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Abstract—In the current scenario, with the increasing integration 

densities, most system-on-chip designs are partitioned into multiple 

clock domains. In this paper, an asynchronous FIFO (First-in First-

out pipeline) design is employed as a data transfer interface between 

two independent clock domains. Since the clocks on the either sides 

of the FIFO run at a different speed, the task to ensure the correct 

data transmission through this FIFO is manually performed. Firstly 

an existing asynchronous FIFO design is discussed and simulated. 

Gate-level simulation results depicted the flaw in existing design. In 

order to solve this problem, a novel modified asynchronous FIFO 

design is proposed. The results obtained from proposed design are in 

perfect accordance with theoretical expectations. The proposed 

asynchronous FIFO design outperforms the existing design in terms 

of accuracy and speed. In order to evaluate the performance of the 

FIFO designs presented in this paper, the circuits were implemented 

in 0.24µ TSMC CMOS technology and simulated at 2.5V using 

HSpice (© Avant! Corporation). The layout design of the proposed 

FIFO is also presented. 

 

Keywords—Asynchronous, Clock, CMOS, C-element, FIFO, 

Globally Asynchronous Locally Synchronous (GALS), HSpice. 

I.INTRODUCTION 

HE conventional VLSI systems being synchronous in 

their construction have a global clock signal which acts as 

a common timing reference for the operation of entire chip 

circuitry. Contrary to this, completely asynchronous designs 

do not have any global timing [10]. The benefits of 

asynchronous circuits design come from many aspects, such as 

getting rid of the power consumption from clock, no need to 

do global clock tree synthesis, and potentially higher system 

throughput [1]. The most critical problem with asynchronous 

circuit design is the poor support from EDA tools. Since there 

is no global synchronous clock signal, it is very hard for EDA 

tools to check if the function of the circuit is exactly the same 

as designed. In most cases, asynchronous circuits are designed 

by engineers manually. Current VLSI systems are systems-on-

a-chip (SoC) comprising of mixed clock domains [19]. These 

SoCs are developed using numerous pre-designed modules 

[intellectual properties or IPs] which are integrated with a 

communication medium. Each and every IP has its specific 

clock and communication requirements. Numerous bus-based 

SoC design methodologies, employing either synchronous or 

asynchronous interfaces have been proposed [9]. Due to the 
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limitations of buses, Networks-on-Chip were proposed as 

scalable interconnections by [8], [7]. Globally asynchronous 

locally synchronous (GALS), a new paradigm emerged as a 

solution for difficulty in synchronization of SoC components 

[6]. In this paradigm, blocks are built using traditional 

synchronous design techniques, but these synchronous blocks 

do not share global timing information and are asynchronous 

with respect to each other. Globally- Asynchronous Locally 

Synchronous (GALS) offers to solve the problem of clock 

skew and delay in System-on-chip (SoC) design. One of the 

three communication schemes are employed by GALS; 

pausible clocks, asynchronous and loosely synchronous [5]. 

Pausible clock systems stop the clock of a block during data 

transfers. The pausible clocking control is a scheme to avoid 

synchronization failure by adjusting the local clock. Reference 

[11] has shown that this technique is not suitable for 

interfacing large high-speed IP cores in SoCs. The highest 

degree of robustness and adaptability to a wide range of 

temperature, process and voltage variations along with the 

varying data rates are the key attributes of fully asynchronous 

interconnects. However the data transfer rates and latencies 

are limited due to handshaking [22]. In Loosely synchronous 

techniques some form of a FIFO between the sender and 

receiver is required to move data across clock domains [20]. 

Communication throughput and latency depends on the design 

of the FIFO, transmitter/receiver clock rates and 

communication patterns. An asynchronous FIFO would at 

most achieve a throughput of 1 datum/three clock cycles of the 

slower of the two clocks due to handshaking and 

synchronization between the two domains [5]. While it is 

often convenient to divide a system into multiple 

subcomponents, it is unlikely that these components will 

operate autonomously. Accordingly, data transfer is required 

between local synchronous blocks. Performing this task 

reliably and efficiently are key challenges in GALS designs. 

