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A Novel SVM-Based OOK Detector in Low
SNR Infrared Channels

J. P. Dubois, and O. M. Abdul-Latif

Abstract—Support Vector Machine (SVM) is a recent class of
statistical classification and regression techniques playing an
increasing role in applications to detection problems in various
engineering problems, notably in statistical signal processing, pattern
recognition, image analysis, and communication systems. In this
paper, SVM is applied to an infrared (IR) binary communication
system with different types of channel models including Ricean
multipath fading and partially developed scattering channel with
additive white Gaussian noise (AWGN) at the receiver. The structure
and performance of SVM in terms of the bit error rate (BER) metric
is derived and simulated for these channel stochastic models and the
computational complexity of the implementation, in terms of average
computational time per bit, is also presented. The performance of
SVM is then compared to classical binary signal maximum
likelihood detection using a matched filter driven by On-Off keying
(OOK) modulation. We found that the performance of SVM is
superior to that of the traditional optimal detection schemes used in
statistical communication, especially for very low signal-to-noise
ratio (SNR) ranges. For large SNR, the performance of the SVM is
similar to that of the classical detectors. The implication of these
results is that SVM can prove very beneficial to IR communication
systems that notoriously suffer from low SNR at the cost of increased
computational complexity.

Keywords—Least Square-Support Vector Machine, On-Off
Keying, Matched Filter, Maximum Likelihood Detector, Wireless
Infrared Communication.

I. INTRODUCTION

VM is based on the statistical learning theory initially

developed by Vapnik [1] in 1979 and later developed to a
more complex concept of structural risk minimization (SRM).
SVM is formulated on the structural risk minimization (SRM)
principle which minimizes an upper bound on the
generalization error, as opposed to the classical empirical risk
minimization (ERM) approach which minimizes the error on
the training data and is embodied in statistical learning. The
quality and complexity of the SVM solution does not depend
directly on the dimensionality of the input space.

The SVM theory starts from simple ideas on linear
separable classes, then progresses into studying the case of
linear non-separable classes. The separation of classes using
linear separation functions is extended to the nonlinear case.
The derivation of SVM is based on constructing an optimal
separating hyperplane after nonlinearly mapping the input
space into a high-dimensional feature space via simple kernel
representations using linear separation functions. The
classification problem is solved in the higher dimension space
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by constructing a linear classifier with maximum margin. We
note that the dimension of the higher space is not needed and
the explicit construction of this mapping function is avoided
by the application of Mercer’s condition [2]. Kernels that
satisfy this condition and can be employed for SVM’s are
polynomials, splines, radial basis functions, and multilayer
perceptrons with one hidden layer. For classification problems
the parameters which are related to these kernel functions are
chosen so as to minimize an upper bound on the Vapnik—
Chervonenkis (VC) dimension of the SVM [2]. The training
of SVM’s with Vapnik’s epsilon insensitive loss function is
done by quadratic programming.

Only a sparse set of support vectors (SVs) determine the
SVM classifier, and these SVs are automatically chosen from
the training data during the learning process.

Support vector machines have been widely used in solving
classification and function estimation problems due to its
many attractive features and promising empirical performance
with many successful applications in synthetic aperture radar
image classification and pattern recognition [3]. Recently,
SVM has been introduced to digital communication systems
as a new method for channel equalization [4] — [6] and has
proved to be very effective in overcoming intersymbol
interference (ISI) and co-channel interference (CCI). SVM
was also applied for the equalization of burst time division
multiple access (TDMA) transmission [7]. To the best of our
knowledge, SVM has not been implemented yet for receiver
detection in digital communication systems in the presence of
multiplicative partially fading channel noise and additive
receiver noise. A notable exception is the initial work of
Mokbel and Hashem [8] who applied SVM to a bipolar non-
return to zero (BNRZ) digital communication detector based
on a cascade of sampler and comparator using multiple
samples per binary period (termed dimension) in the presence
of additive white Gaussian noise in wire-line communication
systems. Their work showed that the SVM-based detector
outperformed the classical detector for low SNR and that the
SVM performance improved (with a law-of diminishing
return taking place) as the dimension increased with no
practical improvement noticed after 10 samples per bit. The
authors in [8] did not conduct further research to study SVM
in wireless multipath fading channels.

