
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2201

A P2P File Sharing Technique by Indexed-Priority
Metric

Toshinori Takabatake and Yoshikazu Komano

Abstract—Recently, the improvements in processing performance
of a computer and in high speed communication of an optical fiber
have been achieved, so that the amount of data which are processed
by a computer and flowed on a network has been increasing greatly.
However, in a client-server system, since the server receives and
processes the amount of data from the clients through the network, a
load on the server is increasing. Thus, there are needed to introduce
a server with high processing ability and to have a line with high
bandwidth. In this paper, concerning to P2P networks to resolve the
load on a specific server, a criterion called an Indexed-Priority Metric
is proposed and its performance is evaluated. The proposed metric is
to allocate some files to each node. As a result, the load on a specific
server can distribute them to each node equally well. A P2P file
sharing system using the proposed metric is implemented. Simulation
results show that the proposed metric can make it distribute files on
the specific server.

Keywords—peer-to-peer, file-sharing system, load-balancing, de-
pendability.

I. INTRODUCTION

Recently, the improvements in processing performance of a
computer and in high speed communication such as an optical
fiber have been achieved. Services of content distribution, e.g.,
music or movie delivering, make them possible to be provided
by service providers. From this, the amount of data which are
processed by the computer and flowed on a network has been
increasing greatly. In a conventional client-server system, the
server provides these services to many clients. However, since
the server receives data from the clients and it processes the
data through the network, the load on the server is increasing.
Thus, for handling the load, it is necessary to introduce a
server with high processing ability and to have a line with
high bandwidth [1].

To overcome the problem mentioned above, peer-to-peer
(P2P) techniques [1]–[3] have been recently focused on the
research of the file sharing system. P2P is defined as a way
of structuring distributed applications such that the individual
nodes have symmetric roles in [3]. P2P networks or P2P
overlay networks have been well surveyed in [4],[5]. Many
P2P storage techniques have been also surveyed in [6].

There are many P2P networks [7]–[19]. In P2P networks,
each node is searching a connected node based on indexing
information. The indexing information is consists of pairs of
key and value. Thus, it is very important to how to manage
the indexing information. The P2P networks can classify into
two classes based on the way of managing the indexing
information: unstructured and structured. The unstructured
P2P overlay networks are as follows: Napster [7], Gnutella[8],

Toshinori Takabatake is with the Faculty of Engineering, Shonan Institute
of Technology, Fujisawa, email: toshi(at)info.shonan-it.ac.jp

Freenet[9], BitTorrent[10], KaZaA [11], etc. In the unstruc-
tured P2P overlay networks, the network uses the flooding-
based techniques for searching a node [4],[5]. However, each
node sends a query at once to groups of the adjacent nodes.
Thus, the flooding-based techniques cause some traffic on the
network and delay to search the files of the node.

On the other hand, the structured P2P overlay networks are
as follows: Chord[14], CAN[15], Tapestry[17], Kademlia[16],
Pastry[18], Viceroy[19], etc. The structured P2P overlay net-
works can make it possible to reduce the number of the queries
exchanged between the nodes regardless of the system size
increasing. However, in the access frequency to data on the
structured P2P overlay networks, there is a node which holds
some files with a high popularity, so that the node makes it to
concentrate a load by accessing from users [4],[5]. Especially,
since each node in the P2P system manages some files by
sharing them, each node is prone to centralize a load depend
on the way of managing the files. Thus, it is important to how
to allocate the files to each node by criteria.

In this paper considering the structured P2P overlay net-
works, to overcome the problem mentioned above, a criterion
called an Indexed-Priority Metric is proposed and its perfor-
mance is evaluated. The proposed metric is to allocate some
files to each node so that the load on a server can distribute
them to each node equally well. In addition, a P2P file
sharing system based on the proposed metric is implemented.
Simulation results show that the proposed metric can distribute
files to each node well.

The rest of this paper is structured as follows. Section II
gives the preliminary in the proposed method. In Section
III, we present the proposed indexed-priority metric, and in
Section IV, we present the communication in the P2P system.
In Section V, we evaluate the performances of the proposed
metric as the file-priorities for the large number of files by
simulations. Finally, Section VI describes the conclusions and
the future work.