One structure that is particularly well-suited for this task is the 

dual-clock first-input first-output (FIFO) or mixed-clock FIFO 

[3], [21]. The basic FIFO architecture must be modified to 

accommodate two independent clock inputs. Data passing 

through the FIFO module will enter with reference to one 

clock and exit with reference to the other clock. In this way, 

data can be passed safely between independent clock domains 

[3]. References [12], [13] have presented high-level views of 

dual-clock FIFO structures, but details of dual-clock FIFO 

designs are lacking in the literature. Fully asynchronous FIFOs 

often appear in the literature , but these designs do not utilize 

clocks, and therefore, are difficult to apply in cases of 

synchronizing data between clock domains [14], [15]. Despite 
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all these issues, in the GALS architecture, blocks in different 

clock domains communicate with each other using 

asynchronous connections [16]. Asynchronous FIFO is an 

important component for the efficient data transfer in 

asynchronous communication [3]. Hence the asynchronous 

FIFO design is necessary for implementing 

a SoC design [17], [4], [18]. Asynchronous FIFO using 

micropipeline is presented in [10]. The main characteristic of 

micropipeline FIFO is that the data will flow through all data 

cells in the FIFO before reaching the output port. Hence the 

delay due to data movement from input

unavoidable [4]. Reference [17] presented

FIFO using counter as control logic, avoiding data movement 

at the cost of increased complexity. Reference [4] p

asynchronous FIFO structures using token passing 

(sender/receiver can transmit/receive data to/from FIFO only 

when it has a token) and a common data bus for data in and 

out. This enables the data to be pushed or popped from 

asynchronous FIFO without data movement inside FIFO. 

Hence the latency caused in a micropipeline

resulting in power reduction [10]. 

demonstrated globally asynchronous locally synchronous 

(GALS) clocking applied to a System-on

design where each core is a synchronous block and 

communication between the cores is controlled by wrapper 

logic around the cores. Data is transferred between 

synchronous blocks through asynchronous communication 

channels which may be pipelined with self

channel has its own request and acknowledge

signals which accompany bundled data words. T

synchronization strategies used for inter-

are a strong source of non-determinism, which causes a chip to 

randomly choose one of a set of possible correct responses to a 

given input stimulus. Non –determinism greatly complicates 

chip-level debug and test because these activities rely on the 

existence of a unique correct response with which an observed 

response is compared for error detection. Reference 

described a novel deterministic GALS methodology called 

“Synchro-tokens” whose parameterized wrappers are flexible 

enough to be used in wide range of applic

an efficient architecture of an asynchronous FIF

as a data transfer interface in GALS design,

paper is organized as follows. In Section II

existing asynchronous FIFO is presented in detail. In 

III, a three stage four bits FIFO is simulated

simulation results depict a problem in the existing FIFO 

design. Thereafter the corrections are suggested and a new 

asynchronous FIFO design is proposed

proposed FIFO is then simulated and the results for the 

maximum clock frequencies at which sender and receiver 

blocks can be clocked are determined.

drawn in Section IV. 

II. FIFO ARCHITECTURE

This paper evaluates the schematic-level design of t

channels shown in Fig. 1. Letter “T” signifies output data port 

(FIFO Tail) and “H” corresponds to input data port (FIFO 
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, avoiding data movement 
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on-chip resulted in a 
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communication between the cores is controlled by wrapper 

