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A P-SPACE Algorithm for Groebner Bases

Computation in Boolean Rings
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Abstract—The theory of Groebner Bases, which has recently been
honored with the ACM Paris Kanellakis Theory and Practice Award,
has become a crucial building block to computer algebra, and is
widely used in science, engineering, and computer science. It is well-
known that Groebner bases computation is EXP-SPACE in a general
setting. In this paper, we give an algorithm to show that Groebner
bases computation is P-SPACE in Boolean rings. We also show that
with this discovery, the Groebner bases method can theoretically be
as efficient as other methods for automated verification of hardware
and software. Additionally, many useful and interesting properties of
Groebner bases including the ability to efficiently convert the bases
for different orders of variables making Groebner bases a promising
method in automated verification.

Keywords—Algorithm, Complexity, Groebner basis, Applications
of Computer Science.

I. INTRODUCTION

S
INCE its invention in 1965 by Bruno Buchberger, the

Groebner basis method has become one of the most

important techniques in providing automated problem-solving

tools to address challenges in robotics, computer-aided design,

systems design, modeling biological systems and many other

related areas [4, 5, 28, 31]. The method is implemented in

all major computer algebra systems including Mathematica,

Macsyma, Magma, Maple and Reduce. These software pro-

grams enable computers to manipulate mathematical equations

and expressions in symbolic form, and are heavily used in

science and mathematics. Buchberger’s work has recently been

honored with the ACM Paris Kanellakis Theory and Practice

Award, which honors specific theoretical accomplishments that

significantly affect the practice of computing. Nevertheless,

the field is still under active development both in the direction

of improving the method by new theoretical insights and in

finding new applications.

This paper is dedicated to investigating the theoretical

foundations for the Groebner basis method in Boolean rings.

We are interested in this special setting because the Groebner

basis method in Boolean rings can be used for automated

formal verification of hardware and software in computer

science.

Unfortunately, it is well-known that Groebner bases com-

putation is EXP-SPACE in a general setting over polynomial

rings [20]. Since other approaches for automated formal

verification are P-SPACE [3, 21, 22], for the theoretical com-

petitiveness of an alternative approach using Groebner bases
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it is very important to prove that Groebner bases computation

is also P-SPACE.

The paper is organized as follows: In the next section, we

will summarize some basic facts about P-SPACE, Boolean

rings and the Buchberger’s algorithm for Groebner bases

computation in a general setting. In Section III, we give a

different algorithm for Groebner bases computation in Boolean

rings and prove that this new algorithm for Groebner Bases

computation is P-SPACE. Finally, in Section IV, we will

discuss possible applications of our work for automated formal

verification of hardware and software in computer science.

II. PRELIMINARIES

In this section, we will summarize some basic facts about

complexity, Boolean rings and the method of Groebner bases.

A. Time and Space Complexity

To analyze the efficiency of our algorithms, we utilize the

complexity of computational problems in terms of the amount

of memory that they require. Time and space are two of

the most important considerations when we seek practical

solutions to many computational problems. In fact, time and

space complexity are related to each other. Furthermore, space

complexity shares many of the features of time complexity and

serves as a further way of classifying problems according to

their computational difficulty.

Definition 1: The time and space complexity classes, P,

NP, P-SPACE, NP-SPACE, EXP-TIME and EXP-SPACE, are

defined as follows.

• P= {L|L is a language decided by a deterministic Turing

machine M that halts on all inputs in O(nk) steps on any

input of length n for some k}.

• NP= {L|L is a language decided by a nondeterministic

Turing machine M that halts on all inputs in O(nk) steps

on any input of length n}.

• P-SPACE= {L|L is a language decided by a deterministic

Turing machine M that halts on all inputs and uses O(nk)
maximum number of tape cells on any input of length n
for some k}.

