
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:9, 2014

1410

 

 

 
Abstract—This paper deals with a novel approach of power 

transformers diagnostics. This approach identifies the exact location 
and the range of a fault in the transformer and helps to reduce 
operation costs related to handling of the faulty transformer, its 
disassembly and repair. The advantage of the approach is a 
possibility to simulate healthy transformer and also all faults, which 
can occur in transformer during its operation without its 
disassembling, which is very expensive in practice. The approach is 
based on creating frequency dependent impedance of the transformer 
by sweep frequency response analysis measurements and by 3D FE 
parametrical modeling of the fault in the transformer. The parameters 
of the 3D FE model are the position and the range of the axial short 
circuit. Then, by comparing the frequency dependent impedances of 
the parametrical models with the measured ones, the location and the 
range of the fault is identified. The approach was tested on a real 
transformer and showed high coincidence between the real fault and 
the simulated one. 
 

Keywords—Fault, finite element method, parametrical model of 
transformer, sweep frequency response analysis, transformer. 

I. INTRODUCTION 

URRENTLY a lot of distribution system operators are 
trying to reduce operation costs. Usually, economization 

are reached using extend maintenance period and at the same 
time a number of diagnostic measurements is increased, 
thereby at the same time an emphasis is on a quality of these 
diagnostic measurements.  

In general, periodic diagnostic measurements are 
measurements of a resistivity, an insulation resistance, 
moisture, a tan delta, a sweep frequency response analysis 
(SFRA), a gas analysis and also lower frequency diagnostic 
measurements such as a partial discharge, a furan analysis, a 
breakdown voltage, etc. [1], [2]. Diagnostic measurements can 
be off-line and on-line [3]. 

Most of the diagnostic measurements provide only a 
determination of a fault state and they do not yield the exact 
determination of the fault or the range of this fault [4], [5]. In 
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other words, the measurements only determine a kind of the 
fault (short-circuit, shift winding, etc.), but not the fault 
location in the transformer (for example: tertiary winding or 
phase A, etc.). This has an influence on the decision making of 
the distribution system operators. 

In many cases, the decision of the distribution system 
operators has many times financial consequences. To make 
optimal decision (e.g. to put out of the operation or keep a 
transformer in the grid) the operator tries to gather as many 
information about the transformer as possible. The decision on 
the decommissioning can be correct if and only if the real state 
of the transformer is known.  

In cases, where the standard diagnostic measurements offer 
insufficient information about the real state of the fault 
transformer, the operator tries to employ more sophisticated 
methods. By using more sophisticated methods an expensive 
premature transport and the disassembly can be avoided. 

Consequently, the sophisticated methods try to analyze the 
state of the transformer more exactly, e.g. by the matching of 
real diagnostic measurement data, such as SFRA (described in 
[5], [11]) with data obtained from a mathematical model of the 
transformer: 
 equivalent circuit [6], [7], 
 hybrid winding model [8], 
 transfer function [9], 
 Finite Element Method (FEM) [10] 
 etc.. 

However, the analytical approach has a lower accuracy and 
a short computational time. On the other hand the FEM 
approach has a longer computational time but reaches higher 
accuracy due to a small sectioning [9] or a fine meshing. 

This paper deals with a novel approach to the power 
transformer diagnostics, which is based on a 3D FE 
parametrical model, which simulate the real diagnostic 
measurement and uses off line diagnostic data of SFRA in 
order to determine the exact location and a range of the fault. 
In the article, the focus is put on the axial short circuit on the 
transformer winding. This is reached by creating 3D FEM 
parametric model of the transformer and solver its harmonic 
electromagnetic field distribution. Then, from the 
electromagnetic field, all parameters of the transformer 
equivalent circuit are calculated. They are subsequently used 
to determine the total impedance of the transformer as a 
function of the frequency. The total impedance is then 
compared with the measured data of the real transformer 
(TO294-22kV) at certain frequencies. If the data do not 
coincide, the parametric 3D FE model is adjusted until the 
calculated and the measured impedances are identical. 
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II. DESCRIPTION OF THE APPROACH 

In this section, the working principle of the approach is 
described. It can be demonstrated by a flowchart in Fig. 1.  

The procedure is programmed in Linux script, which uses 
also Opera comi files. The program has two parts. The first 
part takes care of the interaction between a user and the 
program. The second part (the computational part) is a 
modeling and a determination of the healthy as well as faulty 
transformer parameters. 

 

 

Fig. 1 The working principle of the proposed approach 

A. User Friendly Wizard 

The interaction of the user with the program and the 
database is done through the user friendly wizard. At the 
beginning the user may define a completely new transformer 
to make a combination of parts of existing transformers or to 
select an existing transformer. 

