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Abstract—In metal cutting industries, mathematical/statistical 

models are typically used to predict tool replacement time.  These 
off-line methods usually result in less than optimum replacement 
time thereby either wasting resources or causing quality problems.  
The few online real-time methods proposed use indirect measurement 
techniques and are prone to similar  errors.  Our idea is based on 
identifying the optimal replacement time using an electronic nose to 
detect the airborne compounds released when the tool wear reaches 
to a chemical substrate doped into tool material during the 
fabrication. The study investigates the feasibility of the idea, possible 
doping materials and methods along with data stream mining 
techniques for detection and monitoring different phases of tool 
wear.     

 
Keywords—Tool condition monitoring, cutting tool replacement, 

data stream mining, e-Nose. 

I. MOTIVATION 

PTIMUM performance of machining processes relies on 
the availability of the information about process 

conditions and feedback to the process controller. Among 
various process elements, cutting tool condition is one of the 
most crucial factors.  It should be noted that considerable 
portion (7% - 20%) of machine downtime results from tool 
failure [1]. It has also been reported that successful 
implementation of Tool Condition Monitoring (TCM) can 
save up to 40% of production costs [2]. 

There are two major approaches for tool replacement.  One 
based on empirical/statistical models of various process 
parameters such as tool material/geometry, work-piece 
material/geometry, feed rate, etc. These off-line methods 
usually result in less than optimum replacement time due to 
inherent nature of the models used.  A more recent set of 
approaches are based on sensors measuring indirect process 
parameters such as force (dynamometer), acoustic emission, 
vibration (accelerometer), power, temperature, current, and 
work piece surface image. These sensors were either used 
individually or as multi-sensor suits along with various data 
processing techniques. A few research works have shown that  
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these sensors can be efficiently used for the tool condition 
monitoring but with some limitations [3-8]. One of the 
limitations of these sensors is the use of indirect measurement 
that results in highly nonlinear mapping, including feature 
reduction and selection/transformation into hyper dimensional 
space to estimate the accurate tool wear conditions. These 
efforts usually result in considerable computational effort. As 
a result, majority of these efforts focused mostly on off-line 
applications.  

From the review of relevant literature, it has been found 
that there is a significant need for a novel paradigm that can 
provide on-line and real-time tool condition monitoring 
without aforementioned limitations. The new paradigm for 
tool condition monitoring must be able to address the 
following questions: 

• How fast can the suggested paradigm detect any 
changes in tool cutters during machining process? 
(fast on-line real-time response time issue) 

• Can the suggested paradigm classify different stages 
of tool wear (e.g., fresh, slightly worn, severely 
worn) with high accuracy? (accuracy issue) 

• How general the suggested paradigm would be to be 
used for various work-piece, tool cutter, and cutting 
parameter conditions? (generality issue) 

• Can the suggested paradigm be a cost-effective and 
reliable option for metal cutting industry to 
accommodate? (economic feasibility issue)  

In this study, a new paradigm for on-line and real-time tool 
condition monitoring that can address the aforementioned 
questions is introduced. This new paradigm employs the odor 
detection sensor, referred to as electronic nose or e-Nose, for 
the first time as the core sensor for tool condition monitoring 
systems. In addition, cutting tools will be designed and 
fabricated in a new way that allows chemical compounds to be 
doped into their substrates. These new tool cutters are 
expected to significantly enhance the sensitivity of detecting 
precise tool conditions in real-time.  

II. RESEARCH FOCUS 
It is well known that machining processes such as turning 

and milling produce numerous gasses from the tribology of 
tool inserts and work pieces.  The tool inserts and work-pieces 
are composed of multiple materials and as they engage each 
other at high temperatures, physical deformation and chemical 
reactions take place.  Recently, advanced coating technology 
has significantly improved the tool life expectancy. Titanium 
Nitride (TiN), Titanium Carbo-Nitride (TiCN), Titanium 
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Aluminum Nitride (TiAlN or AlTiN), Chromium Nitride 
(CrN), and Diamond coatings can increase overall tool life, 
decrease cycle time, and promoted better surface finish.  