• NP-SPACE= {L|L is a language decided by a nondeter-

ministic Turing machine M that halts on all inputs and

uses O(nk) maximum number of tape cells on any input

of length n}.
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• EXP-TIME= {L|L is a language decided by a determin-

istic Turing machine M that halts on all inputs in O(2nk

)
steps on any input of length n for some k}.

• EXP-SPACE= {L|L is a language decided by a nonde-

terministic Turing machine M that halts on all inputs and

uses O(2nk

) maximum number of tape cells on any input

of length n}.

We summarize the relationship between complexity classes in

the following proposition [24, 25].

Proposition 1: P⊆NP⊆P-SPACE=NP-SPACE⊆EXP-

TIME⊆EXP-SPACE.

B. Boolean ring

Boolean algebras, which were introduced by Boole in the

1850’s to codify the laws of thought, have become a popular

topic of research since then. The discovery in 1930’s of the

duality between Boolean algebras and Boolean spaces by

Stone [26, 27, 6] was a major breakthrough of the field. Stone

also proved that Boolean algebras and Boolean rings are the

same in the sense that one can convert from one algebraic

structure to the other. In spite of its long history and elegant

algebraic properties, the Boolean ring representation has rarely

been used in the computational context.

Definition 2: A ring K = 〈K,+, ·, 0, 1〉 is Boolean if K

satisfies x2 ≈ x,∀x ∈ K.

Lemma 1: If K is a Boolean ring, then K is commutative

and x + x ≈ 0 [6].

Every Boolean algebra (K,∧,∨) gives rise to a ring (K,+, ·)
by defining a + b = (a ∧ ¬b) ∨ (b ∧ ¬a) (this operation is

called XOR in the case of logic) and a · b = a ∧ b. The

zero element of this ring coincides with the 0 of the Boolean

algebra; the multiplicative identity element of the ring is the

1 of the Boolean algebra. Conversely, if a Boolean ring K

is given, we can turn it into a Boolean algebra by defining

x ∨ y = x + y + x · y and x ∧ y = x · y. Since these two

sets of operations are inverses of each other, we can say that

every Boolean ring arises from a Boolean algebra, and vice

versa. Furthermore, a map f : A → B is a homomorphism

of Boolean algebras if and only if it is a homomorphism of

Boolean rings. The categories of Boolean rings and Boolean

algebras are equivalent. By using these translations, there

exists a Boolean polynomial for each Boolean formula and

vice versa.

Since congruences on rings are associated with ideals, it

follows that the same must hold for Boolean algebras. An ideal

of the Boolean algebra K is a subset I such that ∀x, y ∈ I
we have x ∨ y ∈ I and ∀a ∈ K we have a ∧ x ∈ I . This

notion of ideal coincides with the notion of ring ideal in the

Boolean ring K. An ideal I of R is called prime if I 6= K
and if a ∧ b ∈ I always implies a ∈ I or b ∈ I . An ideal

I of K is called maximal if I 6= K and if the only ideal

properly containing I is K itself. These notions coincide with

ring theoretic ones of prime ideal and maximal ideal in the

Boolean ring K.

Despite its extremely simplicity, the Boolean ring represen-

tation has not been used extensively both in logical reasoning

and in computation. The main reason, which has been shared

by other researchers, is that the XOR operator used in Boolean

rings is nilpotent and hence negation does not appear in the

normal forms. This makes Boolean ring formulas hard to read

for human because one cannot tell which predicate symbol is

negated and which one is not. Especially, when a formula is

long, it is almost impossible to make a natural interpretation

of its meaning.

For model checking, we are interested in checking the

correctness of a model only, not what the proofs look like.

The efficiency of model checking very much depends on

efficient internal data structure, which can provide a uniform

representation and fast basic operations. Particularly, unlike

Boolean algebras when “don’t care” (DC) conditions are

involved, Boolean rings can provide a satisfactory algebraic

framework for effectively handle of the problems.

