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Abstract—The aim of the current work is to present a comparison 

among three popular optimization methods in the inverse elastostatics 
problem (IESP) of flaw detection within a solid. In more details, the 
performance of a simulated annealing, a Hooke & Jeeves and a 
sequential quadratic programming algorithm was studied in the test 
case of one circular flaw in a plate solved by both the boundary 
element (BEM) and the finite element method (FEM). The proposed 
optimization methods use a cost function that utilizes the 
displacements of the static response. The methods were ranked 
according to the required number of iterations to converge and to 
their ability to locate the global optimum. Hence, a clear impression 
regarding the performance of the aforementioned algorithms in flaw 
identification problems was obtained. Furthermore, the coupling of 
BEM or FEM with these optimization methods was investigated in 
order to track differences in their performance.  
 

Keywords— Elastostatic, inverse problem, optimization. 
 

I.  INTRODUCTION 
NVERSE analysis is the general name given to problems 
where not all of the information, that is required to analyze 

the system, is known a priori, meaning that they may not be 
classified as direct problems. A direct problem involves the 
determination of the response of a system given the domain of 
the problem and its boundaries, the governing laws or 
equations, and the boundary conditions.  

In the case of IESP of internal flaw detection, the 
boundaries of the flaw are not known. In order to analyze this  
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kind of problem, a static response is obtained, under known 
boundary conditions. Solving this problem directly is not 
possible unless it is considered as an optimization task. 

Optimization is the search of the minimum or maximum of 
a function that is commonly referred to as cost or objective 
function. This function is dependent on the design variables, 
which are the unknown system parameters. The objective of 
the optimization process is to determine the values of these 
design variables that minimize or maximize the cost function. 
In addition to optimizing the objective function, the design has 
to meet certain criteria or specifications which may be 
represented mathematically by constraint equations [1]. 

In the case of IESP, the identification process takes an 
initial guess for the flaw shape and location, the displacements 
are obtained at the selected points and the error, due to the 
guessed flaw, is computed. The flaw shape and location that 
minimizes the error is found giving an approximation to the 
actual flaw [2].  

The two methods used for the determination of the 
displacements are the finite element (FEM) and the boundary 
element (BEM) methods, which are the mostly used CM. The 
standard FEM equation for static analysis is: ( ) ( ) ( )z z z⋅ =K u f  
where K is the assembled global stiffness matrix, u is the 
nodal displacement vector, and f is the nodal force vector. 
More details can be found in [3]. 

Respectively, the standard BEM equation for static analysis 
is: ( ) ( ) ( ) ( )z u z z t z⋅ = ⋅G H  where vectors u and t include all 
boundary displacements and tractions and G and H are 
suitable influence matrixes. Theoretical details about the BEM 
can be found, among others, in [4]. 

In both CM, the vector z includes all the design variables 
which are required for the determination of the considered 
circular flaw. 

The FEM is a well-established procedure for structural 
analysis and formed the basis of most early inverse methods. 
On the other hand, the BEM has become a popular alternative, 
possessing many advantages over the FEM [2].  

The IESP of flaw detection, using boundary response 
measurements under a prescribed loading, has been 
encountered in several previous works. Different test cases 
and optimization methods (OM) have been tested. In 2D cases 
of one circular defect, neural networks have been applied [5]. 
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The same OM has been tested also in the case of a unique 
crack in a plate [6]. [7] used genetic algorithms to detect three 
circular or elliptical defects in a plate. Genetic algorithms 
were also implemented in the work of [8] for the identification 
of 3D ellipsoidal defects in a cube and a circular defect in an 
L-profiled structure. In 3D structures, distributed evolutionary 
algorithms were used, for example by [9]. The performance of 
quasi Newton optimization methods for unconstrained 
optimization, namely Gauss-Newton, Levenberge-Marquarant 
and BFGS, has been compared in [10] who used, among 
others, the test case proposed by [11]. Steepest Descent and 
BFGS Quasi Newton methods have been also used in [12] for  
the identification of a circular or ellipsoid flaw in a cylinder. 
Finally, [1] used the SQP in crack propagation problems, not 
covered in this paper.  