Our conjecture is that as machining progresses and tool 
starts to wear, the level of certain odorous compounds 
generated by the tool cutters will change overtime.  It is based 
on the observation that the material used for coating tool 
cutters will gradually erode from the surface of the tool cutters 
as the tool wear progresses.  For example, a TiCN coated tool 
will produce relatively large amount of Titanium based 
airborne particles as well as other gases at the beginning of its 
tool life when the tool is in fresh but produce less amounts of 
the same compounds as it gets worn down, and eventually 
produce no Ti compounds. This phenomenon can allow us to 
estimate the progress of tool wear by measuring the minute 
levels of specific airborne compounds produced from the tool 
cutters during the machining process.  

Specifically, the following questions are posed:   

• What type of chemical compounds and e-Noses would 
work best for the proposed paradigm in terms of 
response time and detection accuracy? How much, at 
what depths, and where on the tool geometry the 
chemical compounds must be doped into the tool 
cutters?  Also, what doping method would be used? 

• As the released odors quickly dissolve into the 
machining chamber air, which locations inside the 
chamber would ensure the best performance of the 
electronic nose?  

• What would be the optimal range of cutting parameters 
that can ensure the best accuracy in estimating the 
tool life? 

• What are the limitations of the proposed paradigm? 
For example, would the proposed paradigm work for 
both with and without coolant?  

III. AVAILABLE TECHNOLOGY 
A. The Electronic Nose  
Since its proposition of the concept in early 1980s [9], an 

electronic nose system has been used in many applications, 
especially in fragrance and cosmetics production, food and 
beverages manufacturing, chemical engineering, 
environmental monitoring, and more recently, medical 
diagnostics, and explosive detection.  In principle, such 
systems have to rely on gas sensors, which were first 
developed more than 30 years ago [10, 11].  The electronic 
nose has been defined as a machine that can detect and 
discriminate among complex odors using a sensor array.  An 
odor stimulus generates a characteristic fingerprint (or smell-
print) on the sensor array. Patterns or fingerprints from known 
odors are used to construct a database and train a pattern 
recognition system so that unknown odors can subsequently 
be classified and identified. 

As analytical instruments, these systems must be designed 
for long-term usage with high repeatability and 
reproducibility. Through e-Nose, not only the gas phase itself 
can be characterized but often also liquid and solid samples, 
as they often release volatile or semi-volatile components into 

the gas phase. It is well established that often a product's 
quality or the dynamic state of a process manifests itself in a 
special kind of odor. This is probably the reason why the nose 
is the main chemical sensor system with which human beings 
are equipped with. Therefore, an enormously wide market 
opens up for electronic noses (e-Noses) as condition monitors, 
provided that price, spatial requirements and energy 
consumption are compatible with the application [12]. The 
strictest requirements come from consumer applications of 
electronic noses in household appliances, air quality 
monitoring, fire detection, medical products, or automobile 
applications, where low cost and long-term stability combined 
with excellent gas sensitivity, gas discrimination, and response 
speed are necessary.  

For more than a decade now, small and simple gas sensors 
which provide single output signal have been commercially 
available. However, these single output sensors allow only 
one component to be quantified, without the ability to 
distinguish between different gases or gas compositions. 
Moreover, these sensors usually suffer from cross sensitivity; 
in addition to their sensitivity to a particular target gas, they 
also show certain sensitivity towards other gases. Hence, a 
single output sensor cannot be sufficient for gas analysis, even 
if only one target gas has to be detected in a complex mixture 
of volatiles. The combination of several gas sensors (each 
providing a different sensitivity spectrum) forming a so-called 
sensor array can continuously deliver a number of signals, 
usually referred to as a signal pattern, characterizing the type 
and quantity of gases to which the array is exposed. The 
following table summarizes application of electronic noses (e-
Noses) for various areas from the review of the relevant 
literature. 

 
TABLE I 

APPLICATION OF ELECTRONIC NOSES 
Application Area Examples 

Food Quality 
evaluation 

Discrimination of wines, fish freshness and 
potato chip flavors, etc. 