logic around the cores. Data is transferred between 

synchronous blocks through asynchronous communication 

channels which may be pipelined with self-timed FIFOs. Each 

channel has its own request and acknowledges handshake 

bundled data words. The 

-core communication 

determinism, which causes a chip to 

a set of possible correct responses to a 

determinism greatly complicates 

level debug and test because these activities rely on the 

existence of a unique correct response with which an observed 

detection. Reference [2] has 

a novel deterministic GALS methodology called 

tokens” whose parameterized wrappers are flexible 

enough to be used in wide range of applications. In this paper 

efficient architecture of an asynchronous FIFO employed 

design, is proposed. This 

Section II, the structure of 

sented in detail. In Section 

age four bits FIFO is simulated. The gate level 

simulation results depict a problem in the existing FIFO 

design. Thereafter the corrections are suggested and a new 

hronous FIFO design is proposed. The behavior of 

proposed FIFO is then simulated and the results for the 

at which sender and receiver 

blocks can be clocked are determined. The conclusion is 

RCHITECTURE 

level design of the data 

1. Letter “T” signifies output data port 

(FIFO Tail) and “H” corresponds to input data port (FIFO 

Head). This asynchronous FIFO supports asynchronous 

communication between the either sides. The 

architecture are presented as follows.

Fig. 1 The design of Asynchronous FIFO for GALS 

A. C-Element as Stage-Controller

C-element is the key component of the design and is 

responsible for the handshake

stages as shown in Fig. 2. In this FIFO design, C

ensures correct asynchronous transmission of data between the 

two ends. 

Fig. 2 The C-element with an active low reset signal

In the FIFO stage, two C

together as a stage controller. The handshake flow of a stag

controller is shown as Fig. 3. 

Fig. 3 The Phenomenon of 

 

The process of Handshaking is explained as following 

steps: 

Step 1. Initially all four handshake signals are low (Reset). 

Step 2. The module T sends out data, in the meantime pulls 

req_T high. 

Step 3. Since req_H is low,ack_T will be high. The leading 

Head). This asynchronous FIFO supports asynchronous 

communication between the either sides. The details of 

presented as follows. 
 

 

The design of Asynchronous FIFO for GALS  

ontroller 

element is the key component of the design and is 

responsible for the handshake signals between different FIFO 

. In this FIFO design, C-element 

correct asynchronous transmission of data between the 

 

 

element with an active low reset signal 

 

In the FIFO stage, two C-elements can be connected 

together as a stage controller. The handshake flow of a stage 

 

 

 

The Phenomenon of Handshaking in stage controller 

The process of Handshaking is explained as following 

four handshake signals are low (Reset).  

sends out data, in the meantime pulls 

,ack_T will be high. The leading 
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edge of ack_T is also the clock signa

thus data_T is loaded to the stage register.

Step 4. The ack_T signal is also the in

element, ack_T when asserted high pulls req_H

Step 5. When req_T goes low, ack_T will also become low.

Step 6. The second C-element waits for the ack_H

next stage, when ack_H is asserted high, it conveys that 

next stage is ready to get the data in register. Then with 

low ack_T ,req_H will be asserted high.

B. The Data Transmission in Asynchronous FIFO

 Data is transferred between synchronous blocks through 

asynchronous communication channels which a

self-timed FIFO as shown in Fig. 1. Each channel has its own 

request and acknowledges handshake signal

bundled data words. The entire process of asynchronous data 

transmission is as follows: 

When TDclken is asserted high, data in the tail begins to 

input to the buffer stage by sending Treq to the buffer. In 

the buffer is empty, it will receive data from the head register 

and pulls up TAck. TReq will not be low until TAck is high. If 

the buffer is full, it can only receive data when th

only register has been sent to the next stage buffer. Before 

that, TAck will always be low. With more stages of buffer, 

more data could be sent to buffer before

pull up. This signal tells the data sending 

because buffer is FULL. 

In the head side, data can be received when HDclken is 

asserted high and HStall is low. As shown in Fig. 1, there is 

another C-element in the head section

controls reception of data in the head section. 

inputs in this C-element is HDclk, which is controlled by 

Hclk, HDclken and HStall. The leadingedge of

reception of data from the buffer register, and HValid 

becomes high when HReq is asserted high. Data in the head 

register can be read out when HValid is high.