II.  OPTIMIZATION ALGORITHMS 
The OMs tested in this paper belong to three different 

categories of optimization algorithms. The first one is 
Simulated Annealing (SA) which is a stochastic algorithm, the 
second is Hooke & Jeeves (HJ) which is a pattern search 
algorithm and the last one is Sequential Quadratic 
Programming (SQP) which is an effective deterministic 
algorithm that has been already used in inverse problems 
[1,13]. In turn, the implementation of SQP is included in 
MATLAB Optimization Toolbox, HJ has been implemented 
according to [14] and the implementation of SA is included in 
MATLAB functions of the MathWorks site [15, 16].  

Among the tested optimization algorithms, SQP is the only 
one that can inherently encounter constraints, so linear 
constrains provided design vectors with a physical meaning. 
The other two methods are designed for unconstrained 
problems. However, their use can also be extended for solving 
constrained problems if the imposed limitations are 
appropriately implemented to the quantity to be optimized. 
This task may be accomplished through a penalization 
method, where the constraints are introduced into the objective 
function in a weighted manner through a penalty. Towards this 
direction, in the current work a very simple scheme was used; 
if either a small or a large constraint violation occurred then 
the objective function obtained a very high value. This was a 
hard penalization that pushed the examined algorithms to their 
limits. A brief description for each algorithm follows. 

A. Simulated Annealing 
Simulated Annealing is a Monte Carlo approach introduced 

by Kirckpatrick et al. in 1983. The term simulated annealing 
derives from the roughly analogous physical process of 
heating and then slowly cooling a substance to obtain a strong 
crystalline structure. In simulation, a minimum of the cost 
function corresponds to the ground state of the substance. The 
SA process lowers the temperature by slow stages until the 
system “freezes” and no further changes occur. At each 
temperature the simulation must proceed long enough for the 
system to reach a steady state or equilibrium. The sequence of 
temperatures and the number of iterations applied to 
thermalize the system at each temperature comprise an 
annealing schedule.  

To apply SA, the system is initialized with a particular 
configuration. A new configuration is constructed by imposing 
a random displacement. If the energy of this new state is lower 
than that of the previous one, the change is accepted 
unconditionally and the system is updated. If the energy is 
greater, the new configuration is accepted probabilistically. 
The probability of accepting such a configuration is given by 

Boltzmann’s probability distribution function ( )p e
ΔΕ

−
ΤΔΕ =  

where T is the temperature and ΔΕ is the change in the energy 
function. This is the Metropolis step, the fundamental 
procedure of SA. This procedure allows the system to move 
consistently towards lower energy states, yet still avoid local 
minima due to the probabilistic acceptance of some upward 
moves. It uses T (temperature) and the size of the downhill 
move in a probabilistic manner. The smaller T and the size of 
the uphill move are, the more likely that move will be 
accepted.  

The SA algorithm is implemented as described below:  
1. Values for the initial temperature T (1E-01), the number 
of function evaluations for constant temperature Kmax (70), the 
maximum number of successful tries for constant temperature 
(30) and the maximum number of consecutive rejections 
(1000) are set. 
2. Evaluate the function at a starting point fmin 
3. Set K=K+1. 
4. Generate a new point randomly and evaluate fs. 
5. Compare fs to fmin 
5.1 If fs < fmin then accept the move and set fs = fmin.  
5.2 If fs > fmin accept the uphill moves according to the 
Metropolis criteria. 
5.2.1 If the move is accepted, the algorithm moves on from 
that point. 
5.2.2 If the move is rejected, another point is chosen 
instead for a trial evaluation.  
6. Check for convergence (Tmin=1E-07 or 'Maximum 
consecutive rejections or Maximum number of Success) and 
either go to step 3 or go to 7. 
7. If K less than Kmax go to 3, else go to 8. 
8. A decrease in the temperature is imposed according to 
cooling schedule (T=0.8*T). 
9. Check for convergence (Tmin=1E-07 or Maximum 
consecutive rejections or Maximum number of Success) and 
either go to step 3 or Stop. 

