
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1112

A Patricia-Tree Approach for Frequent Closed

Itemsets
Moez BEN HADJ HAMIDA and Yahya SLIMANI

Abstract—In this paper, we propose an adaptation of the

Patricia-Tree for sparse datasets to generate non redundant rule

associations. Using this adaptation, we can generate frequent closed

itemsets that are more compact than frequent itemsets used in Apriori

approach. This adaptation has been experimented on a set of datasets

benchmarks.

Keywords—Datamining, Frequent itemsets, Frequent closed

itemsets, Sparse datasets.

I. INTRODUCTION

FFICIENT algorithms for mining frequent itemsets are

crucial for mining association rules. Methods for mining

frequent itemsets and for iceberg data cube computation

have been implemented using a prefix-tree structure, namely

FP-Tree, for storing compressed informations about frequent

itemsets. As pointed out by Han [6] the FP-Tree loses his

compactness on sparse datasets, but they still use this structure

for mining frequent closed itemsets. In this paper we propose

an enhanced version of Patricia-Tree structure that reduces

considerably the size taken by an FP-Tree and the build time.

This structure is especially suitable for sparse datasets.

Datamining algorithms based on frequent itemsets like

Apriori suffer from two drawbacks: (i) multiple scans to a

dataset to compute the frequency of itemsets; (ii) high number

of generated association rules. To avoid these two

drawbacks, many solutions are used, like formal analysis

concepts, parallelism, data structures adapted to datamining

and so on. In this paper, we propose an adaptation of the

Patricia-Tree structure for sparse datasets to find frequent

closed itemsets. Then, we experiment this new structure on

different datasets and compare it with the FP-Tree structure.

The remaining of the paper is as follows: in section 2, we

present briefly the main approaches used to generate

association rules. Section 3 presents and compares the FP-

Tree structure and the proposed adaptive Patricia-Tree for

frequent closed itemsets. In section 4, we discuss some

experimental results on dense and sparse datasets. Section 5

concludes the paper and gives some extensions of our work.

Manuscript received January 19, 2005.

M. BHH is with the Department of Computer Science of Faculty of

Sciences of Tunis, Tunisia (e-mail: moez.belhadj@ gawab.com).

Y. S. is with the Department of Computer Science of Faculty of Sciences

of Tunis, Tunisia (correspondence author, phone:+21698537921,

Fax:+21670860437, e-mail: yahya.slimani@fst.rnu.tn).

II. PREVIOUS WORK

A. Apriori-based Algorithms

The most generic frequent patterns mining algorithm is

Apriori [2]. This algorithm is based on frequent itemsets that

are generated from candidate itemsets [2]. Using this

approach, a number of Apriori-based algorithms [1,3,4] have

been developed. Among these algorithms, only those use a

Hash-tree representation of the database are efficient [1].

B. Pattern Growth Algorithms

Han proposes a new technique for mining frequent itemsets

without generating candidate itemsets [5]. It defines two new

data structures: frequent pattern tree or FP-Tree to compact

dense datasets and H-struct [6] to deal with sparse datasets

solely. Later, Pietracaprina and Zandolin have proposed to use

a better compressed tree, called Patricia-Tree [7].

C. Closed Itemsets Mining

To reduce the huge number of rules produced by algorithms

based on frequent itemsets, Pasquier [8] proposes to generate

only frequent closed (i.e. non redundant) patterns. The

algorithms that generate frequent closed itemsets use either

item-based data structures [8,9] or the FP-Tree structure

[10,11].

III. PATRICIA-TREE VS FP-TREE

In this section, we compare the Patricia-Tree structure with

PF-Tree in order to determine what is more accurate for

different databases (dense or sparse).

A. FP-Tree

The FP-Tree structure consists of a set of prefix subtrees

under a root node labeled as “null” and a header table

containing frequent items [5]. Every header table entry points

a node in the FP-Tree carrying the same item name and every

node on the FP-Tree points to the next occurrence of this item.

B. Patricia-Tree

A Patricia-Tree is a compressed FP-Tree. We keep the same

representation as an FP-Tree but we merge every parent node

with his single child node when they have the same support

value [7]. Contrarily to an FP-Tree node that represents a

single item a Patricia-Tree node can represent several items.

C. Comparison

As pointed out by Han [6], the FP-Tree loses his

compactness on sparse datasets, but they still use this structure

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1113

for mining frequent closed itemsets. The compactness of the

FP-Tree is materialized by the merge of common prefixes for

dense datasets. But for the sparse ones there is few prefixes

shared by the transactions. In this case the number of FP-Tree

nodes becomes close to the original dataset size (i.e. the sum

of all transaction lengths).

For these reasons, we propose to adapt the Patricia-Tree

proposed in [7] to generate frequent closed itemsets [13]. For

example, consider the dataset represented by table 1 with

minsup set to 3. Its representations by the FP-Tree and the

Patricia-Tree are given respectively by figures 1 and 2.