II. BINARY WIRELESS INFRARED COMMUNICATION

Wireless infrared communications refers to the use of free-
space propagation of light waves in the near infrared band as a
transmission medium for telecommunication applications. IR
radiation (nondirected) has been shown to be a viable
alternative to radio transmission for indoor wireless
communication but it requires a high average power efficiency
[9]. On-Off Keying is the simplest modulation techniques
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implemented in the physical link of general binary systems.
Beside its simplicity, OOK is characterized by the ease of its
clock recovery.

Another popular modulation technique for IR
communication is L-pulse-position modulation (L-PPM). PPM
is an effective modulation scheme for nondirected IR because
of its high average power efficiency, which increases with an
increase in L. However, the drawback of L-PPM is its poor
bandwidth efficiency. As a result, L-PPM suffers from severe
ISI in high speed indoor IR systems (> 10 Mbps) caused by
the multipath fading channel’s scatterers. OOK, on the other
hand, does not suffer severely from ISI. For this reason, in
addition to its simplicity, OOK is chosen as the modulation
technique of the IR communication system analysed in this
work.

Considering the receiver side of an OOK modulated signal,
and assuming a distortionless channel, the ideal maximum
likelihood (ML) detector is composed of a filter matched to
the transmitted pulse shape, and a threshold detector equal to
half the amplitude of a "high" pulse. The theoretical power
requirements of unequalized OOK links computed on
multipath channels including non-directed line-of-sight and
diffuse configurations, with and without shadowing [10],
show that the optical power requirement depends essentially
on the normalized delay spread (the delay spread normalized
to the it duration). Also it shows that for links operating at 100
Mbps unequalized, OOK faces a very large power drop and
encounters an irreducible BER, which implies that
unequalized OOK reception on multipath channels is not
feasible. This triggers the need for a detector other than
classical model-based ones.

III. SUPPORT VECTOR MACHINE

Since the idea of SVM emanates from determining an
optimal hyperplane for separating two classes with maximum
margin, it is logically very relevant to binary detection in
communication systems.

In this section, we provide a succinct introduction to the
SVM approach. The reader is referred to the initial work of
Vapnik [1] and the tutorial paper of Burges [2] for more in-
depth treatment of the SVM theory and the concepts of VC
dimension and the structural risk minimization. These
references also study the use of linear functions to classify
data in both cases of separable data and non-separable data. A
thorough coverage of the generalization to non-linear cases
through the mapping to a higher-dimension space is also
presented in these references in addition to the kernel mapping
techniques.

Many reasons could be stated for preferring Least Square—
Support Vector Machine (LS-SVM) over other methods and
models of SVM, yet the most important reason is that LS-
SVM is an iterative method that could be used to solve large
scale problems with robustness in the sense of the choice of
the regularization and smoothing parameters [11].

Moreover, in many real life applications it offers a fast
method for obtaining classifiers with good generalization
performance [12]. SVM is equipped with this intriguing
potential to generalize mainly because its formulation

embodies SRM as opposed to the ERM approach commonly
employed in statistical learning.

Given a training set of N data points {y, xk)N, where x;
denotes the & input pattern and y, the k™ output pattern, the
support vector method approach aims at constructing a
classifier of the form [13]:

f(x) = sign [w" p(x) +b]

N
= sign |:ZakykK(xvxk) +b:l ey

k=1

where ¢(.) is a set of mapping functions that transform the
input patterns into a high dimensional feature space termed the
reproducing kernel Hilbert space (RKHS), w is the weight
vector in the RKHS, a; are support values (Lagrangian
multipliers) and b is the bias term. The kernel function

K (x,x;) = exp (—||x —-x; ||§/ 62) for RBF (radial basic

function) SVM, where o is constant. For binary classification
(separable data), we can assume
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Equivalently,
e[ W ee) +b] 21k =1, N 3)

LS-SVM classifiers are obtained as a solution to the
following optimization problem (non separable case):

N
. 1 ¢
min 3, (W, b, &) = —wW' W+ 4
min 3;5(W,b,¢) = - yk§:] & “)

subject to the equality constraint
T
wWhp)+b]=1-8, & 20 k=1 N (5

where y is the regularization factor and &, is the difference

between the output y; and discriminant function f{x;).

