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Abstract—Discovering new biological knowledge from the high-

throughput biological data is a major challenge to bioinformatics 
today. To address this challenge, we developed a new approach for 
protein classification.  Proteins that are evolutionarily- and thereby 
functionally- related are said to belong to the same classification. 
Identifying protein classification is of fundamental importance to 
document the diversity of the known protein universe. It also 
provides a means to determine the functional roles of newly 
discovered protein sequences. Our goal is to predict the functional 
classification of novel protein sequences based on a set of features 
extracted from each protein sequence.  The proposed technique used 
datasets extracted from the Structural Classification of Proteins 
(SCOP) database. A set of spectral domain features based on Fast 
Fourier Transform (FFT) is used. The proposed classifier uses 
multilayer back propagation (MLBP) neural network for protein 
classification. The maximum classification accuracy is about 91% 
when applying the classifier to the full four levels of the SCOP 
database. However, it reaches a maximum of 96% when limiting the 
classification to the family level. The classification results reveal that 
spectral domain contains information that can be used for 
classification with high accuracy. In addition, the results emphasize 
that sequence similarity measures are of great importance especially 
at the family level. 
 

Keywords—Bioinformatics, Artificial Neural Networks, Protein 
Sequence Analysis, Feature Extraction. 

I. INTRODUCTION 
ROTEINS are macromolecules that serve as building blocks 
and functional components of a cell, and account for the 

second largest fraction of the cellular weight after water. in 
addition,  proteins are responsible for some of the most 
important functions in an organism, such as constitution of the 
organs (structural proteins), the catalysis of biochemical 
reactions necessary for metabolism (enzymes), and the 
maintenance of the cellular environment [1]. Identifying 
protein classification is of fundamental importance to 
document the diversity of the known protein universe.  a 
number of protein classification databases exist, including the 
structural classification of proteins (SCOP) [2], class, 
architecture, topology, and homologous superfamily (cath) [3], 
and protein family (pfam) [4] databases. Methods used to 
generate these classifications include sequence-only 
automated methods such as profile hidden Markov models 
(profile HMM) and position-specific scoring matrices (PSSM) 
as well automated structural alignment and hand curation [3], 
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[4]. This paper provides a new set of spectral domain features 
for the prediction of protein’s SCOP classification. For each 
protein sequence in the SCOP database, we calculate the 
molecular weight for every amino acid in the sequence. Fast 
Fourier Transform (FFT) is then calculated for every sequence 
of molecular weights. Compared to other proteins in different 
classification levels, the spectrum is different which suggests 
that FFT coefficients of molecular weights may be used as a 
good discriminating feature. We then use a neural network 
classifier to classify protein sequences based on these features. 
We conducted several experiments in order to determine the 
classification accuracy as a function of the number of FFT 
coefficients, and the number of neurons used in the classifier. 
In the experiments conducted, it was found out that the highest 
accuracy is achieved when we use only the lowest 40-60 
coefficients of FFT of the generated spectrum, and 30-60 
neurons in the hidden layer of a 3-layers back propagation 
neural network. Thus, given a novel protein sequence, we are 
able to predict its SCOP classification with high accuracy, 
using the decision made by this classifier.    
   The remainder of this paper is organized as follows. Section 
II provides a brief discussion of the related techniques for 
protein classification. Section III describes the details of our 
approach.  In Section IV, the results of our approach are 
summarized. Finally, conclusions and directions for future 
work are provided in Section V. 

II. RELATED WORK AND OBJECTIVES 
To understand how proteins function, we need to build a 

global picture of the protein universe [5].  Newly-discovered 
protein structures are growing exponentially, hence, the 
protein universe is constantly changing. In order to understand 
the functions of proteins and their relationships to each other, 
classifications of proteins should be updated frequently [6]. 