B. Hooke & Jeeves 
Hooke and Jeeves introduced their algorithm 1961. It is a 

direct search method that requires no derivatives of the 
objective function but only function evaluations. The standard 
Hooke & Jeeves pattern search algorithm consists of one-
variable-at-a-time exploratory moves about a base point 
solution to determine an appropriate direction of search 
(pattern). Following the exploratory search, a series of pattern 
moves are made to accelerate the search in the direction 
determined in the exploratory search. Exploratory searches 
and pattern moves are repeated until a termination criterion is 
met.  For the purposes of this paper, the implementation of 
Hooke & Jeeves algorithm according to Belegundu et al [14] 
has been used. A very brief description is given below. 
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1. Search initiation from a given point B with coordinates 

Bx .  
2. Exploration about point B with step s (0.8). 
2.1 If exploration about base point not successful, step s is 
reduced (multiplication by 0.5). 
2.2 If exploration successful, the pattern direction BP is 
established as (xp-xB). 
3. P is considered as new base point and is renamed as B. 
Original point B renamed as B’. 
4. BB' extended along the pattern direction to point E. 
(xE=2xB-xB'). 
4.1 Exploration is performed about point E. 
4.2 If exploration about base point not successful, step s is 
reduced. 
4.3 If exploration successful new pattern direction BE is 
established as (xE-xB) 
5. If s < 1E-08 then stop. 

C. Sequential Quadratic Programming (SQP) 
SQP is a second order method for constrained problems and 

consists of three main stages: 
1.  Updating the Hessian matrix of the Lagrange function 
2.  Quadratic Programming Solution 
3.  Line Search and merit function calculation 
Given the description in the general problem, the principal 

idea is the formulation of a quadratic subproblem based on a 
quadratic approximation of the Lagrangian function 

m

i i
i

L x f x g xλ λ
=

= +∑
1

( , ) ( ) . ( )  

  where λ are the Lagrangian coefficients and g are the 
problem constraints. 
The maximum number of iterations and function evaluations 
is 100 and 1000, respectively. Concerning the tolerance on 
linear constrains and cost function a common value of 1E-10 
was set. The corresponding tolerance on the design variables 
is set to 1E-6.  

III.  DESCRIPTION OF THE TEST CASE 
A plane strain square plate with one circular flaw is 

considered as in Fig. 1. The material constants are the shear 
modulus G = 1E+05 and Poisson's ratio ν = 0.30. The 
dimension of the side of the plate is L = 10, all in compatible 
units. Moreover, the right-hand side external boundary (bc) is 
fixed in both directions and the loading is applied on the left-
hand side external boundary (ad) as well as on the bottom one 
(ab) as pressure with a value equal to 1000, in the horizontal 
Ox and in the vertical Oy coordinate direction, respectively. 
Pressure loading is selected instead of tension since it is 
thought that it results in a more difficult situation. The circular 
flaw can be in five different locations and can have five 
different radius dimensions as shown in Fig. 1. The five 
different center locations have coordinates 1(2.50,2.50),  
2(2.50,7.50), 3(2.50,7.50), 4(5.00,5.00), 5(7.50,7.50) and the 
different radius dimensions are 0.20, 0.40, 0.60, 0.80 and 1.00 
[17]. 

Concerning the possible location and size of the flaw, the 
above data was selected so as to be representative. In more 
details, the locations of the flaw are selected in order to 

investigate the effect of a variation in size of the artifact close 
to a corner with different boundary conditions, or in the center 
were the influence of the boundary conditions is reduced. 
Using this data, 25 different test cases have been constructed. 

For the BEM analysis, the boundaries of the plate are 
discretized by means of quadratic boundary elements. In all 
examples presented here, the external boundary is discretized 
by means of 40 boundary elements (i.e. a total of 80 nodes) 
and the circular flaw is discretized by means of 8 boundary 
elements (i.e. additional 16 nodes). 

On the other hand, for the FEM analysis quadratic 
triangular elements were used. The FEM mesh was created 
with 20 element divisions per side and free mesh (i.e. about 
3600 nodes in total and 1700 elements) and only the results at 
the edge nodes were taken under consideration so as to have 
the same number of data as in the BEM model. The FEM 
model has obviously a finer mesh since this ensured a 
satisfactory quality of results and stability (Fig. 2).  