C. The Method of Groebner Bases

Once the Boolean formulas have been converted into

and equivalent system of polynomials in the corresponding

Boolean ring, one can use the results from symbolic com-

putation to perform calculation on the polynomial system. In

this section, we give a short introduction to basic facts on

admissible term orders, weight vectors, and the method of

Groebner bases. We refer to [4, 5, 8, 28, 29, 31] for missing

details.

Let K be a computable field such as the field of rational

numbers and K[x1, . . ., xn] the polynomial ring in n variables

over K. We denote the set of power products in the variables

x1, x2, . . . , xn by [X].

Definition 3: A total order on [X] is called an admissible

term order iff

1) 1 = x0
1 · x0

2 · · ·x0
n < t, ∀t ∈ [X] \ {1}, and

2) s < t ⇒ s · u < t · u, ∀s, t, u ∈ [X].

Let f be a non-zero polynomial in K[x1, . . ., xn] and ≺ be

an admissible term order. We denote

• lpp≺(f) the leading power product of f with respect to

≺.

• lc≺(f) the leading coefficient of f with respect to ≺.

• in≺(f) = lc≺(f) · lpp≺(f) the initial term of f with

respect to ≺.

Definition 4: [Polynomial Reduction] Let f, g, h ∈
K[X], F ⊂ K[X]. We say that g reduces to h with respect

to f denoted by g →f h iff there are power products

s, t ∈ [X] such that s has a non-vanishing coefficient c in g,

s = lpp≺(f) · t, and h = g − c
lc≺(f) · t · f . We say that g

reduces to h with respect to F denoted by g →F h iff there

is f ∈ F such that g →f h.

A power product (or term) u ∈ [X] is said to be a direct divisor

of another power product t 6= u if u divides t but there is no
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power product v such that u divides v and v divides t. In other

words, u has exactly one less variables than t.

Definition 5: Let G be a finite subset of K[X] \ {0}, ≺
be an admissible term order over [X], and I be an ideal in

K[X]. Then G is a Groebner basis of I with respect to ≺ iff

〈G≺〉 = 〈I≺〉. Furthermore, G is called a minimal Groebner

basis iff lpp≺(f) ∤ lpp≺(g), ∀f, g ∈ G, f 6= g. G is called

a reduced Groebner basis iff ∀f, g ∈ G, f 6= g, we cannot

reduce f by g. G is normed iff lc≺(g) = 1, ∀g ∈ G.

The following important theorem is based on [4].

Theorem 1: Let I = 〈F 〉 be an ideal in K[X] and ≺ be

a term order on [X]. The ideal I has a unique finite normed

reduced Groebner basis.

Let G be the unique finite normed reduced Groebner basis of

I with respect to ≺. Every monic monomial m can be reduced

by G to an irreducible polynomial denoted by nf(m). Clearly

(m−nf(m)) ∈ I . We say that a monic monomial m is minimal

reducible iff m is reducible (i.e. m 6= nf(m) and all its direct

divisors are irreducible.

Definition 6: Let f, g ∈ K[X], t = lcm(lpp≺(f), lpp≺(g)).
Then

cp(f, g) = (t− t

lc≺(f) · lpp≺(f)
· f, t− t

lc≺(g) · lpp≺(g)
· g)

is called the critical pair of f and g. The difference of the

elements of the critical pair s-pol(f, g) = t
lc≺(f)·lpp≺(f) · f −

t
lc≺(g)·lpp≺(g) · g is called the S-polynomial of f and g.

Buchberger’s algorithm [4]:

Input a finite subset F ⊂ K[X], a term order ≺.

Output a Groebner basis G of F w.r.t. ≺.

Step-1 G ← F
C ← {{g1, g2} | g1, g2 ∈ G, g1 6= g2}

Step-2 While not all pairs {g1, g2} ∈ C are marked

choose an unmarked pair {g1, g2};

mark {g1, g2};

h ← normal form of s-pol(f, g) w.r.t. G ;

if h 6= 0 then

C ← {{g, h} | g ∈ G};

G ← G ∪ {h};

return G.

