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Abstract—This paper presents a numerical approach for the static 

and dynamic analysis of hydrodynamic radial journal bearings. In the 
first part, the effect of shaft and housing deformability on pressure 
distribution within oil film is investigated. An iterative algorithm that 
couples Reynolds equation with a plane finite elements (FE) 
structural model is solved. Viscosity-to-pressure dependency (Vogel-
Barus equation) is also included. The deformed lubrication gap and 
the overall stress state are obtained. Numerical results are presented 
with reference to a typical journal bearing configuration at two 
different inlet oil temperatures. Obtained results show the great 
influence of bearing components structural deformation on oil 
pressure distribution, compared with results for ideally rigid 
components. In the second part, a numerical approach based on 
perturbation method is used to compute stiffness and damping 
matrices, which characterize the journal bearing dynamic behavior. 
 

Keywords—Journal bearing, finite elements, deformation, 
dynamic analysis 

I. INTRODUCTION 

OURNAL bearings are machine elements in which the 
applied force is entirely supported by an oil film pressure. 

They are used in many different engineering applications, for 
example as supports of rotating shafts. They are considered 
superior to roll-bearings because of their higher load-bearing 
capacity, higher operating angular speed, lower cost and easier 
manufacturing. Furthermore, a proper design can assure very 
large service lives. The early studies on the fluid-dynamic 
behavior of journal bearings based on the numerical solution 
of Reynolds equation date back to the fifties, thanks to the 
work of Raimondi and Boyd (R&B) [1], [2]. They summarized 
results in useful dimensionless charts ready for design, which 
are nowadays accepted also in code standards [3]. 

Raimondi and Boyd analysis is based on some simplifying 
assumptions, as the hypothesis of constant viscosity of oil film, 
independency of viscosity on pressure and finally the 
postulation of perfectly rigid components (shaft and bushing). 
Such assumptions, however, can be somewhat oversimplified, 
considering for example that deformation of journal bearing 
components under imposed oil film pressure is expected to 
produce a change in lubrication gap and thus a modification in 
the resultant pressure distribution. Moreover, also the 
assumption of constant viscosity and its independence from 
pressure should be critically reviewed, as it is experimentally 
known how viscosity depends, other than temperature, also on 
pressure, as summarized by many constitutive models [4]. 
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It would be then of interest to investigate in more detail the 

correlation existing between all the above-mentioned aspects 
and journal bearing performance and design.  

In light of the above considerations, the present paper aims 
to present a general numerical approach to study the static and 
dynamic behavior of hydrodynamic radial journal bearings, by 
including in the analysis the effect of the aforementioned 
aspects.   

In the first part, attention will focus on computation of 
pressure distribution as a function of temperature variation 
within lubrication gap, viscosity-to-pressure sensitivity 
(according to the Vogel-Barus constitutive model [4]) and 
components flexibility. An iterative algorithm using a finite 
difference scheme will be developed to solve the Reynolds 
equation, based on the deformed lubrication gap calculated by 
a coupled structural finite elements (FE) analysis. The 
numerical approach will compute the pressure distribution and 
the local stress field including shaft and bushing structural 
deformation. Results will clearly emphasize the strong 
influence of component flexibility on journal bearing 
performance, with a significant reduction of peak pressure 
caused by components deformation. 

In the second part of the paper, the dynamic behavior of 
journal bearing will be also investigated. A numerical 
procedure implementing the so-called "perturbation approach" 
will be developed to compute the stiffness and damping 
matrices characterizing the dynamic behavior of hydrodynamic 
journal bearings. Numerical examples considering a typical 
journal bearing configuration will be presented.  

II.  JOURNAL BEARINGS: BASIC CONCEPTS 

A typical configuration of radial journal bearing under a 
vertical load (see Fig. 1) consists on a shaft rotating inside a 
fixed support (choke), where it is usually fitted a bush. The 
nominal radial clearance between shaft (diameter d=2r) and 
choke (diameter D=2R) is c=R-r. 