The parameters of the kernels, such as o for the RBF
kernel, can be optimally chosen by optimizing an upper bound
on the VC dimension, which involves solving a quadratic
programming problem. The support values a; are proportional
to the errors at the data points in the LS-SVM case, while in
the standard SVM case many support values are typically
equal to zero [14].

IV. STOCHASTIC CHANNEL MODELING

The Rician fading channel model is widely used in the
literature for wireless indoor IR systems [15-18]. We used for
the SVM simulations a more accurate model for fading power
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in a local environment (small area), that of partially developed
fading power whose probability density function (pdf) is
formulated as a series of modified-Rician distributions
weighted by orthogonal polynomials [19, 20]. Such pdf series
model converges asymptotically to a modified-Riciean
distribution. More models have been suggested in the
literature, such as the WLAN IEEE 802.11 and the ultra
wideband IEEE 802.12 standards and we leave this as an area
of future investigation [21].

The partially developed fading envelope obeys the
scattering stochastic model

M

J P
ZAke 4V,
k=1

; (6)

M =

with the partially developed fading power being v,, = ]/]%4 .
Ay is the random amplitude of the A" scatterer, ¢, is the

random phase of the k™ scatterer assumed to be uniformly
distributed between [0, 27), V is the amplitude strength of the
direct line of sight (LOS), and M is the random number of
scatterers in the channel assumed to obey a Poisson
distribution, a valid assumption since the underlying random
point process in space describing the spatial distribution of the
channel scatterers satisfies a technical condition known as the
Khinchine orderliness condition [22]. We note that as M
approaches infinity, the stochastic model is termed fully-
developed, the fading envelope y, is asympotically Rician,
and the fading power ), obeys a modified-Rician distribution.

The received IR signal is corrupted by two types of noises:
(1) channel fading multiplicative noise y,, and (2) receiver

additive white Gaussian noise (AWGN).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section all systems described earlier will be
simulated and compared with their new SVM-based versions.
The results of this section will cover the most widely used
models of the wireless hostile channel. They could be thus
considered as a corner stone for any future research in the
field of SVM in comparison with conventional systems to
give theoretically, not as accurately as in real time
measurements with real systems, a clear insight of the
performance of the new SVM-based system.

For simulation purposes, Matlab is used due to its enhanced
mathematical capabilities and engineering based structure.
The LS-SVM model was simulated using Matlab code
downloaded from [23] on a 1.7 GHz Pentium IV computer
with 256 MB RAM, to ensure that the comparison with
classical detectors is fair since it is the main scope of this
simulation. Without loss of generality (wlg) and for the
purpose of simulation, we assumed K = 3 (the Rician K-factor
defined as the ratio of diffuse power to coherent LOS power).

The classical infrared system detector was designed for
directed LOS link using intensity modulation with direct
detection (IM/DD). Then the SVM-based IR detector was also
designed and simulated, yielding the graph of Fig. 1.

In order to take full advantage of the SVM technique, we
considered several samples of the OOK signal in the bit
period. This offers a generalization since the SVM classifier is
applied in a wider space.

It is noticed from Fig. 1 that the SVM-based detector
outperforms the classical ML-based detector for low SNR,
while for high SNR, both systems seem to produce similar
results and converge at 9.12 dB.