II. PRELIMINARY

In this section, an overview of the P2P networks, two types
of P2P networks, and the Distributed Hash Table (DHT) used
in this paper are described, respectively.

A. Overviews of P2P networks

Peer-to-peer (P2P) is defined as a way of structuring
distributed applications such that the individual nodes have
symmetric roles in [3]. In P2P applications, since the role
as a client is not distinct from it as a server, each node
can act as both a client and a server. In a P2P network,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2202

A 192.168.11.1:1024 2
C 192.168.11.3:3072 3B

B 192.168.11.2:2048 2
C

B 192.168.11.2:2048 3
C 192.168.11.3:3072 3 A

Node

Link A 192.168.11.1:1024 2
E 192.168.11.5:2048 3

B 192.168.11.2:2048 3

E

D

Fig. 1. Example of the proposed method in P2P network.

the processing elements (i.e., computers, storages, etc.) to
configure the network are called a node. A P2P network is
composed of the nodes of working the P2P applications and
the logical links in application layer which are interconnecting
between the nodes. P2P systems form their overlay networks
based on application layer information [2].

In a client-server system, by comparing with the processes
of the server and those of the client, the server mainly executes
processes. On the other hand, in a P2P network, all nodes
equally execute the processes. The feature of the P2P network
is that the performance of the node may not have its high,
since the processes in the application are able to distribute to
each node. However, since the processes are distributed in each
node, it is hard to manage the system as a whole [1]. Although
there are many classifications of P2P networks [4],[5], the P2P
networks are technically classified into two types by index
information: unstructured and structured schemes.

B. Unstructured P2P Overlay Networks

In an unstructured P2P overlay network, each node is
connected to any nodes arbitrary. There are also no rules of
the location in which data or meta-data is placed. Thus, when
each node is searching the data or meta-data, the network uses
flooding as the mechanism that each node sends a query at
once to groups which are selected among the adjacent nodes.
However, the flooding-based techniques cause some traffic on
the network and delay to search the data or meta-data. On the
other hand, since any topology of the network can compose, it
is easy to maintain the system. The unstructured P2P overlay
networks are: e.g., Napster [7], Gnutella [8], Freenet [9],
BitTorrent [10], KaZaA [11], etc.

C. Structured P2P Overlay Networks

In a structured P2P overlay network, the nodes in which
data or meta-data is placed are uniquely determined. Since
a topology of the network is also determined according to
algorithms in advance, which node being connected to adjacent
nodes is defined by the algorithms. Thus, when each node is
searching the data or meta-data, the network uses the algo-
rithms as the Distributed Hash Table (DHT)-based systems.
The DHT-based systems can find the target data surely. In
the systems, the number of forwarding queries which are
exchanged between the nodes is small regardless of increasing

the number of nodes. However, in the access frequency to data,
there is a node which holds data (files) or meta-date with a
high popularity, so that the node makes it to concentrate a load
by accessing from users. The structured P2P overlay networks
are: e.g., OpenNap [12], Chord [14], CAN [15], Kademlia
[16], Tapestry [17], Pastry [18], Viceroy [19], etc.

D. Distributed Hash Table

Generally, in a distributed hash table, a hash value is
obtained by a hash function [1],[13]. The hash values which
are made them possible to obtain by the function are ranged
from zero to billions. Theoretically, by using these values in
the distributed hash table, each node is almost assigned to a
unique hash value, even if there are billions of nodes in the
network. Note that, given the hash function denoted by hash
and two files denoted by x and y, even if the content of x
is almost the same as that of y, hash(x) and hash(y) are
quite different values. From this property, since a node can
manage some files, a load of the communication on the node
can balance to the other nodes.

III. PROPOSED METHOD

In this section, an overview of the proposed method, an
indexed-priority metric, and a node list are presented.

A. Overview of Proposed Method

In this paper, concerning to the structured P2P overlay
networks, a distributed file sharing system is built based on
the DHT as well as that in used in Chord [13],[14]. In case of
implementing the DHT in a P2P system, it is important how
to allocate a file to a node by criteria. Note that a file in this
paper is not a file itself but a file containing a meta-data such
as information about a directory, file name, date, etc.