Lemma 2: Groebner basis computation is EXP-SPACE in

general [20].

Given an ideal I and an admissible term order ≺, we denote

the reduced Groebner basis of I with respect to ≺ by GB(I,≺
). The following lemma gives us many different ways to check

whether or not a set of polynomials is a Groebner basis.

Lemma 3: Let I be an ideal in K[X], ≺ a term order, F ⊂
K[X], and 〈F 〉 = I. The following statements are equivalent

[31]:

1) F is a Groebner basis of I with respect to ≺ .
2) f is reducible to 0 with respect to F , ∀f ∈ I.
3) f is reducible with respect to F , ∀f ∈ I \ {0}.
4) →F is a Church-Rosser reduction relation.

III. GROEBNER BASES COMPUTATION IS P-SPACE IN

BOOLEAN RINGS

In this section, we define a decision problem for Groebner

bases computation in Boolean rings using linear algebra, and

then prove that the Groebner bases computation is in P-

SPACE. We make use of linear algebra techniques in [20],

where the authors showed that Groebner bases computation is

EXP-SPACE in general. Using the condition x2 ≈ x, for all x
in a Boolean ring K, it is easy to derive a linear degree bound

for polynomials over a Boolean ring as follows.

Proposition 2: The degree of polynomials in a Boolean ring

K[X] is bounded by n, where n is the number of variables.

Even though the degree bound for polynomials in K[X] (and

hence the degree bound for polynomials in a Groebner basis)

is linear in n, which is significantly smaller than the doubly

exponential degree bound of (d2

2 +d)2
n−1

[12] for polynomials

of a Groebner basis in a general setting, a polynomial of degree

n in a Boolean ring may still have 2n monomials. This means

that a Groebner basis computation in that we store intermediate

polynomials may still be EXP-SPACE. Fortunately, one can

use on-the-fly techniques in that only necessary intermediate

results will be recorded to improve the situation.

Let F = {f1, . . . fs} be a set of polynomials in a Boolean

ring K[X], and ≺ be a term order on [X]. Even though we

do not know the reduced Groebner basis of F with respect to

the term order ≺ yet, the existence and uniqueness of such

a Groebner basis are guaranteed in Section II. Therefore, for

every polynomial p there exists a unique normal form of p
with respect to the reduced Groebner basis. Since p →∗

GB(F,≺)

nf(p), p − nf(p) is in I = 〈F 〉 and hence

p − nf(p) =

s
∑

i=1

fi · hi

for some fi in F ind hi in K[X]. In other words, nf(p) is the

smallest monic polynomial with respect to the term order ≺
in the I-coset of p. Alternatively, [15] showed that finding

the normal form of a polynomial can be transformed into

solving a linear algebra system of size 2O(n) × 2O(n) without

knowing the reduced Groebner basis of I with respect to the

term order ≺. If we expand all polynomials (including the

unknown polynomials hi and nf(p)) to sums of monomials:

hi =
∑

x∈[X],deg(x)≤n hi,x · x, fi =
∑

x∈[X],deg(x)≤n fi,x · x
and nf(p) =

∑

x∈[X],deg(x)≤n rx ·x where the hi,x and rx are

unknown coefficients, we have

p =
∑

x∈[X],deg(x)≤n rx · x+
∑s

i=1(
∑

x∈[X],deg(x)≤n fi,x · x)·
(
∑

x∈[X],deg(x)≤n hi,x · x)