Considerable research has addressed the problem of protein 
classification. Traditionally, protein classification has relied 
on sequence alignment methods such as BLAST [7], where a 
protein’s function is inferred from proteins of similar sequence 
whose function is known. However, this approach is only 
reliable for high sequence similarity values, and even then, the 
transfer of function is not complete between proteins [8]. 
Furthermore, the inference of function from proteins whose 
function was already inferred can lead to the propagation of 
errors [9]. Comparing protein structure in addition to sequence 
has been suggested as a way to predict protein function [10]-
[12], since a protein’s structure is directly related to its 
function and is conserved at low levels of sequence similarity 
[13]. In addition, some authors advocate the use of automated 
methods to predict structural features and classes from protein 
sequences as a step to predict function [13], [14].  As an 
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alternative to alignment methods, several machine learning 
approaches have been applied to protein function 
prediction/classification from sequence and structure data 
[15]. Support vector machines (SVMs) have been the most 
popular (e.g. [14]), although other methods such as decision 
trees [16], [17], Markov chains [18], and neural networks [19], 
[20] have also been used with some success. SVMs in 
particular, have proven more reliable than sequence alignment 
methods in situations of low sequence similarity, such as 
remote homology detection [21], [22]. However, much of the 
focus of SVM-based studies has been on finding useful 
representations of the sequence data. Some authors used 
explicit feature vectors using global sequence properties such 
as amino acid composition [15], [23], and [24], in which the 
order and pattern of the amino acids in the protein sequence 
are ignored. Others used more complex Kernel functions, 
involving sequence similarity or pattern matching [25]-[29], 
most of which are computationally intensive, and do not differ 
much from alignment methods. Theoretically, the sequence of 
amino acids of a protein contains all the necessary information 
to predict its function. Thus an approach that can deal directly 
with sequences could be advantageous [25]. Only the 
techniques based on sequence alignments considered the 
sequence of amino acids, however, they measure sequence 
similarity locally and suffer from high complexity especially 
for long protein sequences.    

Despite the power of the mathematical tools of signal 
processing, their application to protein sequences has been 
minimal. One of the very first applications was in the 
computation of the hydrophobic moment of protein domains 
[30] and in detecting periodicities in secondary structure ( -
helix, -sheet and 310-helix) [31]. Wavelet analysis of the 
hydrophobicity signal has been used to locate the secondary 
structure content relating the periodicity observed in the signal 
to the known values of secondary structure period [32]. The 
Fourier spectrum is computed from the hydrophobicity and 
secondary structure signal of a protein, and the power 
spectrum served as the feature input into a neural network 
[33]. To the best of our knowledge, none of the existing 
techniques apply Fourier transform for detecting the sequence 
similarity and classifying the unknown protein sequence 
according to some features detected from the spectral domain. 

III. PROPOSED TECHNIQUE 
Fig. 1 depicts the analysis steps of our approach. For each 

protein in SCOP database, a set of features is calculated. The 
most discriminating features are selected, and passed to the 
classifier. Finally, the classification decision is taken. The 
following sections will discuss each process separately. 

 
 
 
 
 
 
 
 
 

Fig. 1. Block diagram of the proposed approach 

A. Used Database 
Protein classification schemes employ different heuristics, 

similarity metrics, and different degrees of automation. SCOP 
is one of the classification schemes which is created mainly by 
manual inspection [5]. This is perhaps the reason that it is 
accepted by many researchers as the most accurate 
classification scheme (or the ground truth) [34]. SCOP is a 
database of known structural and evolutionary relationships 
amongst proteins of known structures [2]. It has been created 
as a hierarchy of several obligatory levels. The fundamental 
unit of classification is a domain in the experimentally 
determined protein structure. Protein domains are grouped at 
different levels according to their sequence, structural and 
functional relationships [2]. Proceeding from bottom to top, 
the SCOP hierarchy comprises the following levels: protein 
Species, representing a distinct protein sequence; Protein, 
grouping together similar sequences of essentially the same 
functions ; Family containing proteins with related sequences 
but typically distinct functions; and Superfamily bridging 
together protein families with common functional and 
structural features inferred to be from a common evolutionary 
ancestor. Near the root, the basis of classification is purely 
structural: structurally similar superfamilies with different 
characteristic features are grouped into Folds, which are 
further arranged into Classes based mainly on their secondary 
structure content and organization. The seven main classes in 
the latest release contain 92927 domains organized into 3464 
families, 1777 superfamilies and 1086 folds. The SCOP 
domains correspond to 34 495 entries in the Protein Data Bank 
(PDB) [35]. Statistics of the current and previous releases, 
summaries and full histories of changes and other information 
are available from the SCOP website (http://scop.mrc-
lmb.cam.ac.uk/scop/) together with parseable files encoding 
all SCOP data [36]. The sequences and structures of SCOP 
domains are available from the ASTRAL compendium [37], 
and hidden Markov models of SCOP domains are available 
from the SUPERFAMILY database [38]. Since the creation of 
SCOP in 1994, the number of known protein structures has 
grown more than 20-fold, whereas the numbers of SCOP 
folds, superfamilies and families have increased 4-fold, 5-fold 
and 7-fold, respectively [36]. 
   SCOP is updated manually every six months [36]. However, 
automated classification schemes have the advantage that the 
view of the protein universe can be updated frequently to 
include newly-discovered protein structures in a timely 
manner.  