The C-elements permit movement of data

domain to another domain through this FIFO

registers in the FIFO are not full. And in case 

it signals the block connected to the FIFO to stop sending new 

data. On the other hand reception of the data 

when the block connected to the FIFO is ready 

III. SIMULATIONS AND THE PROPOSED 

In this design of asynchronous FIFO, the clock in the tail 

and head parts of the FIFO can be totally different, which is 

not possible in synchronous CMOS design. The clock signals 

in this FIFO are not directly sent to flip

There are several control signals to gate clocks from 

outside.Due to the asynchronous clocks and gated clocks, it is 

not possible for EDA tools to do timing check an

synthesis in asynchronous system design. Thus manually 

custom design for asynchronous circuit is performed. In order 

to evaluate the performance of the FIFO designs presented in 

this paper, the circuits were implemented in 0.24µ 

CMOS technology and simulated at 2.5V using HSpice (© 

Avant! Corporation). In this paper the behavior of three stage 

 

is also the clock signal for data register, 

is loaded to the stage register. 

signal is also the input of the next C-

element, ack_T when asserted high pulls req_H high. 

will also become low. 

element waits for the ack_H signal from 

is asserted high, it conveys that 

in register. Then with 

will be asserted high. 

Asynchronous FIFO 

ata is transferred between synchronous blocks through 

asynchronous communication channels which are pipelined by 

Each channel has its own 

handshake signals accompanying 

bundled data words. The entire process of asynchronous data 

When TDclken is asserted high, data in the tail begins to 

y sending Treq to the buffer. In case 

receive data from the head register 

and pulls up TAck. TReq will not be low until TAck is high. If 

the buffer is full, it can only receive data when the data in its 

been sent to the next stage buffer. Before 

more stages of buffer, 

more data could be sent to buffer before the signal TStall is 

sending block to stop 

In the head side, data can be received when HDclken is 

is low. As shown in Fig. 1, there is 

element in the head section. This C-element 

the head section. One of the 

element is HDclk, which is controlled by 

leadingedge of HDclk leads to 

from the buffer register, and HValid 

becomes high when HReq is asserted high. Data in the head 

register can be read out when HValid is high. 

data from one clock 

hrough this FIFO, only when the 

n the FIFO are not full. And in case the FIFO is full, 

it signals the block connected to the FIFO to stop sending new 

nd reception of the data happens only 

when the block connected to the FIFO is ready to receive it.  

ROPOSED DESIGN 

In this design of asynchronous FIFO, the clock in the tail 

and head parts of the FIFO can be totally different, which is 

design. The clock signals 

in this FIFO are not directly sent to flip-flops and registers. 

There are several control signals to gate clocks from 

outside.Due to the asynchronous clocks and gated clocks, it is 

to do timing check and clock tree 

in asynchronous system design. Thus manually 

custom design for asynchronous circuit is performed. In order 

to evaluate the performance of the FIFO designs presented in 

this paper, the circuits were implemented in 0.24µ TSMC 

d at 2.5V using HSpice (© 

! Corporation). In this paper the behavior of three stage 

four bits FIFO is simulated. The width of this FIFO is 4 bits, 

thus four registers are needed for every stage of data registers. 

Special care has been taken to make the simulations realistic 

.This section first presents the gate

the existing design shown in 

incurred in the simulations due to the fault prevailing in the 

existing design. Thereafter the corrections are suggested in the 

existing FIFO design and a new design for asynchronous FIFO 

is proposed. Simulation results are then obtained for proposed 

FIFO structure. The results thus obtained are in perfect 

accordance with theoretical expectat

determine the maximum frequency for this proposed FIFO

behavior is simulated at different clock periods of the Tail and 

Head sections. The sizes of all transistors in this design are 

carefully selected so that the circuit can have co

functionality and high performance. For the performance of 

this circuit to be as high as possible, shortest critical path is 

achieved. Finally the layout is obtained for the new FIFO 

architecture. 