Fig.1 shows an overview of the proposed method. In com-
munication between nodes in the system, the proposed method
is managing to allocate a file to prevent a specific node from
being concentrated a load by accessing from users. In order
to decentralize many files for a specific node intensively, the
proposed method is made some files distributed to various
nodes by introducing a criterion called an indexed-priority
metric. In addition, the proposed method is made possible to
add or delete some files (meta-data) by using a directory.

The proposed metric has a node- and file-priorities. These
priorities are obtained by a hash value from its function
detailed in the next subsection. These priorities are recorded
in a list in each node. The list is called a node-list.

The overview of the processing for a P2P file sharing system
in this paper is described in the following. Note that these
processing does not need sequentially because each node is
behaved as independently.

(Updating a node-list (1)) : Each node is periodically
updating a node-list by connecting the node which has the
highest node-priority. At this point, in the node-list of the
connecting node, the lowest node-priority is deleted, and the
highest node-priority of the connected node is added.

(Updating a node-list (2)) : Each node is conforming for
the existence of nodes in the node-list by periodically sending

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2203

192.168.11.1:1024 4560ec505b91714a4872

192.168.11.2:2048 b0da0f4546c39b0a6846

H
Node ID)

Hash value

(a) Example of a node-priority (= 2).

192.168.11.1:1024 4560ec505b91714a4872

/dir/picture.jpg a07e644c48f0c2124e54

Hash value

(b) Example of a file-priority (= 1).

H: a hash function

H

H: a hash function

Node ID)

Node ID)

File path)

H

H

Fig. 2. Examples of the node- and file-priorities.

a signal (e.g., Ping) to the nodes. If the nodes have been not
conformed for, the nodes are deleted in the node-list.

(Adding or updating of file) : When each node is adding
or updating a file, the each node selects a node from the node-
list in which has the highest file-priority, so that the each
node connect the selected node. Furthermore, if there is a
node which has a higher file-priority in the node-list of the
connecting node, the each node will connect the node. At this
point, if there is not a file in the connected node, the each
node is sending the file to the connected node; on the other
hand, if there is not a file-priority in the node-list, the each
node is sending the file-priority.

(Referring or deleting of file) : When each node is referring
or deleting a file, the each node traces a node of the node-list
back by connecting a node in the same way in the adding or
updating of a file. So that the target node which has a file is
possible to be found.

(Synchronization of file) : Each node which has a file is
periodically synchronizing a node which has the highest file-
priority by the same way in the updating a node-list. That
is, a copy of the file is sent to the node. This is because to
prevent from disappearing the file on the network, where the
node with the highest file-priority has the copy of the file.

B. Indexed-Priority Metric

An indexed-priority metric is criteria to decide to which
each node connects one in communication between nodes and
in transferring files, which are needed for the maintenance in
the system. Each node has a priority value as an index, which
is used for the selection of the connecting node.

Now, an index and a node-ID which are needed to find the
priority is defined in the following:

Definition 1: (Index) : An index of a node in this paper is
a label such as an IP address, a node name, or a MAC address,
etc.

Fig. 1 shows an example of the indexes of the nodes such
as ‘A’, ‘B’, ‘C’, ‘D’, and ‘E’.

Definition 2: (Node-ID) : A node-ID is a string which is
combined an index of a node, e.g., an IP address and a port
number of it with a symbol, e.g., ‘:’.

For example, when an IP address of a node is
192.168.11.1 and a port number of it is 1024, a node-ID

A 192.168.11.1:1024 2
B 192.168.11.2:2048 2
C 192.168.11.3:3072 3, 2
D 192.168.11.4:3072 3
E 192.168.11.5:4096 4, 3
F 192.168.11.6:2048 5, 4
G 192.168.11.7:1024 3
H 192.168.11.8:1024 2

Node, File
priority value

Index Node ID
(IP address + Port No.)