The steady-state response of a journal bearing is governed 
by the fundamental equation of lubrication theory (Reynolds 
equation) [5] 
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where ( ) θθ cosech −=  is the oil film thickness as a function 

of angular coordinate θ, symbol e is the eccentricity, U=ω r is 
the tangential velocity of shaft, ω is its angular velocity, p(θ) is 
the resultant oil pressure distribution, µ is the oil dynamic 
viscosity. The numerical solution of Reynolds equation gives 
the pressure distribution p(θ) within the lubrication gap and the 
system operating parameters (eccentricity, minimum 
lubrication gap, force resultant components, etc.). 
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Fig. 1 Sketch of a hydrodynamic journal bearing 

 

Due to the relative velocity between shaft and support, the 
oil generates a pressure p(θ) over the attitude angle β, where 
pmax is the peak pressure that occurs at angle θpmax. The system 
moves in a new equilibrium configuration, where the 
eccentricity e characterizes the position of shaft axis with 
respect to the fixed support axis, along direction defined by 
angle θh0 (which also identifies the direction of minimum oil 
thickness h0). 

Several design charts are available in literature [1], [2] 
which provide journal bearing operation parameters as a 
function of Sommerfeld number S=(r/c)2 (µN/pm), defined in 
terms of shaft radius r and rotational speed N, while 
pm=F/(LD) is the average (specific) pressure defined as the 
ratio of the applied radial force F and the nominal projected 
area (L is the length of journal bearing). Such charts were 
determined by R&B through numerical solution of Reynolds 
equation under the hypothesis of constant temperature (and 
thus viscosity) of lubrication film and also under the 
assumption of perfectly rigid components (shaft and support). 

An improvement of the analysis can be obtained by 
including in Reynolds equation a more sophisticated 
constitutive model for the viscosity. For example, a coupled 
temperature-pressure dependency can be summarized by the 
experimentally determined Vogel-Barus equation µ=µ0 exp(α 
p), in which µ0 is a pressure-independent viscosity term (only 
function of temperature) and α is a sensitive parameter related 
to oil film pressure (typical values are α=0.01÷0.02 MPa-1). In 
accordance to this constitutive model, an increase in dynamic 

viscosity occurs for high pressures, with a solid-like behavior 
for very high pressures.  

This effect, well-known in elasto-hydrodynamic studies (e.g. 
lubricated contacts), has not been actually investigated in the 
field of journal bearings. 

A further improvement in journal bearing analysis can be 
obtained by including in the solution of Reynolds equation the 
deformed shape of lubrication gap caused by deformation of 
shaft and support under imposed oil pressure p(θ). 

 
TABLE I 

GEOMETRICAL DIMENSIONS USED IN NUMERICAL SIMULATIONS  

d 
mm 

D 
mm 

L 
mm 

F 
kN 

N 
rpm 

pm 

MPa 

500 500.5 300 3600 65 24 

 
This paper will present a general numerical approach to 

compute the pressure distribution by also including the above 
mentioned effects. A typical journal bearing configuration (see 
Table I), operating at two different inlet oil temperatures 
(Tin=40 and 70 °C), will be investigated. A viscosity-
temperature curve typical of an oil ISO VG 680 will be used in 
all simulations [4]. 

III.  STEADY-STATE ANALYSIS 

In numerical simulations a plane model for the journal 
bearing is adopted. In the first part of this paper the hypotheses 
used are rigid components and viscosity function of both 
temperature and pressure according to the Vogel-Barus model. 
In the second part, pressure effect will not be considered, 
while shaft and support deformation will be included into the 
analysis. 

A. Temperature and Pressure Effect (Rigid Components) 

Reynolds equation (1) is solved by using the finite 
difference method based on central difference scheme. The 
unknown function in (1) is the pressure p(θ) that, upon 
integration, gives the resultant applied load F, which is a given 
input. 