=
∑

x∈[X],deg(x)≤n(rx+
∑s

i=1

∑

u,v∈[X],u·v=x fi,u · hi,v) · x
= M.b

(1)

where b =(h1,1, . . . , h1,x, . . . , hs,1, . . . , hs,x, r1, . . . , rx, . . .)T ,

and M is a matrix of Boolean values (i.e. 0 and 1). The rows

of matrix M correspond to terms 1, . . . , x1, . . . , x1 · x2 · · ·xn

and the columns correspond to the unknowns hi,xs and rxs
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for all monomial x from 1 to x1 · x2 · · ·xn. Matrix M is

free of rows and columns with all zeros, and the rows are

rearranged with respect to the order of the monomials. For the

columns, we arrange the columns correspond to hxs before

the columns correspond to rxs. Also, column rx corresponds

to term x will come before column ry corresponds to term

y if x ≺ y. Finding nf(p) can be done using the following

algorithm:

Algorithm [Normal Form]:

Given a set of polynomials F , a term order ≺ and a

polynomial p.

Find the normal form nf(p) of p with respect to I = 〈F 〉
and ≺.

Step 1Build M and b as in Equation 1.

Step 2Find a full row rank sub-matrix

1a. Add the first non-zero row of M into an

empty matrix M+

1b. For row from 2 to the last row of M
If rank(M+ ∪ row) 6= rank(M+),
add row into M+

Step 3Find a full column rank sub-matrix

1a. Add the first non-zero column of M+

into an empty matrix M ′

Add the corresponding element of vector b
into an empty vector b′

1b. For col from 2 to the last column of M+

If rank(M ′ ∪ col) 6= rank(M ′),
add col into M ′

add the corresponding element of vector b
into b′.

Returnthe solution of p = M ′.b′

It is easy to see that Algorithm “Normal Form” always

terminates and returns the normal form of p with respect to

the given ideal I and term order ≺.

Example 1: Let F = {x + x · y, y + x · y} and ≺ be the

lexicographic order on [x, y] where x ≺ y. In this example we

illustrate how the normal form of a polynomial p = y with

respect to I = 〈F 〉 and ≺ can be calculated using Algorithm

“Normal Form”. First, we expand all polynomials (including

the unknown polynomials hi and nf(p)) to sums of monomials:

p = (r1 + rx · x + ry · y + rxy · x · y) + (x + x · y)(b1+
bx · x + by · y + bxy · x · y) + (y + x · y)(c1+
cx · x + cy · y + cxy · x · y

= r1 + (rx + bx + b1) · x + (c1 + ry + cy) · y+
(rxy + b1 + cy + bx + c1) · x · y

The corresponding linear algebra system is y = M · b, where

b = (b1, bx, by, bxy , c1, cx, cy, cxy , r1, rx, ry, rxy)T and

M =

0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0
1 1 0 0 1 0 1 0 0 0 0 1

Notice that the rows of matrix M correspond to terms

1, x, y, x · y and the columns correspond to the unknowns

b1, bx, by, bxy , c1, cx, cy, cxy , r1, rx, ry, rxy . The rank of M

is 4. Following Algorithm “Normal Form”, Column 1, 5, 9

and 10 of matrix M will be added into M ′

M ′ =

0 0 1 0
1 0 0 1
0 1 0 0
1 1 0 0

The solution of the linear algebra system p = M ′ · b′ is

(1, 1, 0, 1)T , where b′ = (b1, c1, r1, rx)T . This means that

nf(p) = 0 + 1 · x = x. Moreover, h1 = 1, h2 = 1, and

nf(p)+f1 ·h1+f2 ·h2 = x+(x+x·y)·1 +(y+x·y)·1 = y = p.

It is easy to double check using Buchberger algorithm that

the reduced Groebner basis of F with respect to ≺ is {x+ y}
and therefore the result from Algorithm “Normal Form” is the

same as when the Groebner basis is used for calculating the

normal form of p.

