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 
Abstract—This study focused on the contribution of micro-

mechanical parameters on the macro-mechanical response of short 
fiber composites, namely polypropylene matrix reinforced by glass 
fibers. In the framework of this paper, an attention has been given to 
the glass fibers length, as micromechanical parameter influences the 
overall macroscopic material’s behavior. Three dimensional numerical 
models were developed and analyzed through the concept of a 
Representative Volume Element (RVE). Results of the RVE-based 
approach were compared with analytical Halpin-Tsai’s model. 

 
Keywords—Effective properties, representative volume element, 

short fiber reinforced composites.  

I. INTRODUCTION 

NJECTION molded thermoplastic composite and 
compressed mold thermoset composite have been 

substituting traditional engineering materials in a range of 
structures and applications. This type of composite materials, 
classified as Short Fiber Reinforced Composites (SFRC) is 
mainly the material used for the aforementioned manufacturing 
methods. These materials exhibit numerous advantages as 
environmental resistance, lightweight structures and lower cost. 
As a consequence, the understanding of the capabilities of 
SFRC in structural or semi-structural application is crucial. In 
order to further examine the macro-behavior of SFRC, an 
investigation of the most influenced parameters is needed. As 
reported in [1], the mechanical behavior of SFRC is mainly 
dominated from the physical and geometrical characteristics of 
the matrix and the reinforcement. The main geometrical 
parameters of SFRC are fiber’s length and fiber’s orientation. 
Those parameters will dictate the mechanical behavior of the 
material under loading.  

A range of research has been carried out regarding numerical 
simulations of SFRC. The majority approaches the problem of 
material characterization through an RVE perspective. The 
definition of an RVE varies depending on the approach 
perspective of the researcher. As reported by [2], an RVE is 
considered valid if it is chosen to be sufficiently large in 
comparison with the microstructural size. In other words, the 
ergodic hypothesis [3] implies that the heterogeneous material 

is assumed to be statistically homogeneous for large enough 
volume.  

The influence of fiber’s geometry has been studied by [4] 
regarding the elastic and thermo-elastic properties of SFRC. 
The author studies the contribution of fiber’s length and the 
potential of replacing the fiber’s length distribution with the 
appropriate mono-dispersed fiber’s length. The researcher 
developed three-dimensional models with aligned fibers for 

௙ܸ ൌ 15%	and	30%. In [5], they also analyzed the 
characterization of SFRC through an RVE approach. The size 
of RVE was chosen to be twice the inclusion’s length and the 
volume fraction of the developed realizations was set to ௙ܸ ൌ
35.1%. Microstructure consisted of randomly oriented fibres 
with constant length and aspect ratio =20. 

The size effect and the existence of an RVE on the elastic-
hardening-softening region was studied by [6]. The authors 
developed two dimensional models consisting of circular 
inclusions and interface zone between inclusions and matrix. 
Models were developed for three cases of volume fraction; ܸ ௙ ൌ
30%, 45%, 60%. A gradient damage model was used in order to 
evaluate the material’s behavior on the hardening and softening 
regime. The existence of an RVE was examined through a 
statistical test for each of the three regimes. They underlined the 
lack of RVE existence on the softening regime. 

Various computational aspects for characterizing SFRC are 
discussed by [7] and [8]. They emphasize the importance of 
numerical simulation of SFRC due to the ability of numerical 
models to imitate the microstructure of SFRC. They use a 
modified RSA algorithm to create three dimensional random 
structures. In order to overcome the jamming problem and 
reach higher volume fractions, the authors developed a 
technique to place fibers in hierarchical manner based on the 
value of AR for each fiber. 

Geometrical parameters as fiber’s length and orientation 
were studied by [9]. The author developed two dimensional 
realizations of random, aligned and misaligned fibers. A 
developed algorithm was able to solve a two dimensional 
packing problem with ௙ܸ ൌ 30%. The behaviour of mechanical 
properties of the composite material were discussed as a 
function of fibres orientation and fibres length. 

 
 

 
I. Ioannou is with The University of Sheffield, Department of Mechanical 

Engineering, United Kingdom (phone:  +44 (0) 114 222 7700; fax: +44 (0) 114 
222 7890; e-mail: I.ioannou@Sheffield.ac.uk).  

I. M. Gitman is with The University of Sheffield, Department of Mechanical 
Engineering (e-mail: i.gitman@Sheffield.ac.uk). 