B. Feature Extraction 
In this paper, spectral domain features based on FFT of 

molecular weight of each protein sequence are used.  The total 
number of protein sequences used is 14762. This number was 
obtained after applying a data cleaning and preprocessing 
stage over the 15273 available sequences in the used version 
of SCOP database. 

For each protein sequence in the database, a tuple of four 
attributes is produced to represent its SCOP classification. The 
tuple consists of class.fold.superfamily.family (e.g. d.136.1.1) 
according to which all sequences are sorted in a 2-dimensional 
array. The first column represents a sequence’s SCOP 
classification, and the second column includes the sequence 
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itself. After sorting protein sequences, they are divided into 
3399 categories based on their unique full four digit 
classification. 

After the preprocessing step, we created fixed length 
sequences for each protein by padding each sequence with 
zeroes until it reaches 752 characters which is the length of the 
longest protein sequence in the database used. Molecular 
weight of each amino acid in each sequence is calculated, and 
then it is transformed to spectral domain using Fast Fourier 
Transform. The spectrum is averaged for all sequences 
belonging to the same SCOP classification. Two levels for 
classification were used. Firstly, all four levels up to the class 
level were used. Secondly, only the family level was used. In 
both experiments, the averaged spectra of the different classes 
are compared.  Figures 2-4 show the averaged spectrum of 
a.1.1.1, b.34.11.4, and c.72.34.11 proteins respectively. The x-
axis represents the frequency components in Hz, while the y-
axis represents the average magnitude of Fourier coefficients 
of molecular weights. 

 

 
 

Fig. 2. The average spectrum of molecular weight of each amino acid 
in a.1.1.1 proteins 

 

 
 

Fig. 3. The average spectrum of molecular weight of each amino acid 
in b.34.11.4 proteins 

 
 

 
 
Fig. 4. The average spectrum of molecular weight of each amino 

acid in c.72.34.11 proteins 
 
From the example spectra shown in the above figures, we 

notice that the spectrum of different protein families is 
different, which suggests that there is some information in the 
spectral domain that can be used for classification. The 
differences are obvious regarding the peak of each spectrum 
which occupies a frequency range around 1, 4, and 7 Hz for 
a.1.1.1, b.34.11.4, and c.72.34.11 proteins respectively. In 
addition, the maximum magnitude of Fourier coefficients is 
more than 15000 for a.1.1.1 and b.34.11.4 proteins. 
Meanwhile it exceeds 30000 for c.72.34.11 proteins. 

 

C. Best Features Selection 
The 14762 spectra generated are divided into 60% for 

training, and 40% for validation. The training data is used as 
an input to a neural network classifier who is learned to 
classify the inputs according to their spectra. The network 
consists of 3 layers. The number of neurons in the input layer 
is set equal to the number of FFT coefficients used (features). 
The number of neurons in the hidden layer is varied in every 
experiment we conducted. In addition, the number of neurons 
used in the output layer is set equal to log 2m, where m is the 
number of different classes to be identified. 

The performance of the proposed classifier depends on two 
factors, the number of neurons in the hidden layer, in addition 
to the number of features to be used. Thus, to find the 
optimum operating point, we increased the used number of 
features gradually from 30 to 60. For each number of features 
belonging to this range, the number of neurons in the hidden 
layer is increased gradually. The reason for choosing this 
range of values is that we noticed from the experiments 
conducted that the accuracy reached an acceptable value 
(above 70%) when the number of features used reached 30. 
Above 60 features, the accuracy was saturated. Similarly, the 
performance reached an acceptable value when the number of 
neurons varied from 30 to 40. Figure 5 shows the accuracy 
calculated at 38 neurons in the hidden layer with variable FFT 
coefficients ranging from the lowest 30 to 60 coefficients. 
Moreover, Fig. 6 shows the effect of varying both the number 
of neurons and the number of FFT coefficients on the 
accuracy. Experimental results indicate, as shown in Fig. 6, 
that the maximum obtained accuracy in these settings is about 
91% which occurs when we use 38 neurons and 43 features. 
These empirical values indicate that the frequency domain 
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contains information that can be used for proteins 
classification with an acceptable performance. 
 