The above figures show that a Patricia-Tree is more compact

than an FP-Tree. In fact, a dataset consisting of M transactions

with aggregate size N can be represented through a Patricia-

Tree of size at most equal to N + O(M) [7]. But for an FP-Tree

when the dataset is highly sparse, the number of nodes may be

close to N * M.

IV. EXPERIMENTAL RESULTS

In this section, we discuss results of several

experimentations of our proposed data structure for different

datasets. The goal of these experimentations is to find out the

extent of different dataset properties that could affect the

performance of Patricia-Tree and its relative performance with

the FP-Tree [13].

Experiments were performed on a 500MHz Pentium PC

with 320MB of memory, running on RedHat Linux 8.2.

Our version of Patricia-Tree was implemented in C and the

FP-Tree was coded in C++ by Zhu [12].

For our experimentations, we have used several real and

synthetic database benchmarks, publicly available at the FIMI1

workshop site. The PUMSB dataset contains census data. The

MUSHROOM database contains characteristics of various

species of mushrooms. The CONNECT dataset is derived

from its game steps. The synthetic datasets T40I10D100K and

T20I10D10K, obtained from IBM Almaden generator, mimic

the transactions in a retailing environment.

Table 2 gives the characteristics of the real and synthetic

datasets used in our evaluation. It shows the number of items,

the average transaction length, the standard deviation of

transaction lengths, and the number of records in each

database.

The first experiment compares the FP-Tree and the Patricia-

Tree build times for the different datasets.

As shown in Figures 3 and 5, these structures perform the

same build time for real datasets. But Figure 4 shows that the

build time of a Patricia-Tree is about two orders of magnitude

faster than FP-Tree for synthetic datasets.

TABLE 1

SAMPLE DATASET D

TID Items

1 A B D E F G H I

2 B C E L

3 A B D F H L

4 A B C D F G L

5 B G H L

6 A B D F I

0,90

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

95 90 85 80 75 70 60 50 30

minsup (%)

F
P

-T
re

e
 b

u
il

d
 t

im
e

/P
a

tr
ic

ia
 T

re
e

 b
u

il
d

ti
m

e

connect

pumsb

FIG 1. FP-TREE FOR DATASET D

FIG 3. FP-TREE BUILD TIME / PATRICIA-TREE BUILD TIME FOR

REAL DATASETS.
FIG 2. PATRICIA-TREE FOR DATASET D

1 http ://fimi.cs.helsinki.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1114

0,00

0,50

1,00

1,50

2,00

2,50

3,00

2,25 2 1,75 1,5 1,25 1 0,75 0,5 0

minsup(%)

F
P

-T
re

e
b

u
il

d
ti

m
e

/P
a

tr
ic

ia
 T

re
e

 b
u

il
d

 t
im

e

T40I10D100K

T20I10D10K

0

0,2

0,4

0,6

0,8

1

1,2

30 20 10 5 1 0,2 0,04 0

minsup (%)

F
P

-T
re

e
 b

u
il

d
 t

im
e

 /
P

a
tr

ic
ia

T
re

e
 b

u
il

d
ti

m
e

Mushroom

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

90 85 80 75 70 60 50

minsup (%)

F
P

-T
re

e
 s

iz
e

 /
 P

a
tr

ic
ia

 T
re

e
 s

iz
e

Connect

Pumsb

1,31

1,32

1,32

1,33

1,33

1,34

1,34

1,35

1,35

1,36

1,36

2,25 2 1,75 1,5 1,25 1 0,75 0,5

minsup (%)

F
P

-T
re

e
s

iz
e

/
P

a
tr

ic
ia

 T
re

e
 s

iz
e

T40I10D100K

T20I10D10k

FIG 7. FP-TREE SIZE /PATRICIA-TREE SIZE FOR SYNTHETIC

DATASETS.

FIG 4. FP-TREE BUILD TIME/ PATRICIA-TREE BUILD TIME FOR

SYNTHETIC DATASETS.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

30 20 10 5 1 0,2 0,04 0

minsup (%)

F
P

-T
re

e
 s

iz
e

 /
 P

a
tr

ic
ia

 T
re

e
 s

iz
e

Mushroom

Fig 8. FP-TREE SIZE /PATRICIA-TREE SIZE FOR DATASET

MUSHROOM.
FIG 5. FP-TREE BUILD TIME/ PATRICIA-TREE BUILD TIME FOR

DATASET MUSHROOM.

The second experiment measures the memory space needed

by FP-Tree and Patricia-Tree for the benchmark datasets. On

real datasets Patricia-Tree consume more space than FP-Tree

due to the over head taken by the number of items on a node

and other data needed to tree traversal (Figures 6 and 8). For

sparse datasets, Figure 7 shows that Patricia-Tree is more

memory efficient.