 
 
 

I. Ioannou, I. M. Gitman 

A Numerical Study on Micromechanical Aspects in 
Short Fiber Composites 

I 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:10, No:11, 2016

1406

 

 

 

Fig. 1 (a) The size of inclusions in respect with the size of the matrix (b) the dimensions of the inclusions used during simulation: Double star 
(**) indicate larger sizes 

 
Several analytical models have been developed for 

characterizing SFRC. On the following paragraphs, predictions 
of Halpin-Tsai’s model will be compared with numerical 
simulations. Halpin-Tsai model as reported in [10] is a semi 
empirical model with the ability to consider parameters as 
fibre’s length, AR and degree of inhomogeneity. Predictions of 
Halpin-Tsai models show good agreement with experimental 
results [11]. 

Building on our previous study [9], this study aims to further 
explore the topic for three dimensional models and study the 
analytical and numerical predictions as a function of the degree 
of inhomogeneity. The geometric parameter under investigation 
during the following study is fiber’s length. Through this study, 
an emphasis is given on the microstructure geometric model, 
the computational predictions of SFRC, the representative size 
in respect to the inclusion’s length. 

II. METHODOLOGY 

Through the following section, the general methodology 
used to define the elastic response of SFRC will be described. 
As mentioned above, the generic approach to characterize 
SFRC is based on the concept of a RVE. An RVE can be 
defined as “a sample that firstly is structurally entirely typical 
of the whole mixture on average and secondly, contains a 
sufficient number of inclusions for the apparent overall moduli 
to be effectively independent of the surface values of traction 
and displacement, so long as these values are macroscopically 
uniform” [12]. A detailed determination of an RVE is out of the 
scope of the paper. Further material can be found in [4]. 

A. Models Set-Up 

Before continuing any further on the methodology, it will be 
useful to comment on the normalization of dimensions, used in 
the analysis. Through the following analysis, four types of 
fibers were considered, differing by an aspect ratio: 1, 5, 10 and 
20, see Fig. 1 (a). During the analysis, the minor semi-axes of 
the prolate ellipsoid remained the same for all aspect ratios. As 
a consequence, the lengths of fibers were increasing in order to 

reach higher aspect ratio. Sizes of unit cells were based on the 
larger dimensions of ellipsoids. Thus for the four considered 
cases of different aspect ratios, four larger dimensions were: 
ܴܣ ൌ 1 ⇒ ݈ଵ ൌ ܴܣ,݉ߤ20 ൌ 5 ⇒ ݈ଶ ൌ ,݉ߤ100 ܴܣ ൌ 10 ⇒ ݈ଷ ൌ
,݉ߤ200	 ܴܣ ൌ 20 ⇒ ݈ସ ൌ  see Fig. 1 (b). The aspect ratio ,݉ߤ400
was defined as the ratio between the major semi-axis and the 
minor semi-axis. Properties of the constituent materials can be 
seen in Table I. 

 
TABLE I 

MECHANICAL PROPERTIES OF THE CONSTITUENT MATERIAL. 

Material Properties Glass Fibres Polypropylene 

Young Modulus 70.0 GPa 3.0 GPa 

Poisson Ratio 0.3 0.3 

Volume fraction 0.1 0.9 

 
Mechanical properties under investigation are the Young 

moduli in all the three directions alongside with the Poisson 
ratios. The methodology used to answer the aforementioned 
question is listed as: 
1. Estimate an initial size of a unit cell representing the 

microstructure with initially chosen micro-parameters 
2. Create the microstructure-unit cell geometrically 

representing a SFRC 
3. Within the unit cell, solve the boundary-value problem 
4. Perform homogenization  
5. Perform a statistical analysis to make a decision about 

representativeness of the structure 
6. If step 5 is not satisfied return to step 1.  

The process is repeated until the representative size is 
achieved. Through the following paragraphs the 
aforementioned steps will be further explained. 

B. Creation of the Microstructure  

All microstructures were created in an in-house build 
packing algorithm. The packing algorithm was developed in a 
MATLAB environment and was capable of placing elliptical 
object in space randomly following a uniform distribution. Note 
that, this algorithm is also able to create 3D ellipses with 
random size and random orientation, and place them in a 
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geometrically periodic manner along the borders of the 
container. The developed algorithm was based on a previous 
established methodology for solving 2D packing problem (see 
[9]). A particular challenging aspect in the modification of the 
methodology to the class of 3D problems was the time 
demands, required to create a structure and the capability of the 
algorithm to cater for high volume fraction of fibers. Aspect 
ratios under investigation were bounded between 1 and 20. The 
packing algorithm was created in MATLAB environment and 
the finite element analysis took place in ABAQUS 6.13. The 
geometric link between MATLAB and ABAQUS was 
established through PYTHON scripting. The developed models 
for various aspect ratio can be seen in Fig. 2. Models were 
meshed with (C3D10) 3D stress tetrahedral elements in a 
quadratic geometric order, mainly due to the complexity of the 
meshed volumes. Through the developed models fibers were 
simulated as 3D prolate ellipsoid. The interface between fibers 
and matrix assumed to be perfect with zero thickness as the 
elliptical domain was established as volume partition. The 
developed micro-structure experience geometrical periodicity. 
Geometrical periodicity is understood as the ability of a fiber 
once it exits the bounds of the matrix-volume to re-appear on 
the opposite side-surface. 