For the formulation of the identification problem as an 
optimization process, as design variables the spatial 
coordinates of the centre of the circular flaw (x,y) and its 
radius r were considered. Furthermore, the cost function is 
defined as  

( ) ( )
( )( )

( )
( )( )

yx

real realside x y

uu
f u

u u

ΔΔ−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + + +⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑∑
22

6
221000 10ln

max max
 

where Δui is the difference between the calculated 
displacement on ith direction Δui

calculated , while ui
real are the 

corresponding experimental data [6].  
The design variables are used in an automatic procedure to 

create a suitable mesh for the flaw, and the displacements u 
are calculated at the free boundaries (ab, cd, da) as shown in 
Fig. 1. 

 
Fig. 1 Geometry and boundary conditions of the test cases 

The design variables corresponding to the center 
coordinates were chosen to lie in the interval of [0.5, 9.5] and 
the radius in [0.1, 2.0]. In this manner, the imposed constraints 
have a physical meaning, as the flaw specified by the design 
variables is ensured to lie completely inside the plate. 
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Fig. 2 FΕ mesh for the center at 1 (2.50,2.50) and radius 0.20 

 
 

For each of the three abovementioned optimization 
methods, the IESP has been solved for 100 times. The 
problem was solved one time for each location of circular flaw 
with the five different radii, with four different starting points. 
As initial vector for the optimization algorithms, the location 
of one of the flaws 1-5 Fig. 1 (excluding the one that coincides 
with the flaw to be detected) and the radius of 0.50 is used.  

IV.  RESULTS 

The IESP has been solved by both the computational 
methods for the direct problem (i.e. BEM, FEM). In Table I 
the percentage of “successful runs” for each combination of 
OM and CM, with at least one initial vector, is presented. By 
the term “successful run” the calculation of the design 
variables with an error less than 0.5% is meant. 
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Fig. 3 OMs convergence in terms of initial vector and flaw number / radius (BEM) 
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Fig. 4 OMs convergence in terms of initial vector and flaw number / radius (FEM) 

 
TABLE I 

THE PERCENTAGE OF “SUCCESSFUL RUNS” FOR EACH COMBINATION OF OM 
AND CM, WITH AT LEAST ONE INITIAL VECTOR 
OM + CM % of successful runs 
SA + FEM 68 
SA + BEM 76 
SQP + FEM 68 
SQP + BEM 74 
HJ + FEM 74 
HJ + BEM 75 

 

 
In Fig. 3 and 4 the performance of each optimization method 

per final point in terms of successful runs, is shown for BEM and 
FEM, respectively. Every successful run was counted as 1, only 
if the error of the convergence to the final point was less than 
0.2%. If the error was higher, but less than 0.5%, it was counted 
as 0.9. The distinction was made in order to show the ability of 
every combination OM and CM to converge at the exact global 
optimum.  
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Fig. 5 Number of successful runs per initial vector 
 

In Fig. 5 the number of successful runs per starting vector in 
BEM and FEM for all the optimization methods is presented. 

The average number of function evaluation per initial vector 
is shown in Fig. 6. Finally, for reasons of thoroughness, the 
convergence histories are presented for each OM for both 
FEM and BEM using SA, HJ and SQP in Fig. 7, 8 and 9 
respectively. The presented results concern a typical case, 
center 5 and radius 0.4, in which all the optimization methods 
converge with both the CM starting from the same starting 
vector, center 1 and radius 0.5.  
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Fig. 6 Number of function evaluations per initial vector 
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Fig. 7 SA convergence history 
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Fig. 8 SQP convergence history 
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Fig. 9 HJ convergence history 

V.  DISCUSSION 
The interpretation of the results leads to remarks concerning 

(a) the use of BEM and FEM in inverse problems, (b) the 
behavior of the optimization methods and (c) general remarks.  

Regarding the CM for the solution of the direct problem it is 
obvious that both FEM and BEM give satisfactory results and are 
efficient in terms of identifying the location and the size of the 
circular flaw. As it can be seen in Table I, using BEM all the OM 
have almost the same percentage of success and approximately 
75% but when using FEM the SA and SQP have lower 
percentage of success (68%) than HJ that remains near the same 
value. Furthermore, the FEM demands more function evaluations 
(Fig. 6-9) and at the cases of pretty small circular flaws (r = 0.2) 
the identification included slight error. This is caused due to the 
restrictions of meshing which might not be accurate enough to 
describe small holes.  