_____ e
ML-based
SvM-based

Performance
e T

Comparison of IR in Multipath Ricean channel with AWGH
T =

SNR (dE)

Fig. 1 Comparative performance of an IM/DD infrared
communication system using OOK in fully developed multipath
Ricean channel with AWGN

The results of the simulations for partially developed
scattering noise are shown in Fig. 2 with the assumptions
made in the stochastic model of (6) (wlg) as: 4, =1and /"= 1
(the intensity of the Poisson distribution).

Ped‘formance Comparison of IR in partially developed scattering Channel with AWYGN
10

SNR (dB)

Fig. 2 Comparative performance of an IM/DD Infrared
communication system using OOK in partially developed scattering
channel with AWGN

Again, the SVM outperformed the ML detector for low
SNR and it achieved the ML performance asymptotically at
9.87 dB. For very low SNR (-10 dB), the BER attempts 10%
in the ML detector and 1.5% in the SVM detector, so the
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SVM results present a significant improvement over the
classical optimal ML-based detector for low SNR.

For very large SNR, there are no notable differences in the
BER curves and the performance of SVM and ML are, in
practice, almost identical. For high SNR, the BER is very
weak and cannot be measured with sufficient precision for
both methods, so a much larger training data block must be
used.

In order to fully study the performance of the classical
binary infrared system using a whitened Matched filter
(WMF) and the new suggested SVM-based receiver, it is vital
to study and compare the processing time for each system.
These results are tabulated in Table I.

We note that the processing time is slightly smaller for
partially developed fading for both WMF and SVM. This is
expected because the partially developed model uses only a
small number of scatterers. In both fading models, SVM was
slower than WMF. In fact, the main drawback of SVM
method is that it is a block-data based method.

TABLE I
PROCESSING TIME FOR THE DIFFERENT SCHEMES OF IR

Processing Time

Adopted Scheme (micro secs/bit)
Fully Developed WMF 0.0852
Ricean Fading SVM 0.1054
Partially Developed WMF 0.0847
Fading SVM 0.1048

The results of this work are generated from simulation
programs, which are not as accurate as the results that could
be acquired from real-time physical systems. For this reason,
the computational results of Table I remain rather
inconclusive due to the subjectivity of the programming which
is controllable in the sense of choosing the models parameters
that may not meet the real-time characteristics of real physical
systems. Moreover, the computation of the processing time is
subjected to the processing time of the computer. Yet since all
systems are written with the same programming methodology,
the results are comparable in the sense that if one of the
systems did give a better processing time than the other
system, it is expected that it would give such difference in real
time implementation.

To remedy this problem, we suggest, as future work, to
adopt one of the many pre-designed SVM chips [24] and
implement a real physical system and compare results with the
simulation outputs. As processors technology becomes faster
and cheaper, SVM’s computational complexity disadvantage
will be eliminated.

VI. CONCLUSION

In this paper, we applied SVM to binary OOK detection in
IR systems in the presence of fading channel and AWGN
receiver noise with various statistical characteristics. Two
multipath fading channel models were considered: Fully-
developed Rician and partially developed fading which is
more practical for fading in a local environment with small
area and is representative of a wide class of wireless

communication systems, including IR, cellular (pico- and
femto-cells), and WPAN (wireless personal area networks).

We found that the performance of SVM was superior to
that of the traditional ML detector used in binary signalling,
especially for very low SNR (below 9 dB). For large SNR, the
performance of SVM was similar to that of the ML detector.

The implication of these results is that SVM can be applied
to IR communication systems that notoriously suffer from low
SNR at the cost of increased computational complexity. SVM
can prove very beneficial to IR systems because it allows the
transmission distance to increase without significant loss of
detected signal quality. We thus expect this work to conceive
a new generation of SVM-based IR systems. Since
transmission range is also a major problem in deep space
communication, such systems can also become SVM-based.

As perspective to this work, we propose to validate the
conclusions on real data and to investigate the ability of the
SVM-detector to generalize to new noise conditions.
Moreover, since SVM is a boundary-based classifier, we
propose to define a strategy to integrate in the decision
samples from adjacent bits.
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