 URLs from SQLi type2, 1752 URLs from SQLi
type3, 349 URLs from SQLi type4, 691 URLs from SQLi
type5, 1071 URLs from SQLi type6, 1736 URLs from
SQLi type7, and 2775 URLs from SQLi type8.

 The validating phase receives 1,950 out of 13,000 URLs.
This includes 0 benign URLs and 1,950 malicious URLs
while the former is 0%, and the latter is 96.4% of the total
URLs used in this phase. The malicious URLs consisting
of 85 URLs from SQLi type2, 374 URLs from SQLi
type3, 69 URLs from SQLi type4, 157 URLs from SQLi
type5, 202 URLs from SQLi type6, 386 URLs from SQLi
type7, and 606 URLs from SQLi type8.

 The testing phase receives 1,950 out of 13,000 URLs.
This includes 0 benign URLs and 1,950 malicious URLs
while the former is 0%, and the latter is 96.9% of the total
URLs used in this phase. The malicious URLs consisting
of 57 URLs from SQLi type2, 374 URLs from SQLi
type3, 78 URLs from SQLi type4, 156 URLs from SQLi
type5, 227 URLs from SQLi type6, 378 URLs from SQLi
type7, and 619 URLs from SQLi type8.

Addressing the captured percentages of the incorrect
responses in the red squares, Figs. 3-6, as well as the overall
percentages of the accuracies and inaccurate in blue squares,
we can say that the outputs for all three phases are correct.
This includes overall 96% accuracy and 4% of inaccuracy for
training phase, overall 96.4% accuracy and 3.6% of
inaccuracy for validation phase, and overall 96.9% accuracy
and 3.1% of inaccuracy for testing phase. Therefore, the
proposed model is trained correct and hence, it performs
correct.

The Receiver Operating Characteristic (ROC) curves for
training, validating, and testing is shown in Figs. 7, 8, 9,
respectively. We have also captured the ROC curve for all
three sets of training, validating, and testing in Fig. 10. The

colored lines in each axis represent the ROC curves for each
of three sets. The ROC curve is a plot of the true-positive rate
(sensitivity) against the false-positive rate (specificity).
In our implementations, the true-positive rate (sensitivity) is
the percentages of the correct classifications for all 13,000
URLs including benign URLs and malicious URLs, where
class1 is a class allocated to the benign URLs while class2 to
class8 are allocated to type 2 to type 8 of SQLi attacks, all
correspondingly. Additionally, the false-positive rate
(specificity) is the percentages of the incorrect classifications
for any of 13,000 URLs. A perfect test would show points in
the upper-left corner, with 100% sensitivity (i.e.
classifying/predicting all the URLs in their correct classes of
class1 to class8) and 100% specificity (i.e. not
classifying/predicting any URL in any wrong classes).

Addressing Figs. 7-10, the proposed model has a good
performance in terms of true positive rate as well as false
positive rate which have only 0.1 incorrectness for class 8
(type 8 of SQLi attacks).

Network performance is measured in terms of mean squared
error, and shown in log scale. It rapidly decreased as the
network was trained. Mean Squared Error is the average
squared difference between output and targets. Thus, lower
values are better and zero means no error. Fig. 11 shows how
the network performance improved for each three sets. The
version of the network that did best on is at the end of three
phases of training, validation and testing.

Fig. 3 Confusion matrix for training

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1452

Fig. 4 Confusion matrix for validating

Fig. 5 Confusion matrix for testing

Fig. 6 Confusion matrix for all (training, validating, and testing)

Fig. 7 ROC curve for training

Fig. 8 ROC curve for validation

Fig. 9 ROC curve for testing

Fig. 10 ROC curve for all ((training, validating, and testing))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1453

Fig. 11 Network Performance

VII. CONCLUSION

In this paper, a neural network-based model for detection
and classification of SQLi attacks is proposed. The proposed
model includes three components of: a URL generator, a URL
classification, and a neural network model. The neural
network part of the proposed model uses the benign and
malicious URLs, which are generated by the URL generator
and then classified by the URL classifier into seven popular
SQLi attack types, during the three phases of training,
validating, and testing.