A. Fault Detection in Existing D

The overall schematic of the existing asynchronous FIFO is 

shown in Fig. 4. 

Fig. 4 Asynchronous FIFO schematic

In the schematic simulation, the rise and fall t

inputs is considered to be 50ps

is selected to be 5ns and 3ns 

simulation results are shown as 

While using the FIFO architecture

simulation results exhibit some problems. Fig.

a problem with the Tstall signal. This signal should be high 

only when either the next stage register is full or TDclken is 

high. In the simulation trace when the next stage register is not 

full and TDclken is low, Tstall

(these places are highlighted 

to the incomplete clock pulse of TDclk, as shown encircled. 

four bits FIFO is simulated. The width of this FIFO is 4 bits, 

thus four registers are needed for every stage of data registers. 

en taken to make the simulations realistic 

.This section first presents the gate-level simulation results of 

the existing design shown in Fig. 1 and depicts the problem 

incurred in the simulations due to the fault prevailing in the 

er the corrections are suggested in the 

existing FIFO design and a new design for asynchronous FIFO 

is proposed. Simulation results are then obtained for proposed 

FIFO structure. The results thus obtained are in perfect 

accordance with theoretical expectations. In order to 

requency for this proposed FIFO, its 

different clock periods of the Tail and 

Head sections. The sizes of all transistors in this design are 

carefully selected so that the circuit can have correct 

functionality and high performance. For the performance of 

this circuit to be as high as possible, shortest critical path is 

achieved. Finally the layout is obtained for the new FIFO 

Fault Detection in Existing Design 

ematic of the existing asynchronous FIFO is 

 

 

4 Asynchronous FIFO schematic 

 

In the schematic simulation, the rise and fall time of all 

be 50ps, clock period for tail and head 

5ns and 3ns respectively. The HSpice 

simulation results are shown as Fig. 5. 

While using the FIFO architecture shown in Fig. 4 the 

some problems. Fig. 5 shows there is 

a problem with the Tstall signal. This signal should be high 

the next stage register is full or TDclken is 

when the next stage register is not 

, Tstall signal has several glitches 

(these places are highlighted with circles). This problem leads 

to the incomplete clock pulse of TDclk, as shown encircled.  
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Fig. 5 The gate-level simulation results for Original FIFO

 

The problem arises because the pulses of T

to pulses of TReq signal as shown encircled in Fig. 5. And the 

pulses of TReq signal are passed through NAND and INV to 

TStall signal which causes pulses in TStall signal .In an 

attempt to fix this problem, a modified tail design is proposed 

in Fig. 6. The proposed design involves addition of a la

after the NAND gate which is connected to TReq signal in the 

existing design. This latch passes TReq signal

signal is low. This latch prevents passage of 

TStallsignal when clock is high, thus eliminating the glitches 

in Tstall signal. 

 

Fig. 6 The Proposed Tail Design

 

The Hspice simulation results for the proposed FIFO are

shown in Fig. 7. Fig. 7 demonstrates that an addition of latch 

in the existing FIFO architecture, eliminates

Tstall signal. 
 

 

 

imulation results for Original FIFO 

The problem arises because the pulses of Tack signal lead 

led in Fig. 5. And the 

through NAND and INV to 

pulses in TStall signal .In an 

this problem, a modified tail design is proposed 

The proposed design involves addition of a latch 

which is connected to TReq signal in the 

signal only when Tclk 

passage of TReq signal to 

minating the glitches 

 

Tail Design 

results for the proposed FIFO are 

7 demonstrates that an addition of latch 

eliminates the glitches in 

Fig. 7 The gate-level simulation result

B. Performance Evaluation of Proposed FIFO 

In order to determine the max

can operate at, the simulation

periods for head and tail sections

architecture. The maximum clock speeds of the tail and head 

section are tested separately. Firstly the 

reduced till the results become erroneous.