It is worth noting that the problem is actually not linear for 
several reasons. Although the pressure p(θ) is the unknown 
function, equation (1) does not explicitly depends on load F 
(i.e. the resultant of pressure), but on eccentricity through the 
lubrication gap h(θ)=c−ecos(θ). Several iterations (Newton-
Raphson method was used) are then required to first impose 
the input force F (as resultant of pressure) and to find the 
appropriate pressure distribution p(θ) that solves (1).  

 
TABLE II 

OVERALL COMPARISON OF RESULTS FROM NUMERICAL SIMULATIONS FOR RIGID COMPONENTS 

Configurations 
Tin 

°C 
Tm 

°C 
Tout 

°C 
µ 

Pa⋅s 
S 

- 
e 

mm 
pmax 

MPa 
θpmax 

deg 
h0 

mm 
θh0 

deg 

JB1 

R&B (L/D~∞, 2D analysis) 
↑ 

40 
↓ 

↑ 

60 
↓ 

↑ 

80 
↓ 

↑ 

0.1678 
↓ 

↑ 

0.00786 
↓ 

0.2352 87.30 15.50 0.0148 - 
Tm cost. α = 0 0.2335 82.26 15.62 0.0165 26.29 
Tm cost. α = 0.01 0.2286 83.74 15.03 0.0214 27.03 
Tin-Tout lin. α = 0 Not 

defined 
Not 

defined 
0.2392 83.17 22.82 0.0108 32.15 

Tin-Tout lin. α = 0.01 0.2350 80.18 22.43 0.0150 33.76 
             

JB2 R&B (L/D~∞, 2D analysis) ↑ ↑ ↑ ↑ ↑ 0.2447 205.50 6.60 0.0053 - 
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Tm cost. α = 0 70 
↓ 

80 
↓ 

90 
↓ 

0.0655 
↓ 

0.00298 
↓ 

0.2440 136.92 10.27 0.0060 16.27 
Tm cost. α = 0.01 0.2412 149.54 9.34 0.0088 16.67 
Tin-Tout lin. α = 0 Not 

defined 
Not 

defined 
0.2453 151.08 10.85 0.0047 16.18 

Tin-Tout lin. α = 0.01 0.2431 173.29 9.80 0.0069 16.47 

 
Secondly, the force-eccentricity relationship F-e is highly 

non-linear, especially for eccentricity values e approaching the 
nominal radial clearance c. Another source of non-linearity is 
that negative pressure values must be set to zero during the 
iterative process. 

To evaluate the effect of temperature on viscosity, and 
consequently on pressure distribution, the journal bearing 
configuration in Table I was studied at two operating 
conditions (JB1, JB2) characterized by two different inlet 
temperatures (Tin=40, 70 °C). Two hypotheses are then 
adopted to compute the pressure-independent viscosity term µ0 
as a function of oil temperature: in the first, using an average 
constant oil temperature Tm resulting by a thermal balance 
inside the oil film (as in R&B approach), in the second using, 
as a first approximation, a linear temperature variation from 
inlet value Tin to the outlet value Tout (that has been calculated 
by previous thermal balance). Note that in both cases the same 
average oil film temperature Tm is obtained. 

For both temperature distributions within lubrication gap 
(constant Tm, linear Tin-Tout), the Vogel-Barus equation has 
been implemented with two different cases (α=0 and α=0.01). 

Table II shows an overall comparison of obtained results, 
while Fig. 2 and Fig. 3 compare the pressure distribution under 
an imposed vertical load, with a linear temperature variation 
within oil film and assuming different pressure sensitivity 
values for viscosity. 

The effect of temperature variation of oil film is first 
analyzed. Referring to JB1 configuration in Table I, a 
negligible difference is observed between the case of constant 
and linearly varying temperature, for both α=0 and α=0.01 
values. Instead, larger differences (with a 10-12% increase of 
pmax value) are observed for JB2 configuration, considering 
both α=0 and α=0.01 values.  