Environmental 
monitoring 

Water quality, air quality, and soil quality 
determination  

Perfume and fragrance 
industry Identification of perfumes  

Automobile and Space 
Industry Monitoring of air quality 

Detection of 
Explosives Detection of landmines  

Medical Diagnosis 
Bacteria identification and health quality 

assessment and quality control of 
pharmaceuticals  

Mobile Robot 
Olfaction 

Plume tracking, Odor Source Localization, 
Trail Following  

B. Data Analysis Using Data Mining Techniques  
The appropriate and innovative data mining techniques are 

presently being used to determine the presence of certain 
doping material based on e-nose data. A common by product 
of many industrial processes, SO2, is used as our initial target 
chemical. The e-nose stream mining to detect traces and 
different concentrations of SO2 in the machining chamber air 
involves three main steps: dimension reduction, classifier 
training, and real time data transformation and classification.  
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1) Dimension Reduction 
The chemical data collected by the e-nose will include 

many different gas components.  Data in such high dimension 
space must be “compressed” into a smaller dimension space 
so that classification methods can be applied effectively. For 
this purpose, we are using Principle Component Analysis 
(PCA), a computationally inexpensive technique which has 
been used in a number of applications including analysis of 
gas sensor data.  In theory, PCA is considered an optimal 
linear scheme for compressing high dimensional vectors into 
lower dimensional vectors. For non-linear data, a Kernel PCA 
is used. 
 

2) Classifier Training 

At this stage, a binary Support Vector Machine (SVM) 
classifier is created using sample data collected in previous 
phase as training.  Our sample data are obtained during two 
types of machining operations, those with doping material 
(Sulfide or Nitrate) and those without.  The samples collected 
with doped tool will be significantly different from those 
obtained without it. SVM is a relatively new method that has 
been shown to be effective in classifying both linear and non-
linear data without suffering from the over-fitting problem 
exhibited by some neural network and decision tree 
approaches. For linearly separable data, SVM classifier 
defines an optimal separating hyper-plane which is equal 
distance to data points on the borderline (called supported 
machine) of the two data sets.  For non-linear data, as is the 
case in non-linear PCA, the original data must be converted 
into linearly separable higher dimensions by using the 
appropriate kernel function. Thus, the performance of the 
SVM is greatly influence by the kernel function selected [13].  
In phase I of our study, we will test various common kernel 
functions, shown in Table II to identify the most suitable one.  
It should be pointed out that although SVM is known to be 
computationally expensive, its training is done before the 
system is brought online and thus does not affect the real-time 
performance. 

TABLE II 
 EXAMPLE KERNELS 

Polynomial ( )pyxyxK 1,),( +=  

Gaussian 
Radial Basis 

Function ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2

2
exp),(

σ
yx

yxK  

Multilayer 
Perceptron 

( )
offset. and

sca are ,  where,,tanh),( γργρ += yxyxK

 

Fourier  
Series 

( )

( )⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ +

=
yx

yxN
yxK

2
1sin

2
1sin

),(  

Additive ( )yxKyxK
i

i ,),( ∑=  

3)  Real-time Data Transformation and Classification  
The SVM classifier created in the previous step will be used 

to determine the presence of SO2 (and other compounds 

considered) in real-time.  Due to the difference in tools and 
cutting material, it is possible that the gas composition from 
this data could different from training data in terms of baseline 
values and scales.  A suitable data transformation function 
such as normalization transformation is used to convert the 
real data to the same scale and baseline of the training data.  
The appropriate transformation function is identified by 
comparing the initial real-time data sample with doped 
training data.  Once established, this function is used to 
efficiently convert all remaining data before they are analyzed 
by the SVM classifier.  In addition, an appropriate window 
size is also determined through experimentation to achieve the 
right level of sensitivity.  Specifically, window size should be 
small enough so that the classifier will focus on the most 
recent data and detect presence of SO2 as early as possible.  
However, the window size should also be large enough to 
avoid being over-sensitive, false reporting of SO2 presence 
due to data fluctuation and noise. 