 
 

Fig. 5. The accuracy vs. the number of FFT coefficients 

 
 

Fig. 6. The accuracy vs. the number of FFT coefficients and the 
number of neurons 

IV. RESULTS 
To the best of our knowledge, no study was found in the 

literature for the classification of proteins into full four-digit 
classes. Considering the difficulty of the task, and after 
conducting several experiments, it was found out that the best 
accuracy with the minimum number of features and neurons is 
about 98% in the training step and 91% in the validation step 
when only the lowest 43 FFT coefficients are used as features, 
with 38 neurons in the hidden layer. Table 1 shows classification 
accuracy for some Enzyme Commission (EC) families. The 
lowest obtained accuracy is 77% for 3.4.22.45 proteins. When 
we limited the classification level to the family level, the 
classification accuracy was raised to a maximum of 100% in the 
training step. In addition, it reaches a maximum of 96% in the 
validation step. Table 2 gives the classification accuracies for the 
same proteins listed in Table 1, when the classification level is 
limited to the family level only. The improvements show the 
relevance of molecular weights as a discriminating feature for all 
proteins at the family level. These improvements were expected 
since sequence similarities are the main similarity measures at 
the family level. Both experiments show that spectral domain 
contains information about sequences that can be used for 
classification which is the main contribution of the conducted 
work.  

 

TABLE 1  
CLASSIFICATION ACCURACIES FOR TRAINING AND VALIDATION FOR SOME EC 

PROTEINS UP TO THE CLASS LEVEL 
EC 

family 

Accuracy 

Training Validation 

EC class Accuracy 

Training  

Validation 

   1.1.1.1 0.98 0.91 2.1.1.33 0.97 0.86 

1.1.1.23 0.96 0.88 2.1.1.45 0.97 0.87 

1.1.1.27 0.98 0.85 2.1.1.56 0.89 0.86 

1.1.1.37 0.97 0.87 3.4.22.28 0.98 0.88 

1.2.1.12 0.93 0.87 3.4.22.29 0.99 0.90 

1.2.1.38 0.96 0.81 3.4.22.44 0.98 0.84 

1.2.1.41 0.89 0.90 3.4.22.45 0.94 0.77 

1.2.1.70 0.88 0.90 6.3.4.2 0.9 0.88 

2.1.1.14 0.89 0.91 6.3.4.4 0.95 0.90 

2.1.1.31 0.89 0.90 6.3.4.5 0.99 0.88 

 
TABLE II 

CLASSIFICATION ACCURACIES FOR TRAINING AND VALIDATION FOR SOME EC 
PROTEINS LIMITED TO THE FAMILY LEVEL ONLY 

 
  
 
 
 
 
 
 
 
 
 
 
In Fig. 7, the Receiver Operating Characteristic curve (ROC) 

of the used features is shown for the four level classification 
experiments. It is to be noticed that the area under the curve is 
near one which emphasize that the suggested features are good 
representatives for the classes to be identified. 

 

 
Fig. 7. The ROC for the used features 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, a new set of features for protein’s SCOP 

classification is proposed. The features used are FFT 
coefficients of the spectrum of the molecular weight of each 
SCOP protein. Experimental results show that the best 

EC super-family Accuracy 

Training        Validation 

1.1.1 1 0.96 

1.2.1 1 0.94 

2.1.1 0.97 0.96 

3.4.22 0.98 0.95 

6.3.4 0.95 0.92 
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accuracy occurs when using only the lowest 43 FFT 
coefficients as features.  
   Fourier analysis provides a useful DSP means for the 
description of protein sequences where it is used to extract 
characteristic bands from these sequences. In our approach, 
the sequence-scale analysis with Fourier analysis gave a multi-
resolution similarity comparison between protein sequences. 
Using Fourier transform, we took into account not only the 
local pair-wise amino acid but also the information contained 
in coarser spatial resolution. Also, this Fourier based method 
did not require the complex sequence alignment processing for 
sequences. Therefore, proteins with different sequence lengths 
could be compared easily.  
   Currently, we are applying more intelligent feature selection 
techniques. Moreover, we intend to use more physical features 
for the sequences, in addition to other structural measures to 
further improve the classification accuracy up to the class 
level. 
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