This emphasizes how the variation of oil film temperature 
could have some effect on pressure distribution, at least for 
high temperature values. Considering the viscosity-temperature 
strong correlation, this seems to confirm that pressure 
distribution is more sensitive to a change of small (rather than 
high) viscosity values within lubrication gap. In any case, the 
constant temperature assumption used in R&B calculations 
seems too simplified. 

Numerical solutions for constant Tm and α=0 were also 
compared with results given by R&B charts, showing a good 
agreement only for JB1 configuration, while some difference 
characterizes JB2 configuration. The observed discrepancy can 
be attributed to the very low Sommerfeld number (S=0.00298) 
characterizing JB2 configuration, which makes difficult using 
R&B design charts and thus can be source of interpolation 
errors. 
 
 

     
Fig. 2 Results for JB1 configuration (linear temperature variation, 

Tin= 40°C – Tout=80 °C), with α=0 (left) and α=0.01 (right) 
 
 

    
Fig. 3 Results for JB2 configuration (linear temperature variation, 

Tin= 70°C – Tout=90 °C), with α=0 (left) and α=0.01 (right) 
 

In general, a non-zero viscosity-to-pressure sensitivity 
(α=0.01) determines a variation in the overall pressure 
distribution (change of attitude angle β) and in its maximum 
value pmax, depending on the general pressure levels attained. 
Limiting the attention to the case with Tin-Tout linear 
temperature variation, for peak pressures pmax<100 MPa (case 
JB1), the pressure effect is actually negligible, as shown in 
Fig. 2, with only a small decrease of the maximum pressure of 
about 3.5%. For larger pressure levels (case JB2), an 
increment of pmax of about 12% is observed, see Fig. 3. The 
minimum oil thickness increment (h0=c-e) produced by the 
pressure effect is relevant in both cases, with a variation 
respectively of 28% and 32%. 

The obtained results can be summarized by saying that, if 
the influence of pressure on viscosity is taken into 
consideration, when α increases the peak pressure pmax 
increases, while the eccentricity e decreases. However, the 
pressure-to-viscosity effect is smaller compared to temperature 
influence, at least for the maximum pressure peaks 
encountered in the examples studied. Accordingly, pressure 
dependence will be intentionally neglected in the rest of this 
paper. 
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B. Effect of Component Deformation (with α=0, T Linear) 

In the second part of this work, the pressure distribution will 
be calculated by considering the real geometry of lubrication 
gap resulting from component deformation. Pressure values 
calculated by solving the Reynolds equation (1) are used, as 
input mechanical loads in a FE model, to compute the 
geometry of lubrication gap after deformation, which is next 
used to solve again equation (1) with an iterative analysis 
scheme. 

 

   
Fig. 4 Finite element model of shaft (left) and support (right) 

 
A fluid-structural coupled numerical procedure was 

developed in Matlab environment. The first analysis step is the 
calculation of pressure distribution p(θ) and eccentricity e for 
the case of not deformable components, by solving Reynolds 
equation (1). The obtained pressure distribution is next applied 
as input mechanical load in a plane structural FE model, which 
gives the relative radial displacements between shaft and 
support after deformation, and the resulting gap deformation 
g(θ). A new oil film geometry h'(θ)=c-ecos(θ)+g(θ) that 
incorporates mechanical deformation (thus it differs from the 
case of perfectly rigid components) can be thus calculated. At 
second iteration step this updated gap geometry h'(θ) is entered 
in (1) to get a new pressure distribution p'(θ) that balances the 
input force F. This iterative procedure is repeated until 
convergence is achieved with respect to an imposed threshold 
tolerance on the imposed force.  

The plane FE models of both shaft and support used in the 
analysis are shown in Fig. 4. The shaft is modeled by a 
mapped mesh with 4-nodes isoparametric linear elements, 
while the choke is free meshed using 3-nodes CST triangular 
elements. 

Shaft and choke are loaded by the same oil pressure 
distribution p(θ) applied on the outer and inner surfaces, 
respectively. Analysis assumes small displacements and a 
plane strain condition. Material has linear elastic behavior, 
with properties typical of a structural steel.  