IV. DOPING OF CHEMICAL COMPOUNDS IN TOOL CUTTERS 
USING CVD 

Chemical vapor deposition (CVD) process has been 
developed as a technique for creating thin films of a large 
variety of materials on other substances [14].  In a typical 
CVD process, reactant gases enter the reaction chamber. The 
gas mixture is heated as it approaches the heated deposition 
surface. Depending on the process and operating conditions, 
the reactant gases may undergo homogeneous chemical 
reactions in the vapor phase before striking the surface. Near 
the surface, chemical concentration boundary layers form as 
the gas stream heat and the chemical composition changes. 
Heterogeneous reactions of the source gases or reactive 
intermediate species occur at the deposition surface forming 
the deposited material.  

The advantages of CVD process are: versatile – can deposit 
any element or compound; high purity – typically 99%; high 
density – ranging 94-97%; material formation well below the 
melting point; coatings deposited by CVD are conformal and 
near net shape; and economical in production, since many 
parts can be coated at the same time [15].  There are basically 
two different types of CVD process used in the industry: metal 
organic CVD and plasma enhanced CVD. In metal organic 
CVD a layer of one substance grows on a single crystal of 
another. Plasma enhanced chemical vapor deposition 
(PECVD) is performed in a reactor at temperatures up to 400 
°C. There are several applications of the CVD process. The 
most important of them are microelectronics, manufactured 
diamonds and protective coatings. 

V.  FEASIBILITY ANALYSIS OF E-NOSE (PHASE I) 
In this research phase, commercially available e-Nose 

(ArtiNose) is used to test our main hypothesis. Note that in 
this phase, tool cutters are not doped with any chemical 
compounds. The main focus is the feasibility analysis of the e-
Nose for tool condition monitoring system where a data 
mining technique, referred to as support vector machine 
(SVM), is employed as a main classifier of tool wear 
conditions as illustrated in Fig. 2.  In this phase, normalized 
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and tempered AISI 4340 medium carbon low alloy steel 
blocks with an average hardness of 26 HRc are used for the 
experiment. This alloy steel is widely used in the fabrication 
of machine tool structural parts, power transmission gears and 
shafts in the automotive industry, and aircraft landing gear 
parts. In addition, chemical vapor deposited (CVD) multi-
layer TiAlN–TiN coated Kennametal KC725M grade carbide 
10mm IC end-milling inserts are used for the study (ISO 
designation of SPET10T3PPERGB). The insert thickness is 
3.96mm with an overall coating thickness in the range of 3–
5µm. The substrate material consists of tungsten carbide with 
an 11.5% cobalt binder. 
 
 
 
 
 
 
 
 

Fig. 1 Experimental setup for Phase-I 
 

The tough CVD coating material and the thermal shock 
resistance of the substrate makes this insert suitable for both 
semi-dry and dry machining applications. In addition, a CNC 
turning center (Viper VT25B with Fanuc Oi Mate-TC 
controller) is used. The following table summarizes the 
experimental design for the Phase-I: 
 

TABLE III  
DESIGN OF EXPERIMENTAL PARAMETERS 

 

 

 

 

Note that tool classes are defined based on the maximum 
level of flank wear and are measured using a digital 
microscope (Video Direct Microscope, QVI Inc.).  In this 
phase, we collected 8 × 3 × 3 × 2 × 3 (replications) = 432 data 
points from the experiment. Out of total 432 data points 
collected, we used 288 (2/3) data points for training of SVM 
classifier and remaining 144 (1/3) data points for testing 
purpose. Specifically, the training and test is based on the 
architecture given in Fig. 2. 

 

 

 

 
Fig. 2 Architecture of tool condition monitoring in Phase-I 

 
The SVM and other reduction methods are implemented 

using WEKA ML suite, which provides a freeware 
environment supported by many machine learning authorities 
[16]. At present time, the data collected is being analyzed.  It 
should be emphasized here that the results from the Phase-I 
will be used to address the main research questions outlined 
earlier. By employing the SVM in the architecture, which is 
known to be fast and accurate, e-Nose is expected to provide 
some level of success in on-line and real-time tool condition 
monitoring. However, we speculate that its performance in 
terms of speed and accuracy may not be promising because of 
the limitation of the architecture that uses single e-Nose, uses 
no chemical doping, and has a computational overhead.  