The data needed for the transformer definition are entered 
through the wizard to the interactive database in case of the 
newly defined transformer, or the data are taken from the 
database in case of the existing transformer or a combination 
of parts of the existing transformers. 

Further, the user defines the type of the fault that should be 
identified as for example a radial or an axial short circuit and a 
shift of the winding. 

B. Interactive Database 

As mentioned in the previous subsection, all data defined by 
the user are stored in the interactive database. The interactive 
database is used by PA-TR module and its submodules. This 
database consists of data as geometry dimensions, material 
properties, types and ranges of faults, which needs to be 
investigated. 

This database contains also data created by the 
computational part as external circuits, data from all 
simulations which have already been done on the existing 
healthy and faulty transformers. 

C. Spectator 

The computational part executes several tasks in order to 
identify parameters which are needed for the next 
computations (intermediate step) or the final comparison with 
the measurements. This part is controlled by the hybrid 
program structure SPECTATOR, which opens multitasking 
strands to execute tasks, with the assistance of Linux scripts. 
This causes that the calculation is running autonomously and 
user independent. SPECTATOR manages hardware resources 
in a way that maximizes a server performance and shortens the 
computation time. 

D. Building of the TR Geometry 

The computational part utilizes number of the transformer 
geometry modification. Therefore, it is convenient to build 
“clean” geometry first, see Fig. 2, where is the transformer 
geometry without a definition of material properties. The 
geometry corresponds to the healthy transformer with all 
important elements, such as regions of windings, a core, 
insulations, oil, etc. 

 

 

Fig. 2 “Clean” model of the analyzed transformer TO294-22kV 
 
To build the “clean” geometry, SPECTATOR calls the 

Build TR geometry. This is the first task in open thread 
provided by SPECTATOR. 

E. Auto Loops 

The main task of Auto loops is to calculate the impedance at 
different frequencies, which corresponds to the impedance 
obtained by SFRA measurements. Towards this end, for the 
healthy or the faulty transformer, the following is carried out: 
1) prepare models for no-load and short circuit simulations, 
 remove redundant geometry parts (insulation regions), 
 assign material properties, 
 assign current sources, 
 assign boundary conditions, 
2) prepare models for mutual capacities calculations, 
 assign material properties, 
 assign voltage potentials, 
 assign boundary conditions, 
3) created an external circuit for FE harmonic analysis, 
 created an external circuit representing SFRA no-load and 
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magnetizing currents at certain time instant are used [1]. They 
are calculated from effective value of the magnetizing current 
amplitude at the selected time instant. This effective value can 
be measured or calculated as for example according to the 
following equation [12]: 

 

N

FeB
N S

mq
II 

                                   
(1) 

 
where IN is the nominal current (guaranteed by the 
manufacturer), qB is the coefficient of the apparent power 
losses obtained from qB = f(B), mFe is the mass of the 
transformer core and SN is the value of apparent power 
(guaranteed by the manufacturer). 

The magnetizing inductance is calculated as follows: 
 

CBA

CBA

iii
L






                             

(2) 

 
where I represents the instantaneous values of the currents, Ψ 
are the flux linkages of each phase. Equation (2) is valid at any 
time instance (see in [1]). 

In normal conditions, the magnetizing inductance depends 
on the magnetizing current at frequencies 50 or 60 Hz, based 
on the country of use. But, diagnostic equipments measure 
impedances in a broad frequency range up to kHz. Therefore, 
in this model, B-H curve has to be included not only for the 
common operational frequency but also for higher frequencies 
range. 

 

 

Fig. 10 BH curve for three frequency measured by BROCKHAUS 
MPG SST 150 

 
The frequency dependent B-H curve (see Fig. 10) is used 

for the simulation of SFRA measurements to calculate the 
impedance for 50 Hz and for 1 kHz. 

B. Short Circuit Parameters Calculations 

The leakage inductance can be calculated either by using 
the energy of the magnetic field (3) or by multiplying the 
magnetic vector potential and the current density (4). 
According to [1], the leakage inductances can be calculated 
for 3D as follows: 

 

2

2

i

dVHB
L V                                   

(3) 

 

2i

dVJA
L V                                      

(4) 

 

where i is the instantaneous value of the current in the coil,  
is a vector of the magnetic flux density,  is the vector of a 
magnetic intensity,  is the magnetic vector potential,  is the 
vector of the current density, dV is the elementary volume. 
The first approach can be used if the B-H characteristics of the 
material is linear (magnetic energy is equal to the magnetic 
coenergy). 