 

 

Fig. 2 The developed micro-structures, matrices on the top and 
reinforcement on the bottom. (a) AR=1, (b) AR=5, (c) AR=10, (d) 

AR=20 

C. The Boundary Value Problem 

In order to derive the mechanical properties of the SFRC 
material, the volume under consideration needs to be exposed 
in as average strain ሺߝሻ̅. A set of displacement boundary 
conditions needs to be applied on the volume in order to ensure 
the six components of strain ൫ߝ௜௝൯. The following set of 
equations (1)-(3) describes the applied displacement field on 
the boundary of the RVE.  
 

,ଵܮ௜ሺݑ ,ݕ ሻݖ െ ,ଵܮ௜ሺെݑ ,ݕ ሻݖ ൌ ௜ଵߝଵܮ        (1)    
 

,ݔ௜ሺݑ ,ଶܮ ሻݖ െ ,ݔ௜ሺݑ െܮଶ, ሻݖ ൌ ௜ଶߝଶܮ        (2)   
 

,ݔ௜ሺݑ ,ݕ ଷሻܮ െ ,ݔ௜ሺݑ ,ݕ െܮଷሻ ൌ ௜ଷߝଷܮ 		 			 	 	 	 (3)   
 

where ݑ௜ represents displacement on the ݅ direction applied on 
the ሺݔ, ,ݕ  represents the applied strain on the	௜ଵߝ ,surface	ሻݖ
surface vertical to ‘1st, 2nd and 3rd axis’.  

Three different loading scenarios were considered in this 
paper, corresponding to three different sets of boundary 
conditions. For each loading case, only one strain elements was 
non-zero. As a consequence, the combination of three loading 
cases can provide solutions for the stiffness matrix. With the 
assumption of material’s orthotropic behavior, the necessary 
elements of the stiffness matrix to calculate are reducing to four 
namely ሾܥଵଵ, ,ଶଶܥ ,ଵଶܥ   .ଶଷሿܥ

D. Homogenisation Scheme 

The effective properties of the composite material were 
derived through the homogenization process, see (4), (5): 
 

〈ഥ࣌〉 ൌ
ଵ

௏
׬ ௜௝ܸ݀௏ߪ 〈തࢿ〉				 ൌ

ଵ

௏
׬ ௜௝ܸ݀௏ߝ            (4) 

 
〈ഥ࣌〉 ൌ  (5)                〈തࢿ〉۱

 
where ߪ௜௝ and ߝ௜௝ represent values of stress and strain in every 
integration point of every element, 〈ોഥ〉 and 〈ࢿത〉 are the averaged 
on the unit cell stress and strain. For a homogenized composite 
material the relationship between stress and strain is defined 
through (5).  

E. Statistical Analysis 

The developed models consist of uniaxial aligned randomly 
distributed short fibers. For each out of four aspect ratios, three 
different sizes of unit cells were examined for its 
representativeness. Five statistically different realizations of 
microstructures were created and exposed on the 
aforementioned boundary conditions. The representativeness of 
each size was examined through the chi-square goodness of fit 
test (assuming the accuracy of 97.5%, the chosen five 
realizations resulted in the number of degrees of freedom = 3). 
All geometric aspects have been normalized as shown in Model 
set-up section, and all the quantities included in the chi-square 
test were normalized in order to ensure dimensionless results.  

III. RESULTS AND DISCUSSION 

In order to further examine the representativeness of the sizes 
under investigation, an effective property derived from the 
homogenization scheme need to be considered. Through the 
homogenization process, local measurements of stress and 
strain have been averaged and the effective stiffness matrix as 
expressed in (5), was constructed. With the assumption of an 
orthotropic material we concluded in the expression of Young’s 
modulus, shear modulus and Poisson ratios. Those effective 
macroscopic properties are the values obtained in unit cells that 
passed the chi-square test. As an example, a longitudinal 
effective (ܧଵሻ is presented in Table II with the corresponding 
values of chi-square tests for the four considered cases of aspect 
ratios.  