If the performance of each combination is stated by the fact of 
reaching the global optimum with at least one of the four initial 
vectors, then all the combinations are successful except the case 
SA+FEM where there is one failure for the flaw 1/0.2 (flaw 
number at the location 1 with radius 0.2) as shown in Fig. 4 
where none of the starting vectors lead to a successful history. It 
is also remarkable that all the OM combined with BEM have at 
least 2 out of the 4 initial vectors leading to the global optimum. 
The FEM needs about 20 times more computational time for 
each analysis than BEM giving a serious advantage to BEM.  
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In Fig. 6 the average number of function evaluation needed 
for convergence for every initial vector is shown. The choice 
of initial vector does not seem to influence the number of 
function evaluations, though the CM does. BEM tends to need 
less function evaluations than FEM, especially when using HJ. 
As far as the difference of the performance of the OM is 
concerned, it is easy to observe that SA needs more function 
evaluations since it is a stochastic method. SQP and HJ need 
more or less the same number of function evaluations when 
combined with BEM while combined with FEM, HJ needs 
more than SQP (Fig. 7-9). On the other hand, regardless the 
CM, even if sometimes SQP converges quicker, in terms of 
function evaluations this does not mean less CPU time in total 
since it is a method that needs more computational time than 
the others in its every iteration.  

Observing the figures with the histories of convergence for 
every method it becomes obvious that, for both CM the cost 
function value diminishes the same way for much more 
iterations using HJ than using SQP. These two methods have 
the same history at first and afterwards they change path due 
to slight changes on the CM concerning their accuracy and the 
influence of mesh. Only the SA does not have common path 
for both CM since it uses a random number generator. 

In SA the cost function value at first diminishes quicker for 
the FEM than the BEM but as the number of evaluations 
increases the drop rate falls and the BEM converges quicker, 
though this could not be considered as a rule since the 
included random number generator plays an important role. 
SQP and HJ follow more or less the same way independently 
from the CM but from a point and further the HJ seem to 
converge more quickly. The different history of each method 
could be explained by their different nature.  

In Figs. 3 and 4 the location and size of each one of the 25 
flaws is characterized by the fact of being detected. The 
location is more important for both CM. Additionally, the size 
is negligible for BEM, while for FEM only the smallest size (r 
= 0.2) has fewer successes. The easiest location to be found is 
the upper left corner (3), the most difficult is the lower left (1) 
and all the other three seem to be of the same difficulty. A 
possible explanation is that location 3 is close to an edge with 
no pressure or support so its result is clearer. On the other 
hand, the location 1 is close to the two edges that carry the 
loading, so its result is affected by the boundary conditions. 

In Fig. 5 it is shown that the initial vector plays a significant 
role in the convergence for all the combinations OM and CM. 
The best initial vector is no. 4, as expected, since it lies in the 
center of the plate and it has the same distance from all the 
flaws to be identified. However, this is not the only vector that 
gives satisfactory results. Vector 1, which is located in the 
lower left corner, has more or less the same results. If it is also 
considered that this is the flaw more difficult to identify (Fig. 
5), it should be considered as a good starting point. An 
interesting result is that the initial vector with a center at the 
location 3 leads to the least successful runs. These two last 
remarks show that the location which could be considered as 
good for starting vector is difficult to be located and the 
opposite. 

 
 

VI.  CONCLUSION 
Comparing FEM with BEM according to their ability 

regardless the optimization method, BEM is more efficient. 
Furthermore, this parametric study indicated that the initial 
vector seems to be more significant in the overall behavior of the 
optimization methods and computational methods than any other 
parameter. 

 As long as the three optimization algorithms are concerned, 
they are expected to perform in different way and so they are 
doing. One could say that all the methods solve the problem 
successfully, with the same accuracy so the only parameter 
capable of differentiating the method in this test case should be 
the computational cost and the difficulty of implementation. In 
these terms, the Hooke and Jeeves algorithm seems to be a 
promising optimization method in the field of inverse design. 
Another feature that makes Hooke and Jeeves promising is that it 
maintains the same satisfactory performance in FEM as well as 
in BEM. 
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