It is worth noting that the use of a plane FE model for the 
structural analysis of a journal bearing requires a special 
attention in modeling mechanical constraints. In fact, in a real 
journal bearing the applied load F and the resulting pressure 
distribution are actually applied along different longitudinal 
locations along the shaft axis. Instead, in the plane FE model 
here adopted the external load F that balances the oil pressure 
is replaced by an appropriate constrain on shaft geometry.  

For this purpose, the shaft has been modeled with a central 
hole and all nodes on the inner circumference have imposed 
zero radial displacements; the choke, instead, has all the 
external edges constrained. This modeling strategy, however, 
affects the shaft structural stiffness: a large inner radius 
determines an anomalous increment of shaft stiffness, while a 
very small inner hole gives rise to very large deformations and 
abnormally high reaction forces at constrained nodes. A proper 
sensitivity analysis has been preliminary carried out, in order 
to find the optimal radius of inner hole. 

 

   
Fig. 5 Pressure distribution for JB1 configuration (α=0, Tin= 40°C – 
Tout=80 °C) with deformable components (left). Lubrication gap for 

rigid and deformable components (right) 
 

The coupled numerical approach was applied to study the 
JB1 configuration (with α=0 and linear temperature variation 
in Tin=40°C−Tout=80°C). Fig. 5 (left) shows the result for the 
case of deformable components. The comparison with the case 
of rigid components in Fig. 2 (left) clearly emphasizes how 
component deformation determines a reduction of about 48% 
(from 83 MPa to 43 MPa) of the maximum peak pressure and, 
accordingly, an increase in the attitude angle β (under the same 
applied resultant force F). The pressure profile, more uniform 
than the case of rigid components (R&B solution), seems to 
support the idea of using the average pressure pm as a 
structural design parameter, as suggested in some design codes 
[3]. 

Fig. 5 (right) also compares the geometry of lubrication gap 
for the case of deformable and rigid components (angles are 
referred to the position of minimum oil gap θh0). It is observed 
that for deformable components the gap is not symmetric and 
that eccentricity can assume values greater than the nominal 
clearance, as deformation can increase the gap between shaft 
and support. 

 
Fig. 6 Von Mises stress distribution in support (MPa units) 
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For what concerns the calculated mechanical stresses, Fig. 6 
show the von Mises stress distribution in the support (choke). 
The inner surface of support undergoes to stress state that is 
approximately equibiaxial, where the maximum hoop and 
radial stresses are comparable to the maximum applied 
pressure (σθ≈σr=pmax=43 MPa), while the axial stress under 
plane strain is σz=ν(σθ+σr) where ν is the Poisson ratio. 
Compared to the case of perfectly rigid components, this 
explains the relatively small value (~35 MPa) of von Mises 
stress calculated in the choke, which is actually comparable 
with static strength properties of materials usually employed in 
the bush (for instance, white metal generally used as internal 
coating has a yield stress of about 50 MPa [6]). 

IV. DYNAMIC ANALYSIS 

The dynamic behavior of rotating shaft supported by journal 
bearings is strongly influenced by the hydrodynamic forces 
produced in lubricant film that oppose to shaft movement. 
Determination of rotor dynamics then requires full 
characterization of the dynamic response of bearing lubricant 
film, which is a non-linear function of position and velocity of 
journal center. 

In the dynamic analysis of a rotor-bearing configuration, a 
simple spring-dashpot model is usually adopted to account for 
journal bearing contribution [5], [7]. With small displacements 
increments (δx,δy) and small velocities increments ),( yx && δδ  in 

the vicinity of the journal bearing static equilibrium position, a 
linearized relationship, between the incremental oil-film forces 
δFi and journal displacements and velocities increments that 
cause them, can be written as [5], [7] 
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where )( jiij xFk δδ=  and )( jiij xFc &δδ=  are the linear 

stiffness and  damping coefficients, respectively. 
A classical "perturbation method" is followed to compute 

the increase in oil film forces resulting from a departure 
(perturbation) from the static equilibrium position. A journal 
bearing configuration, characterized by given displacement 

),( vu  and velocities ),( vu &&  of journal centre, is first assigned. 