V. CONCLUSION

We proposed an adaptation of the Patricia-Tree structure to

find frequent closed itemsets. This adaptation allows to define

more efficient datamining algorithms than those used FP-Tree

structure. The experimentations of this adapted Patricia-Tree
FIG 6. FP-TREE SIZE/PATRICIA-TREE SIZE FOR REAL

DATASETS.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1115

structure have showed that it is more suitable for sparse

datasets.

In the future, we plan use this same structure to find

sequential patterns and closed sequential patterns.

REFERENCES

[1] J.S. Park, M.S. Chen and P.S. Yu, “An Effective Hash Based Algorithm

for Mining Association Rules,” in Proc. 5th SIGMOD Intl. W orkshop.

Management of Data, California, 1995, pp. 175–186.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules. 20th Intl. Conf. Very Large Data Bases, Santiago, 1994, pp. 487–

499.

[3] A. Savasere, E. Omiecinski and S. Navathe, “An Efficient Algorithm for

Mining Association Rules in Large Databases,” in Proc. 21th Intl. Conf.

Very Large Data Bases, Santiago, 1995, pp. 487–499.

[4] S. Brin, R. Motwani, J. Ullman and S. Tsur, “Dynamic itemset counting

and implication rules for market basket data,” in Proc. 7th SIGMOD Intl.

W orkshop. Management of Data, Arizona, 1997, pp. 255–264.

[5] K. Wang, L. Tang, J. Han and J. Liu, “Top Down FP-Growth for

Association Rule Mining,” in Proc. 6 th Pacific-Asia Conf. Advances in

Knowledge Discovery and Data Miningy, Taipei, 2002, pp. 334–370.

[6] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang and D. Yang, “H-Mine: Hyper-

Structure Mining of Frequent Patterns in Large Databases,” in Proc. 1st

IEEE Intl. Conf. Data Mining, California, 2001, pp. 441–448.

[7] A. Pietracaprina and D. Zandolin, “Mining Frequent Itemsets using

Patricia Tries,” in Proc. 1st FIMI Workshop. Frequent Itemset Mining

Implementations, Florida, 2003.

[8] N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, “Discovering Frequent

Closed Itemsets for Association Rules,” in Proc. 7th Intl. Conf. Database

Theory, Jerusalem, 1999, pp. 398–416.

[9] M.J. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for Closed

Itemset Mining,” in Proc. 2nd SIAM Intl. Con. Data Mining, Virginia,

2002, pp. 398–416.

[10] J. Pei, J. Han, R. Mao, “CLOSET: An Efficient Algorithm for Mining

Frequent Closed Itemsets,” in Proc. 9th SIGMOD Intl. Workshop. Data

Mining and Knowledge Discovery, Dallas, 2000, pp. 11–20.

[11] J. Wang, J. Han and J. Pei, “CLOSET+: Searching for the Best

Strategies for Mining Frequent Closed Itemsets,” in Proc. 12th Intl. Conf.

Knowledge Discovery and Data Mining, Washington, 2003, pp. 236–

245.

[12] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent

itemsets,” in Proc. 1st FIMI Workshop. Frequent Itemset Mining

Implementations, Florida, 2003.

[13] M. Ben Hadj Hamida, “Patricia-Tree based algorithm to find frequent

closed itemsets,” Master. dissertation, Dept. Comp. Sci., Faculty of

Sciences of Tunis., Tunis, Tunisia, 2005.

Moez Ben Hadj Hamida was born in Tunis on May 15, 1979. He studied at

the Department of Computer Science at the Faculty of Sciences of Tunis from

1999 to 2005. He received the B.Sc.(Eng.) and Master degrees from the

Faculty of Sciences of Tunis, in 2003 and 2005, respectively. His currently

prepares its Ph.D thesis on Computer Science at the Faculty of Sciences of

Tunis.

He is currently lecturer assistant at the Department of Computer Science of

Faculty of Sciences of Tunis, Tunisia. These research activities concern

datamining, parallelism and grid computing.

Yahya Slimani was born in Oujda on March 19, 1951. He studied at the

Computer Science Institute of Alger’s (Algeria) from 1968 to 1973. He

received the B.Sc.(Eng.), Dr Eng and Ph.D degrees from the Computer

Science Institute of Alger’s (Algeria), University of Lille (French) and

University of Oran (Algeria), in 1973, 1986 and 1993, respectively. His

currently Professor at the Department of Computer Science of Faculty of

Sciences of Tunis. These research activities concern datamining, parallelism,

distributed systems and grid computing.

Dr. Slimani has published more than 80 papers from 1986 to 2005. He

contributed to Parallel and Distributed Computing Handbook, Mc Graw-Hill,

1996.

He is currently President of African Conference on Computer Science. He

joined the Editorial Boards of the Information International Journal in 2000.