To analyze the complexity of Algorithm “Normal Form”, we

notice that linear algebra operations can be done using parallel

computation. Following [13] we first formalize the work of

parallel algorithms using a parallel random access machine

consists of a set of processors P0, P1, . . ., an unbounded global

memory, a set of input registers, and a finite program. Each

processor has an accumulator, an unbounded local memory, a

program counter, and a flag indicating whether the processor

is running or not. All memory locations and accumulators

are capable of holding arbitrary non-negative integers. The

program consists of a sequence of possibly labeled instructions

chosen from the following list

Instruction Note

LOAD operand From memory into the accumulator

STORE operand Write to memory

ADD operand Increase the value at operand

SUB operand Decrease the value at operand

JUMP label Change program counter

READ operand From input register into the accumulator

FORK label Start the first inactive processor at label

HALT Stop the processor

Each operand may be a literal, an address or an indirect

address. Each processor may access either global memory

or its local memory, but not the local memory of any other

processor. Initially, the input to the machine is placed in

the input registers, all memory is cleared, the length of the

input is placed in the accumulator of P0, and P0 is started.

At each step in the computation, each running processor

simultaneously executes the instruction given by its program

counter in one unit of time, then advances its counter by one

unless the instruction causes a jump. A FORK label instruction

executed by processor Pi selects the first inactive processor

Pj , clears Pj’s local memory, copies Pi’s accumulator into

Pj’s accumulator and starts Pj running at label. Simultaneous

reads of a location in global memory are allowed, but if

two processors try to write into the same memory location

simultaneously, the parallel machine immediately halts and

rejects the input. Several processors may read a location while
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one processor writes into it; all reads are performed before

the the value of the location is changed. Execution continues

until a HALT is executed by processor P0 or when two

processors attempt to write into the same memory location

simultaneously. The input is accepted only if there is some

computation in which P0 halts with a one in its accumulator;

the time required to accept the input is the minimum over all

such computations of the number of instructions executed by

P0.

Lemma 4: [13] Let L be accepted by a deterministic T (n)
time-bounded parallel random access machine, where n is the

size of input. Then L is accepted by T (n)2 space-bounded

Turing machine.

Proof: We construct a Turing machine that simulates

the work of the parallel random access machine by keeping

track of the contents of P0’s accumulator when it halts and

verifying that no two writes occur simultaneously at the same

memory location. To enumerate the active processors at any

level of the computation tree (see Figure 1), one needs at

most log(2T (n)) = T (n) space to write down a processor

number. Writing down the contents of an accumulator takes

at most T (n) + log n = O(T (n)) space because addition and

subtraction are the only arithmetic operators, and numbers can

increase in length by at most one at each step. Writing down

the level of the computation tree takes log T (n) space, and the

program counter takes only constant space.

P

Level

Level

Level 0

k

T(n)

2T(n)

0

P0

PP
a b

Figure 1. Computation tree

From any node on the tree, there are at most two children

on the next level. Also, on any level of the tree there is only

one P0 node. Since the parallel machine is deterministic, at

any step for each of the running processors there is exactly

one instruction which can be executed. At level k, the Turing

machine checks if P0 executed the ith instruction of its

program, leaving c in its accumulator by recursively checking

the instruction executed by P0 at level k − 1 and the ensuing

contents of its accumulator, and the contents of the memory

location referenced by instruction i. Since we need to go up to

the root of the tree, T (n)·T (n) = O(T 2(n)) memory space are

needed. To verify that two writes do not occur simultaneously

at level k, the Turing machine cycles through all pairs of pos-

sible active processors, check the executed instructions of the

processors, the contents of their accumulators, and the contents

of the memory locations referenced by the instructions. Again,

2 · T (n) · T (n) = O(T 2(n)) memory space are needed.

We now state and analyze the complexity of Algorithm “Nor-

mal Form”. Notice that we do not want to write down the

whole matrix M because by doing so it would require an

exponential amount of memory space. We will show how to

solve the linear algebra system using on-the-fly calculations.

Lemma 5: Algorithm “Normal Form” is in P-SPACE.