VI. USE OF E-NOSE AND CHEMICAL COMPOUND DOPED TOOL 
CUTTERS (PHASE II) 

In this next research phase, to significantly improve the 
performance (speed and accuracy) of tool condition 
monitoring, cutting inserts will be designed and fabricated to 
have chemical compounds doped in their substrates. Several 
chemical compounds that have a high diffusive rate and no 
effect on cutting insert properties will be considered as 
dopants. Examples of such chemical compounds include small 
amounts of certain Sulfides and Nitrites. Once potential 
compounds are determined, they will be diffused into the 
boundary of tool substrate (~10µm depth from the top) and 
coating material and another layer in the substrate with the 
depth of 400µm from the top of the tool insert as shown in 
Fig. 3. The CVD process will be used for the doping of 
chemical compounds at the boundary between coating and 
substrate material and rapid tooling technology will be used to 
have another inclusion of the chemical compounds at 400µm 
depth boundary. Different stages of tool wear such as medium 
wear and sever wear can be accurately estimated by having 
these chemical compounds at different depths in the tool 
inserts.  

 
 

 
 
 
 
 
 
 
 

Fig. 3 Tool inserts with inclusion of chemical compounds for Phase-
II 

Parameter Level 
Location of e-Nose Turret, Spindle, 

Chamber 
Cutting speed Low, High 

Feed rate Low, High 
Depth of cut Low, High 

Coolant On (wet), Off (dry) 
Tool class Fresh, Medium, Severe 
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Once the tool inserts with chemical compounds are prepared, 
we will conduct experiments similar to the ones given in 
previous section. In this phase, the architecture of tool 
condition monitoring shown in Fig. 4 will be considered. In 
the final form of the architecture, the data mining technique 
such as feature extraction, selection and support vector 
machine learning are not required once the stream mining 
algorithm is trained to detect dopants signal print. The 
dynamic signal profile generated by the real time mining of 
the e-Nose data will help us identify different phases of tool 
wear.  It is hypothesized that automating the data mining layer 
in the proposed architecture will satisfy the speed and 
accuracy requirement of tool condition monitoring for on-line 
and real-time applications of the concept. The experimental 
results from this phase will be compared to the results from 
the Phase-I to test the hypothesis. Note that the performance 
of the proposed architecture depends on the sensitivity and 
reaction time of the e-Nose used to the doped compounds. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Architecture of tool condition monitoring in Phase-II 

VII. CONCLUSION AND FUTURE RESEARCH 
This paper briefly outlines the original idea of using e-Nose 

and its associated data stream mining techniques for tool 
condition monitoring.  At present time, the experimental setup 
dealing with feasibility studies of the proposed hypothesis is 
underway. The identification of the possible chemical 
compounds as the doping material on high speed steel cutting 
inserts is also being studied.  Due to the proprietary nature of 
the proposed method and pending patent application, many of 
the technical details were not presented in the paper at this 
time. However, as the experiments are finalized and the e-
Nose stream mining algorithms for the specific chemical 
compounds considered are refined through training; several 
follow up publications are planned.  

In addition to the main trust of the research activities 
outlined, other aspects of the problem given below are also 
identified for future research.   

• Slow response time of e-Nose to chemical 
compounds: We plan to experiment with different 
concentrations of dopants by manipulating the 
parameters of the doping process. 

• Tool material properties may be changed due to 
doping of chemical compounds, for example, 
reduced hardness: During the dopant selection 
process, special attention will be paid to the 
compounds that will not affect the physical and 
functional properties of the cutting edge.  The high 

temperature and oxidation properties of the chemicals 
will be investigated along with possible hazard to 
humans. 

• The location of the e-nose in the cutting chamber will 
be studied by considering the highly dynamic air 
flow properties in the chamber due to fast moving 
parts.  This will be an important factor in determining 
how quickly and in what patterns the airborne 
particles will be dissolved into cutting chamber air. 
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