The reference pressure distribution p(θ) and oil film forces Fx 
and Fy are then calculated by Eq. (3), the Reynolds equation in 
dynamic regime  
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which explicitly depends also on the time derivative of 
lubrication gap θθθ sincos)( vuh &&& −−= . Independent 

displacement and velocity perturbations are next applied and 
the corresponding force increments calculated. Solution of (3) 
gives the increased pressure distribution (say p+δp), and 

therefore the increased resultant of oil film forces Fx+δFx and 
Fy+δFy, with respect to the reference equilibrium position, for 
shaft displacement and velocity increments ),,,( yxyx && δδδδ . 

Thus stiffness and damping coefficients can be thus 
determined, as for example: 
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To include also the contribution of the structure deformation 

into stiffness and damping matrices, in the above expression 
the displacement increments are substituted by δuo and dvo, 
total displacement increments of the bearing center. Absolute 
displacements uo and vo of the bearing center and their 
increments δuo and dvo are found as explained in Section III 
point B. A similar approach is used to determine damping 
matrix. 

Stiffness [k] and damping [c] matrices characterize the 
dynamic behavior of journal bearing and they enter into the 
dynamic equilibrium equations of the shaft. It is worth noting 
that, due to the non-linear nature of the Reynolds equation (3), 
both matrices explicitly depend on the assigned journal 
bearing displacement ),( vu  and velocities ),( vu && , that is they 

have to be interpreted as tangent matrices. Therefore, a 
transient dynamic analysis of a rotor supported by journal 
bearings is non-linear and [k], [c] matrices must be calculated 
at every time integration step. In addition, [k] and [c] are in 
general not symmetric. 

    
 

Fig. 7 Pressure distribution calculated for u=0, 0=u& , v=0.23 mm 
and 0=v&  (left) and mm/s5.0=v&  (right) 
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Fig. 8 Stiffness coefficients (units N/mm/mm) for JB1 

configuration versus eccentricity (for u=0, 0=u& , 0=v& ) 

 
A numerical algorithm has been specifically developed to 

compute stiffness and damping matrices by the perturbation 
method previously described. The procedure has been applied 
to characterize different journal bearing configurations. 

An example of calculated pressure distribution for JB1 
configuration for two different velocities, 0=v&  and 

mm/s5.0=v& , is shown in Fig. 7. The calculated stiffness and 

damping coefficients are reported in Fig. 8 and Fig. 9:  a high 
non-linear dependence on the eccentricity e is observed. 

V. CONCLUSIONS 

The present papers developed a numerical procedure for the 
steady state and dynamic analysis of hydrodynamic radial 
journal bearing. Influence of temperature and pressure on 
viscosity and thus on resultant pressure distribution were 
studied. A mechanical plane finite element model, coupled 
with solution of Reynolds equation, was also developed to 
study journal bearing structural behavior and its influence on 
pressure distribution. Finally, a perturbation approach was 
implemented to evaluate stiffness and damping coefficients. 

 
 

 
Fig. 9 Damping coefficients (units Ns/mm/mm) for JB1 

configuration versus eccentricity (for u=0, 0=u& , 0=v& ) 

 
The main findings of the work can be summarized as 

follows: 
- temperature increase was shown to give a decrease of 

attitude angle β and an increase in pressure peak; 
- an increase of viscosity-to-pressure sensitivity (α value) 

gives a general increase of peak pressure, at least for 
pressure peaks greater than about 100 MPa; 

- temperature effect was shown to be generally greater than 
pressure effect; 

- component deformation gives a more uniform pressure 
distribution, with a reduced peak pressure compared to the 
case of ideally rigid components; 

- stiffness and damping coefficient were calculated and a 
high non-linear trend with journal bearing eccentricity e 
was observed.  
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