Case I: Tail Clock = 1900 ps and Head 

Fig. 8 The Simulation results for 

Clock = 800 ps

Fig. 8 shows that the rise and fall slopes of TDclk 

getting mild and the Hvalid signal begins to 

clock speed. However, the results are still correct as s

the box.  

 

 

imulation results of proposed FIFO 

nce Evaluation of Proposed FIFO Design 

o determine the maximum frequency this FIFO 

simulations are performed at different clock 

periods for head and tail sections of proposed FIFO 

The maximum clock speeds of the tail and head 

are tested separately. Firstly the clock period of tail is 

reduced till the results become erroneous. 

= 1900 ps and Head Clock = 800 ps 

 

 

for Tail Clock = 1900 ps and Head 

Clock = 800 ps 

 

the rise and fall slopes of TDclk signal are 

the Hvalid signal begins to show glitch at this 

clock speed. However, the results are still correct as shown in 
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Case II: Tail Clock = 1800 ps and Head Clock = 800 ps 

 The simulation result for this case is shown in Fig. 9. 

 

 

Fig. 9 The Simulation results for Tail Clock = 1800 ps and Head 

Clock = 800 ps 

 

As shown in Fig. 9, the outputs in the box are deviated from 

the expected results shown in Fig. 8. One 4-bit data is missing. 

This is due to the reason that the speed of the tail clock is so 

high that the tail part can’t finish passing data of the previous 

clock before the arrival of the next clock edge. Thus for the 

tail part, the minimum clock period for correct data 

transmission is 1900ps.  

Case III: Tail clock = 1900 ps and Head clock = 700 ps 

If the tail clock is kept at 1900ps and head clock is reduced 

to 700ps, the simulation results are shown in Fig. 10. 

 

 

Fig. 10 The Simulation results for Tail clock = 1900 ps and Head 

clock = 700 ps 

 

 

Fig. 11 The Layout Design for Asynchronous FIFO 
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As shown in Fig. 10, the results become erroneous when the 

head clock period is decreased to 700ps. And the glitches in 

Hvalid signal are becoming severe. Thus for the head part, the 

minimum clock period for which data can be correctly 

received is about 800ps. 

The maximum clock frequencies at which Head and Tail 

section can be clocked are presented in Table I. 
 

TABLE I 

MAXIMUM CLOCKING FREQUENCIES FOR NEW FIFO 

Version Head Section Tail Section 

Mixed Clocks 1.25 GHz 0.52 GHz 

C. Layout Design 

The layout design of the proposed asynchronous FIFO is 

shown in Fig. 11. The height of the layout is 46um and the 

width is 74um. The ratio is 74/46=1.6. 

IV. CONCLUSION 

This work presents a novel and an efficient self-timed FIFO 

design which acts as a data transfer interface between the 

blocks with unrelated clock speeds. The proposed design is 

based on the idea of token passing. Our solution is developed 

from the flaw depicted in existing FIFO design [2]. The 

proposed design does not need any data synchronization and is 

able to correctly interface the blocks operating at different 

clock speeds. The critical part in this work is the design of C-

elements, which handle pairs of handshake signals between 

different clock domains. The C-elements ensure the correct 

passage of data from one clock domain to another domain 

through this self-timed FIFO only when the registers in the 

FIFO are not full. In case the FIFO is full, the block connected 

to the FIFO is directed to stop the sending of new data. On the 

other hand data reception happens only when the block 

connected to the FIFO is ready to receive it. The results 

obtained from proposed design are in perfect accordance with 

theoretical expectations. The proposed asynchronous FIFO 

design outperforms the existing design [2] in terms of 

accuracy and speed. The result is quite promising and leaves 

the possibilities for further improvements open, leading to 

more area and power efficient implementation. 

This mixed – clock design can also be adapted for 

interfacing asynchronous and synchronous subsystems. 
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