Fig. 3. Example of a node-list.

is thus 192.168.11.1:1024. Next, a node-priority and a
file-priority based on the node-ID are defined as follows:

Definition 3: (Node-priority) : A node-priority is a sum
of the same digit in each hash value which is obtained by a
hash function from two node-IDs, where each hash value is
scanned from the Most Significant Digit (MSD) to the Least
Significant Digit (LSD) of the hash value.

Fig. 2(a) shows an example of the procedure in finding the
node-priority. In this example, a node-priority is finding from
two node-IDs: an IP address is 192.168.11.1 and a port
number is 1024; an IP address is 192.168.11.2 and a
port number is 2048. First, each hash value is obtained by a
hash function (e.g., SHA-1 [1]) from each node-ID. Next, each
digit of the obtained hash value is scanning from the MSD,
then the same digit is counted. In this example, since ‘a’ in
16th and ‘8’ in 18th are matched, a node-priority is thus two
as shown in Fig.2(a).

Definition 4: (File-priority) : A file-priority is sum of the
number in the digit being scanned from the MSD of each hash
value which is obtained by a hash function from a node-ID
and a file pass.

Fig. 2(b) shows an example of the procedure in finding the
file-priority. In this example, a node-ID is based on which an
IP address is 192.168.11.1 and a port number is 1024; a
file pass is /dir/picture.jpg. First, in the same way of
finding the node-priority, each hash value is obtained from a
hash function from the node-ID and the file pass. Next, each
digit of the obtained hash value is scanning from the MSD in
order, then the same digit is counted. In this example, ‘4’ in
17th are matched and others are not matched, then the file-
priority is thus one as shown in 2(b). Based on the file-priority,
a file is allocated in a node.

Note that the node-priority is used for making a node-list
which is described detail in the next subsection. Also that the
file-priority is used for adding, referring, and deleting a file.

C. Node-List
All communication starts after each node established a

connection with a node which has been selected from a node-
list defined in the following:

Definition 5: (Node-list) : A node-list is a list in which
node-IDs of higher node- and file-priorities are saved, respec-
tively.

Fig. 3 shows an example of a node-list. Note that, when
the system is implemented, the maximum number of indexes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2204

Node A

1. Send public key by RAS

2. Send cipher key by RC4

3. Send Global IP

4. Global IP + Port No.

(2)

1. Send "GetNodeInfo"

2. Send All Node-IDs
 in the node list

(3)
3. Send "end"

(b) Update processing of the node list(a) Preprocessing for start in communication

Node B Node A Node B

(1)

1. Send "PutData"

2. Send Node ID

4. Send File pass

3. Send File priority

(c) Processcing of file synchronization

Node A Node B

(4)

(1) A key of RC4 is generated
 by using random numbers.

(2) The received key is decrypted
 by a secret key.

(3) The node IDs are added in
 the node list.

(4) The process of the file
 synchronization (Select
 Case A1 or Case A2).

Fig. 4. Setup procedures for communication between nodes.

of a node-list can set arbitrarily. However, it is preferable that
the size of the node-list is not so large, because of limitations
of resources such as memory or HDD in a computer. Also
note that the size of the node-list is set as eight in the next
section. Now, the procedure of adding a node-ID in a node-
list by each node is described in the following. The preceding
node-ID which is adding in a node-list is called a candidate
node-ID in the following.

Step.1 It is checked whether there is a candidate node-ID
which is the same that in the node-list or not. If there is
the same one, then this procedure is terminated without
adding the candidate node-ID; otherwise, go to Step 2.

Step 2. It is checked whether there is any space to add in
the node-list or not. If there is a space, then the candi-
date node-ID is added and this procedure is terminated;
otherwise, go to step 3.

Step 3. A node-ID of the lowest node-priority in the node-
list is obtained. Then, the node-priority of the obtained
node-ID is compared with that of the candidate node-ID.

Step 4. As a result of Step 3., in the case that the node-
priority of the candidate node-ID is equal to or higher
than that of the obtained node-ID, the candidate node-
ID is not added in the node-list and this procedure is
terminated; otherwise, go to Step 5.

Step 5. The node-ID of the lowest node-priority is deleted
in the list and the candidate node-ID is added in the node-
list, then this procedure is terminated.