Proof: Let s be the number of polynomials in F and

S be the biggest number of monomials in all polynomials

of F . Finding the value of any element in M requires

O(s · S · n) memory space. Furthermore, Csanky [9] has

given parallel algorithms that takes O(log2(2n)) ∼ O(n2)
time and uses O(24n) processors for: (a) inverting an order

2n matrix, (b) solving a system of 2n linear equations in

2n unknowns, (c) computing an order 2n determinant, (d)

finding the characteristic polynomial of an order 2nmatrix.

The bound on the number of processors has been decreased

to O(22.876·n) in [23] and O(22.851·n) in [14]. It is also known

that the rank of a Hermitian matrix is equal to the number of

its nonzero characteristic roots. Hence, if M is a Hermitian

matrix and fM (λ) = det(λ.I−M) = λk +c1.λ
k−1 + · · ·+ck

is its characteristic polynomial, then rank(A) = k − i, where

0 ≤ i ≤ k is the largest integer such that ck−i 6= 0 and

ck−i+1 = ck−i+1 = · · · ck = 0

One can compute the rank of a sub-matrix M ′ of M in

O(n2) time as follows [18]:

1) First, one calculates MT ·M . This takes O(n) time and

uses O(n2) processors.

2) Next, one calculates the coefficients c1, . . . , ck of

the characteristic polynomial of MT M . This takes

O(log2(2n)) ∼ O(n2) time and uses O(24n) proces-

sors. The bound on the number of processors has been

decreased to O(22.851·n) as mentioned before.

3) Finally, one determines the largest integer i such that

ck−i 6= 0 and ck−i+1 = ck−i+1 = · · · ck = 0. This can

be done in O(log 2n) ∼ O(n) time and O(2n) proces-

sors using the fan-in technique. Then rank(M ′) = k− i.

These O(n2) time-bounded parallel algorithms, which uses

O(22.851·n) processors and shares a common memory, can be

converted into a O((n2 · 2.851 · n)2) ∼ O(n6) space-bounded

Turing machine using Lemma 4. Therefore, Algorithm “Nor-

mal Form” is in P-SPACE.

We now define a decision problem for Groebner bases com-

putation in Boolean rings using linear algebra as follows.

Problem 1: [Groebner bases] Given a set of polynomials

F in K[X] and a term order ≺ on [X], does it have 1 in the

set {m − nf(m) : for all minimal reducible monomial m of

degree at most n}?
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We derive an algorithm to solve the decision problem for

Groebner bases computation in Boolean rings using linear

algebra as follows:

Algorithm [GB using Linear Algebra]:

Given a set of polynomials F and a term order ≺.

Find the reduced Groebner basis of I = 〈F 〉 with

respect to ≺.

Step 1Set G′ = ∅; Build matrix M and vector b
as in Equation 1.

Step 2For all monomial m, 1 6≺ m ≺ x1 ·x2 · · ·xn

do

If 1 = m + nf(m) then stop and return {1}
;

Add m+nf(m) into G′ when m is minimal

reducible.

Step 3return G′.

Example 2: Let F = {x + x · y, y + x · y} and ≺
be the lexicographic order on [x, y] where x ≺ y. In this

example we illustrate how the reduced Groebner basis of

I = 〈F 〉 with respect to ≺ can be calculated using Algorithm

“GB using Linear Algebra”. As illustrated in Example 1, the

corresponding linear algebra system is p = M ′ · b′, where

b′ = (b1, c1, r1, rx)T and

M ′ =

0 0 1 0
1 0 0 1
0 1 0 0
1 1 0 0

The solution of the linear algebra system m = M ′ · b′

for monomials m = x and m = y are (0, 0, 0, 1)T and

(1, 1, 0, 1)T , respectively. We do not need to find the normal

form of x · y because one of its divisors, y, is reducible

and hence x · y is not minimal reducible monic monomial.

Therefore, the set of polynomials m + nf(m) for all minimal

reducible monic monomials of degree ≤ 2 is {x + y}. This is

indeed the reduced Groebner basis of I with respect to ≺.