The calculation of the phase resistance R is carried out 
based on the following equation: 

 

2

2 2

2





















rr

Nl
R avg

                            (5) 
 

where N is the number of one phase turns, lavg is the average 
length of one turn, r is the average coil radius, μ is the 
permeability of vacuum, ω is the angular speed and γ is the 
specific electrical conductivity of the wire material, ρ is the 
specific resistivity of wire material. This equation takes into 
account skin effect. 

C. Transformer Capacities Calculations 

The transformer capacities are obtained by means of the 
energy of the electrostatic field: 

2

2

U

dVDE
C V

                                    
(6) 

 
where U is the electrical potential difference used in the 

transformer (usually between terminal voltage and ground),  

is the vector of the electrical field intensity,  is the vector of 
the electric flux density, dV is the elementary volume. 

D. Impedance of Transformer 

The impedance of the transformer is calculated from the 
harmonic analysis, when the harmonic voltage  (voltage on 
terminals) is divided by current  (current in the loop of the 
voltage source). 

 

I

U
Z 

 
                                         

(7) 

 
The impedance is frequency dependent and corresponds to 

the impedance obtained by SFRA measurement (see Fig. 12). 

IV. SIMULATION RESULTS AND EXPERIMENTAL 

VERIFICATION 

The proposed approach is applied to the real power 
transformer with nameplate: TO294-22kV, Yzn1, 100 kVA, 
22/0.4 kV, 50 Hz (see Fig. 11). 
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TABLE II 
COMPARISON OF MEASURED (SFRA) AND CALCULATED TRANSFORMER 

IMPEDANCES 

Measurement f [Hz] ZSFRA [Ω] ZFEM[Ω] Error [%] 

A-N (healthy) 50 43306.2 43086.7 0.507 

B-N (healthy) 50 50616.4 55751.6 -10.145 

C-N (healthy) 50 43121.9 43156.4 -0.080 

A-N (short cir.) 50 38882.5 40983.3 -5.403 

B-N (short cir.) 50 48995.0 48830.5 0.336 

C-N (short cir.) 50 42379.5 45034.1 -6.264 

A-N (healthy) 1000 827564.3 821375.4 0.748 

B-N (healthy) 1000 762717.4 740407.1 2.925 

C-N (healthy) 1000 1032641.1 824320.7 20.174 

A-N (short cir.) 1000 265790.5 287649.6 -8.224 

B-N (short cir.) 1000 912111.8 798441.4 12.462 

C-N (short cir.) 1000 1243408.1 951030.0 23.514 

 
The table contains the values of the transformer impedances 

for various combinations of phase connections. These values 
are calculated and measured between one phase (A, B, C) and 
the neutral point of the transformer (N). The maximal error is 
between 10% (50 Hz) and 20% (1 kHz). The same analysis 
was carried out for the faulty transformer. Also there is very 
good coincidence between measured and simulated values. 
The error is between 6% (50 Hz) and 23% (1 kHz). 

This is caused by the filamentary definition of the windings 
in the FE harmonic simulations. Such defined winding has a 
line current defined on the infinitely thin fibers rather than a 
volume current in the winding. So, it may occur that some 
mesh elements are not connected to the filaments and 
therefore these elements are not sources of the line current. 
This causes slight deformation of the magnetic field and the 
difference in the measured and the calculated impedances. 

 

Fig. 14 The filamentary winding of the analyzed transformer 
 
When comparing the results with the filamentary and the 

volume winging the relative error was reduced by 11.25%. 
But, the computational time has increased by factor 8 in case 
of the volume winding. 

V. CONCLUSION 

The proposed diagnostic approach uses the 3D FE 
parametrical model and SFRA measurements of the 
transformer to identify the range and the location of faults 

caused by an electrical short circuit without disassembling of 
the transformer. The key parameters of the approach are the 
parameters of the equivalent circuit and the impedance of the 
faulty transformer as the function of frequency. The measured 
and the calculated parameters of the parametrical model are 
compared until the most resembling model is identified. The 
results of the comparison show that the identified model of the 
faulty transformer corresponds to the real faulty transformer. 
The parameters and all models of the analyzed transformer are 
stored in the interactive database and are available via user 
friendly wizard to the used for future purposes as an analysis 
of different faults of transformers of the same type. The 
proposed parametrical 3D model is universal and very quickly 
can be used for other different three phase transformers. 
Further, this approach can also identify radial short circuits 
and winging shifts. 

Our future work will be focused on an effective replacement 
of the filamentary windings by the volume mesh windings. 
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