Note that the file-priority is added in the node-list by the
same procedure of the node-priority.

IV. COMMUNICATION IN THE P2P SYSTEM

In this paper, since a P2P system is implemented on a
Window platform, communications in the system are followed
by Winsock. Preprocessing for start in communications and
processing for the system maintenance are described in the
following.

A. Preprocessing for Start in Communication

Fig. 4(a) shows the procedure for start in communications.
To protect communication from wiretapping or falsification, a
public key cryptosystem by RSA [1] is used in all communi-
cations. A key which is encrypted by RC4 [1] is exchanged
in communication. All IP addresses that are able to obtain

by Winsock are one which is allocated in a network card
of the sender. Thus, there is need to request for sending the
global IP address of the sender to the node of the receiver
after exchanging the key.

From the above-procedure for communications, the en-
crypted key is able to send to the node of the receiver safely.
Since the procedure is executed in all communications when
nodes communicate, the different keys are thus used in every
communication.

B. Processing for System Maintenance

Generally, P2P networks make a node to allow joining and
leaving in the network freely. Thus, since the proposed method
is subject to P2P networks, the existence of the nodes which
they can communicate with each other is always changing. So
that in case that a node with a higher node- or file-priority
joins the P2P network, the node must be added in the node-
list. It is necessary for the system to detect the node which
was left from the network and to delete it from the node-list.
Furthermore, even if a node which has managed files could
leave from the network, the files must be protected to vanish
on the network. In this way to maintain a function as a file
system, some files are needed to copy to several nodes to some
extent.

In this paper, to execute communication to be needed for
the system maintenance in the mentioned above, while a node
becomes a waiting status temporally, the node connects to
the other nodes periodically. Note that, in the implementation
described in the next section, the interval of the connection
is set to 30 seconds. The operations in the waiting status are
three processes in the following:

• Updating a node-list : The target node of updating a
node-list is selecting a node of the highest node-priority
from the node-list and it connects to the selected node. To
do so, first, after processing for start in communication
as shown in Fig. 4(a), the node-list is updated. Fig. 4(b)
shows the procedure of updating the node-list.

• Conformation of a node alive : Each node is tried to
connect all nodes which are recorded in the node-list. If
the connection has succeeded, the existence of the nodes
is confirmed; on the other hand, if it has not succeeded,
the nodes to which could be not connected are deleted in
the node-list.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2205

Node A

1. Send the node ID which
 is the highest file prioprity

(a) File synchronization (Case A1:
 the received file priority of Node A
 is higher than that of Node B).

Node B

3. Return the first process

2. Break and re-establish the
 connection of Node B

(b) File synchronization (Case A2:
 the received file priority of Node A
 is lower than that of Node B).

Node A

1. Send the null character ""

Node B

2. Send the hash vaule of
 the file path

3. Send the renewed date
 and time

(1) Select Case B1 or
 Case B2

(c) File synchronization (Case B1:
 the renewed date and time of
 Node A are newer than those
 of Node B).

Node A

1. Send "true"

Node B

2. Send the file name of
 INI file

3. Send the INI file

4. Send its TYPE

Node A

1. Send "false"

Node B

(d) File synchronization (Case B2:
 the renewed data and time of
 Node A are not newer than
 that of Node B).

2. Break the connection of
 Node B

(2) Select Case C1 or
 Case C2

Node A

1. Send the hash value of
 the file path

Node B

(e) File synchronization (Case C1:
 TYPE is FILE).

2. Send the file itself

3. Break the connection of
 Node B

Node A

1. Send the hash value of
 the file path

Node B

(f) File synchronization (Case C2:
 TYPE is DELETED).

3. Break the connection of
 Node A

2. Delete the file itself

Fig. 5. Procedures for file synchronization.

• File Synchronization : The file which is allocated in each
node is saved in “cache” folder. Each node is periodically
scanning the folder and they are tried to synchronize a
node of the highest file-priority in the node-list.