The proposed neural network model is successful to 1)
detect the malicious URLs from the benign URLs 2) classify
the malicious URLs based on their signatures into different
classes by taking into account the signatures of the seven
popular SQLi attacks. Additionally, based on the captured
results, the proposed neural network model for detection and
classification of the SQLi attack shows a good performance in
terms of accuracy, true-positive rate as well as false-positive
rate.

ACKNOWLEDGMENT

The author would wish to acknowledge the support of the
Abertay University for funding this work.

REFERENCES
[1] W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-

Injection Attacks and countermeasures”, in Proc. of the Internet
Symposium on Secure Software Engineering (ISSSE 2006), Mar. 2006.

[2] R. Romil, R. Shailendra, "SQL injection attack Detection using SVM",
in International Journal of Computer Applications, V.42, N.13, March
2012.

[3] C. Gould, Z. Su, and P. Devanbu, "JDBC checker: A static analysis tool
for SQL/JDBC applications," 2004, pp. 697- 698.

[4] N. A. Lambert and K. Song Lin, “Use of Query Tokenization to detect
and prevent SQL Injection Attacks”, IEEE, 2010.

[5] A. Srinivas, G. Narayan, S. Ram, “Random4: An Application Specific
Randomized Encryption Algorithm to prevent SQL injection, in Trust,
Security and Privacy in Computing and Communications (TrustCom)”,
2012 IEEE 11th International Conference, pp.no. 1327 – 133, 25-27
June 2012.

[6] V. Shanmughaneethi, C. Emilin Shyni and S. Swamynathan,
“SBSQLID: Securing Web Applications with Service Based SQL
Injection Detection” 2009 International Conference on Advances in

Computing, Control, and Telecommunication Technologies, 978-0-
7695-3915-7/09, 2009 IEEE.

[7] K. Zhang, Ch. Lin, Sh. Chen, Y. Hwang, H. Huang, and F. Hsu,
“TransSQL: A Translation and Validation-based Solution for SQL-
Injection Attacks”, First International Conference on Robot, Vision and
Signal Processing, IEEE, 2011.

[8] W. G. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks”, In Proceedings of the IEEE and
ACM International Conference on Automated Software Engineering
(ASE 2005), Long Beach, CA, USA, Nov 2005.

[9] R. McClure and I. Kruger, “SQL DOM: Compile Time Checking of
Dynamic SQL Statements”, In Proceedings of the 27th International
Conference on Software Engineering (ICSE 05), pages 88–96, 2005.

[10] Stephen W. Boyd, Angelos D. Keromytis, “SQLrand: Preventing SQL
injection Attacks”.

[11] Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web Application Security
Assessment by Fault Injection and Behavior Monitoring”, In
Proceedings of the 11th International World Wide Web Conference
(WWW 03), May 2003.

[12] Z. Su and G. Wassermann, “The Essence of Command Injection Attacks
in Web Applications”, In the 33rd Annual Symposium on Principles of
Programming Languages (POPL 2006), Jan. 2006.

[13] Open Web Application Security Project (OWASP), available at:
https://www.owasp.org/index.php/About_OWASP (retrieved: Dec,
2014).

[14] Open Web Application Security Project (OWASP) top 10, available at:
https://www.owasp.org/index.php/Top_10_2013-Top_10 (retrieved:
Dec, 2014).

[15] MATLAB R2014a, available at: http://www.mathworks.co.uk
(retrieved: Dec, 2014).

[16] N. Moradpoor, “Employing Neural Networks for the Detection of SQL
Injection Attack”, In The 7th conference on Security of Information and
Networks (SIN2014), Sep 2014.

[17] Alexa, Bringing Information into Focus, available at:
http://www.alexa.com/topsites/countries/GB (retrieved: Dec, 2014).

[18] Introduction to SQL, available at:
http://www.w3schools.com/sql/sql_intro.asp (retrieved: June, 2015).