Analyzing the results presented in Table II and comparing 
them with tests for other effective properties, some conclusions 
can be made: (i) from all the effective properties, (ܧଵ) is the 
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most sensitive on the aspect ratio changes; (ii) as long as the 
aspect ratio increases, the chi-square value of the longitudinal 
effective stiffness (ܧଵ) increases as well; (iii) for spherical 
inclusions, the property with the most variation seems to be 
shear modulus especially for the smallest size under 
examination. In the case of spherical inclusions (AR=1), the 
material shows a quasi-isotropic behavior due to the geometric 
nature of spheres.  

Following the above discussion, the proposed RVE sizes for 
different aspect ratios can be summarized in Table III.  

 
TABLE II 

CHI SQUARE TEST RESULTS 

Unit cell Size AR=1 AR=5 AR=10 AR=20 

2 ∗ ݈ 0.020165693 0.184149768 0.680557178 0.765159996 

3 ∗ ݈ 0.04225132 0.116629802 0.112509139 0.206593198 

߯ଶሺ97.5%ሻ ൌ 0.216 

 
Results of Table III show that, for the small aspect ratio 

(AR=1, 5), the representative size is twice the length of the 
inclusion while for the larger aspect ratio (AR=10, 20) the 
representative size is triple the length of the inclusion. Results 
are in a very good agreement with results presented from [13] 
and [14]. 

 
TABLE III 

REPRESENTATIVE SIZES ACCORDING TO CHI SQUARE TEST 

 Representative Size 

AR=1 2݈ 
AR=5 2݈ 
AR=10 3݈ 
AR=20 3݈ 

A. Analytical Models 

In order to compare numerical results, an analytical model 
was considered, namely Halpin-Tsai model. Halpin-Tsai 
equations were considered in order to account for fiber’s 
discontinuity. Parameters of Halpin-Tsai are given through (6), 
(7): 
 

௜ܧ ൌ ൤
ଵାక೔ఎ೔௏೑
ଵିఎ೔௏೑

൨							ߟ௜ ൌ
൬
ா೑

ா೘
൘ ൰ିଵ

൬
ா೑

ா೘
൘ ൰ାక೔

             (6) 

 

ଵߦ ൌ
ଶ௟

஽
ଶߦ							 ൌ ீߦ						2 ൌ 1                 (7) 

 
where ܧ௜ are the values of stiffness in three directions (݅ ൌ 1,3തതതതሻ; 
 ௜ is a model parameter depending on the degree ofߟ
inhomogeneity and the geometrical parameters	ߦ௜, which takes 
different value according to the property under investigation; 
݈	and ܦ are the length and the diameter of the fibers.  

B. Computational Model Results 

Bringing together all representative numerical results, i.e. 
effective properties obtained on the representative unit cells 
(RVE) alongside with the results obtained through analytical 
Halpin-Tsai model, some conclusions can be made (see Fig. 3): 
stiffness linearly increases with respect to the increase of the 
aspect ratio. In the same time, transverse stiffness remains 

almost unaffected by the aspect ratio increase. The same trend 
was observed for shear modulus. Halpin-Tsai model and 
numerical simulations seems to have very close predictions (see 
Fig. 3). 
 

 

Fig. 3. Comparison between numerical results and analytical 
predictions 

IV. CONCLUSIONS 

In this study, a three dimensional micro-structure of SFRC 
was created and analyzed through FE method. The developed 
microstructures consist of aligned discontinuous fibers with 
aspect ratio between 1 and 20. Effective mechanical properties 
were derived for the developed microstructures through the 
homogenization scheme, and compared with analytical 
predictions. The representativeness of the size was tested 
through a chi-square goodness of fit test and found to have a 
linear relation with aspect ratio. Results show that 3D models 
were fully capable of capturing the dependence of effective 
stiffness from the aspect ratio of glass fibers and also the 
independency of aspect ratio on ܧଶ	and	ܩଵଶ. Challenges faced 
during the 3D analysis, such as packing issues, time and 
computation expenses were discussed. Overall, the presented 
3D numerical algorithm is a good reliable tool to analyze 
materials behavior of complex 3D composite microstructures 
because it can fully record the mechanism that take place during 
a loading condition of a composite material. Furthermore, three 
dimensional representations can provide a better understanding 
on the interaction between fiber’s stress fields within the 
composite. Future work include implementation of fiber length 
distribution, fiber orientation distribution and interphase zone 
between fiber and matrix. 
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