Fig. 4(c) and Fig. 5 show the procedures of file synchroniza-
tion. As shown in Fig. 4(c)(4), the node B obtains the highest
file-priority of the node-ID from the node-list. The obtained
file-priority is compared with the received file-priority. From
this result, the procedure is executed as follows:

if (the received file-priority of Node A
is higher than the file-priority of
Node B) {
Case A1;

} else {
Case A2;

}

In Case A2 of the process in Fig. 5(b), Node B is compared
the renewed date and time in the received file of Node A with

these in that of Node B. From this result, the procedure is
executed as follows:

if (the renewed date and time of Node A
are newer than the date and time of
Node B) {
Case B1;

} else {
Case B2;

}

In addition, in Case B1 of the process in Fig. 5(c), Node A
executes as follows:

if (the received TYPE is FILE) {
Case C1;

} else if (the received TYPE is DELETED) {
Case C2;

}

Figs. 5(e) and (f) show the processes of Case C1 and Case
C2. Case C1 is to transfer a file or Case C2 is to delete a file.

From the above-mentioned procedures of file synchroniza-
tion, a function as a file system can maintain in the P2P
network even if the existence of the nodes is always changing.

V. SIMULATIONS

In this section, simulation environment, simulation method,
and simulation results are described.

A. Simulation Environment
Since limitations existed in the physical environment to

execute simulations, it was difficult to verify the proposed
method by using many computers actually. Thus, to achieve
the proposed method, simulations were performed on several
nodes virtually by using different port numbers on a computer.
A program was executed with the port numbers changing
only, so that communication between nodes was achieved
in the following environment. To also achieve a number
of communications in the simulation, many programs were
executed. The simulation environment was as follows: CPU
is Athlon64 3500+, memory is 1GB, OS is Windows XP
SP2, compiler is Visual Studio .NET 2003, and programming
language is C++.

B. Simulation Method
First, the simulation was executed to verify whether

files were distributed on each node equally or not, where
the number of files was 40000 and 160000 as the num-
ber of nodes was 4, 16, and 64, respectively. To exe-
cute this simulation, a program was made for finding a
file-priority. In the program, each node counted the file-
priority for each file, respectively, and the sum of the file-
priorities was calculated. Next, the output of the program for
each node was as follows: “IP address, hash value,
sum of file-priority”. For example, the output was
“192.168.1.1:1024, 6c0458f1b7, 24740”.

If the sum of the file-priorities is not so far away from
the average of them, it is preferable because the files are
distributed equally.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2206

80000

100000

120000

e-
pr

io
ri

tie
s

40000 files

0

20000

40000

60000

1 2 3 4

Su
m

 o
f

fi
le

Node No.

Fig. 6. Sum of file-priorities for 40000 files as the number of nodes with 4.

80000

100000

120000

pr
io

ri
ti

es

40000 files

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Su
m

 o
f

fi
le

-

Node No.

Fig. 7. Sum of file-priorities for 40000 files as the number of nodes with
16.

80000

100000

120000

pr
io

ri
ti

es

40000 files

0

20000

40000

60000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Su
m

 o
f

fi
le

-p

Node No.

Fig. 8. Sum of file-priorities for 40000 files as the number of nodes with
64.

C. Results

Figs. 6–8 for which the number of files was 40000 show the
sum of file-priorities which were allocated to each node as the
number of nodes was 4, 16, and 64, respectively. Fig. 9–11
for which the number of files was 160000 show the sum of
file-priorities which were allocated to each node as the number
of nodes was 4, 16, and 64, respectively. Table I shows the
evaluation summary of the file-priorities.

As shown in Figs. 6–8, each node in the sum of the file-
priorities was about 100 thousand equally regardless of the
number of nodes. In the same as shown in Figs. 9-11, each
node in the sum of the file-priorities was about 400 thousand
equally regardless of the number of nodes.

Thus, from the figures and the table mentioned above, the
sum of file-priorities is able to allocate in each node equally
if the number of files are enough for the number of nodes.
Since many files make possible to distribute in some nodes by

5

300000

350000

400000

450000

e-
pr

io
ri

ti
es

160000 files

0

50000

100000

150000

200000

250000

1 2 3 4

Su
m

 o
f

fi
le

Node No.

Fig. 9. Sum of file-priorities for 160000 files as the number of nodes with
4.

