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Abstract—Hydrocyclones flow field study is conducted by 

performing a parametric study. Effect of cone angle on deoiling 
hydrocyclones flow behaviour is studied in this research. Flow field 
of hydrocyclone is obtained by three-dimensional simulations with 
OpenFOAM code. Because of anisotropic behaviour of flow inside 
hydrocyclones LES is a suitable method to predict the flow field 
since it resolves large scales and model isotropic small scales. Large 
eddy simulation is used to predict the flow behavior of three different 
cone angles. Differences in tangential velocity and pressure 
distribution are reported in some figures. 
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I. INTRODUCTION 
YDROCYCLONES are used in wide range of 
applications to separate different materials from liquids. 

Compactness, efficiency, reliability and low maintenance 
costs are their noteworthy characteristics. Although 
hydrocyclones have been used for industrial purposes more 
than hundred years but recently, the need for having high 
efficiency compact separators during various operating 
conditions has attracted the interest of researchers to them. 
Dewatering hydrocyclones to refine crude oil [1] and deoiling 
hydrocyclones to refine oily waste water in offshore platforms 
[2,3] are examples of liquid-liquid hydrocyclones. Separation 
process in hydrocyclones is based on swirl flow induces a 
centrifugal force and leads to separation because of density 
difference. The density difference in liquid-liquid mixtures is 
smaller than solid-liquid types and trying to separate one 
liquid from another takes much more effort than while 
separating solid from liquid. Another difference in deoiling 
hydrocyclones is that centrifugal force makes solid particles 
migrate to the wall region in desander hydrocyclones while 
making oil droplets move to the center in the deoiling types. 
So the near wall region is of high importance in desander 
hydrocyclones. In the meantime, attention is drawn to the 
center flow features in the deoiling types. 

The first idea of using common hydrocyclones for oil-water 
separation was suggested by Simkin and Olney [4] and Sheng, 
Welker and Sliepcevich [5] but fundamental studies on 
deoiling hydrocyclones were started from 1980 by Colman 
and Thew.  
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Several experimental researches on deoiling hydrocyclones 
were conducted by Colman [6], Colman, Thew and Corney [7] 
and Colman and Thew [8]-[9]. Having a optimize geometry is 
one of researchers interest. Delagadillo and Rajamani [10] 
simulated a 75 mm cyclone and compare three different 
turbulence models (k-ε, RSM, LES). LES captured the 
characteristics of the dynamics of the flow which allow the 
accurate prediction of the flow field and VOF model was used 
for air core prediction. Delagadillo and Rajamani [11,12] used 
LES to optimize hydrocyclone geometry. They used Fluent 
software and did modifications in geometry to improve 
classification and efficiency. Also, they did a study [13] to 
amenable LES for large hydrocyclones and good results were 
reported. Saidi et al. [14] demonstrated the capability of LES 
to predict flow field of deoiling types hydrocyclones. They 
compared different turbulence models and showed that LES 
leads to better results than k- ɛ and Reynolds Stress Model. 
Noroozi and Hashemabadi [15,16] investigated the effect of 
various inlet types and inlet chamber body profiles on the 
separation efficiency of deoiling hydrocyclones by using 
Reynolds Stress Model. Water phase has a significant role on 
separation efficiency because of low concentration of 
dispersed phase. Hydrocyclone flow is a complex swirling 
flow and regarding influence of flow field on separation 
process, exact pressure and velocity field is essential for 
numerical simulation. Selection of appropriate turbulence 
model and boundary conditions is the key of a successful 
simulation. It should be noted that numerical errors can decay 
results completely. Large eddy simulation is a powerful tool to 
simulate hydrocyclone. It is for the first time LES used for 
deoiling types of hydrocyclone. In this study the focus is on 
flow behavior in deoiling hydrocyclones with different cone 
angles. 

II. GOVERNING EQUATIONS 
The continuity and momentum equation are the equations 

that are solved in this research. A general low-pass filter is 
applied to the Navier-Stokes equations to decompose the 
velocity into resolved and residual components. The large 
scales affected by flow geometry specify the properties of 
turbulent flow such as heat and mass transfer and therefore 
should be resolved. The small scales only dissipate the energy 
and could be modeled using appropriate subgrid turbulence 
model. 

The decomposed velocity (resolved and residual) 
components can be written as: 

i i iu u u ′= + (1)

Applying the decomposed velocity into mass and 
momentum equations and performing the filtration process, 
results the following equations:  
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