It is easy to see that Algorithm “GB using Linear Alge-

bra” always terminates. The correctness of the algorithm is

guaranteed by the following lemma.

Lemma 6: The set of polynomials m− nf(m) for all mini-

mal reducible monic monomials of degree ≤ n is equal to the

reduced Groebner basis G of I = 〈F 〉 with respect to ≺.

Proof: We denote the set of polynomials m − nf(m) for

all minimal reducible monic monomials of degree ≤ n by G′.

Clearly G′ ⊆ I . All polynomial in G can be written in the form

m − nf(m), where m is the leading term of the polynomial.

Since G is reduced, m must be a minimal reducible monic

monomial of degree ≤ n, and hence G ⊆ G′. That is, for all

f ∈ I , f is reducible by G and hence by G′. Therefore, G′ is

a Groebner basis of I with respect to ≺. It is easy to see that

G′is reduced and monic. Consequently, G′ = G.

Lemma 7: Algorithm “GB using Linear Algebra” is in P-

SPACE.

Proof: Step 2 of the algorithm enumerates all monic

monomials up to degree n. In every pass through the loop,

one needs to check at most
∑n−1

i=1
n!

i!·(n−i)! = 2n − 2 direct

divisors of m and the monomial m itself to see if m is

minimal reducible. In case m is minimal reducible, we output

m−nf(m). According to Lemma 5, this step requires a O(n6)
space-bounded Turing machine. Therefore, the algorithm is in

P-SPACE.

IV. CONCLUSION AND DISCUSSION

Algebraic reasoning such as Groebner basis-based or

Hilbert’s Nullstellensatz-based reasoning, has been used in

propositional proof systems [7, 2]. For an appropriate measure

of proof size, [7] showed that the Groebner basis algorithm

finds a proof of a tautology in time polynomial in the size

of the smallest such proof. Furthermore, the Groebner basis-

based system polynomially simulates Horn clause resolution,

and quasi-polynomially simulates resolution. In other words,

Groebner proofs will have a better than worst-case behavior

on the same classes of inputs than resolution does. On the

other hand, there are simple tautologies that have polynomial-

size Groebner proofs but require exponential-size resolution

proofs. In comparison with Nullstellensatz-based system [2],

[7] showed that there is a family of tautologies that have

degree 3 Groebner refutations, but they require Θ(
√

n) degree

Nullstellensatz refutations, where n is the number of variables.

Thus, there is an exponential separation between the Groebner

basis-based and the Hilbert’s Nullstellensatz-based systems.

Groebner bases considered as a Church-Rosser reduction

relation or a term rewriting system has been used for proposi-

tional satisfiability in [10, 11, 17, 16, 19]. Techniques from

algebraic geometry have also been proposed for symbolic

model checking in lieu of BDDs [1].

However, the obstacles for an effective use of these concepts

for model checking are that

• In model checking, one has to deal with a huge number

(hundred or thousand) of variables .

• Even though we have a polynomial bound for the degree

of Boolean polynomials and we will not encounter the co-

efficient swell problem during the calculation of Groebner

bases in model checking, polynomial reductions may still

be exponential.

• Traditional work in Groebner basis computation is fo-

cused on general polynomials where special care must

be given for the coefficient swell problem.

• All of the current implementations of Buchberger’s al-

gorithm for Groebner basis computation either based

on conventional representation of polynomial or linear

algebra are not efficient enough for model checking.

We showed in this paper that there exists an algorithm for

Groebner basis computation in Boolean rings that is P-SPACE.

With this discovery, the Groebner Bases method is theoreti-

cally as efficient as other methods for automated verification

of hardware and software. However, the algorithm we found
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is far from practical use. We have been working on new data

structures, techniques and algorithms for Groebner basis com-

putation in Boolean rings where specific structures of model

checking problems has been taken into account [30]. A more

practical algorithm for Groebner basis computation in Boolean

rings may help to develop more robust and scalable model

checking methods based on novel and alternative technologies.
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