250000

300000

350000

400000

450000

pr
io

ri
ti

es

160000 files

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
um

 o
f

fi
le

-p

Node No.

Fig. 10. Sum of file-priorities for 160000 files as the number of nodes with
16.

250000

300000

350000

400000

450000

pr
io

ri
ti

es

160000 files

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Su
m

 o
f

fi
le

-p

Node No.

Fig. 11. Sum of file-priorities for 160000 files as the number of nodes with
64.

the indexed-priority metric, the load in the nodes can balance.
The proposed method can prevent from the load on a specific
node managed many files.

In a P2P network, simulation results show that the node- and
file priorities make possible to distributed files. In addition, we
confirmed to the behavior of the network by a program which
communicates between the nodes as tens of computers. The
network was built as small-sized one due to the limitations
physical resources. Thus, the proposed method is able to used
for a P2P network with small-sized build such as LAN or
WAN.

VI. CONCLUSIONS

In this paper, we proposed the indexed-priority metric that
is to distribute some files almost equally to each of nodes in
a P2P network. Since the proposed method is able to allocate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2207

TABLE I
EVALUATION SUMMARY IN SIMULATIONS.

40000 files 160000 filesNo. nodes
Avg. Std. Avg. Std.

4 99677.00 736.37 398305.25 1784.86
16 100098.56 501.60 400390.94 2115.34
64 100094.50 625.24 400331.72 1986.61

these files to each node, a load on a specific node can make
balance. To verify this effect of the proposed method, a file
system is implemented in a P2P network. Simulation results
also show that the proposed method can distribute some files
to each of nodes equally.

Future research on the proposed method remains to be
explored: there are to verify the work of the effect by building
a large-sized network such as a hundreds or thousands of
computers, and to develop techniques with fault tolerance.

REFERENCES

[1] Ian J. Taylor, From P2P to web services and grids: Peers in a
client/server world, Springer, 2005.

[2] G. Camarilla, Ed. “Peer-to-peer (P2P) architectures,” draft-iab-p2p-
archs-01.txt, April 18, 2009.

[3] IRTF Research Groups, Peer-to-peer research group,
http://www.irtf.org/charter?getype=rg&group=p2prg, May 2009.

[4] J. Risson and T. Moors, “Survey of research towards robust peer-to-
peer networks: search methods,” Computer Networks, vol.50, Issue 17,
pp.3485–3521, Dec. 2006.

[5] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Communi-
cations Surveys and Tutorials, vol.7, Issue 2, pp.72–93, 2005.

[6] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,”
Proc. Int’l. Conf. Information Technology: Coding and Computing
(ITCC 2005), vol.2, pp.205–213, 2005.

[7] Napster Inc., http://www.napster.com/, May 2009.
[8] Gnutella Protocol Development, http://rfc-

gnutella.sourceforge.net/index.html/, May 2009.
[9] The Free Network Project, http://freenetproject.org/index.html/, May

2009.
[10] Bittorrent Inc., http://www.bittorrent.com/, May 2009.
[11] Kazaa, http://www.kazaa.com/, May 2009.
[12] OpenNap, http://opennap.sourceforge.net/, May 2009.
[13] H. Balakrishnam, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica,

“Looking up data in P2P systems,” CACM, vol.46, Issue 2, pp.43–48,
Feb. 2003.

[14] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnam,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” ACM SIGCOMM, pp.149–160, Aug. 2001.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” ACM SIGCOMM, pp.161–172,
Aug. 2001.

[16] P. Maymounkova and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” Proc. 1st Int’l. Workshop
Peer-to-Peer Systems, pp.53–65, 2002.

[17] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J. Selected Areas in Communications, vol.22, no.1,
pp.41–53, Jan. 2004.

[18] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” Proc. IFIP/ACM
Int’l. Conf. Distributed Systems Platforms (Middleware), pp.329–350,
2001.

[19] D. Malkhi, M. Naor, and D. Ratajczak, ”Viceroy: A scalable and
dynamic emulation of the butterfly,” Proc. 21st Annual Symp. Principles
of Distributed Computing (PODC’02), pp.183–192, 2002.

