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A note on the minimum cardinality of critical sets
of inertias for irreducible zero-nonzero patterns of

order 4
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Abstract—If there exists a nonempty, proper subset S of the set
of all (n + 1)(n + 2)/2 inertias such that S ⊆ i(A) is sufficient for
any n×n zero-nonzero pattern A to be inertially arbitrary, then S is
called a critical set of inertias for zero-nonzero patterns of order n.
If no proper subset of S is a critical set, then S is called a minimal
critical set of inertias. In [Kim, Olesky and Driessche, Critical sets
of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3)
(2009) 293-306], identifying all minimal critical sets of inertias for
n×n zero-nonzero patterns with n ≥ 3 and the minimum cardinality
of such a set are posed as two open questions by Kim, Olesky and
Driessche. In this note, the minimum cardinality of all critical sets
of inertias for 4 × 4 irreducible zero-nonzero patterns is identified.

Keywords—Zero-nonzero pattern, Inertia, Critical set of inertias,
Inertially arbitrary.

I. INTRODUCTION

AN n×n zero-nonzero pattern is a matrix A = [αij ] with
entries in {∗, 0} where ∗ denotes a nonzero real number.

The set of all real matrices A = [aij ] such that aij �= 0 if
and only if αij = ∗ for all i and j. If A ∈ Q(A), then A
is a realization of A. A subpattern of an n× n zero-nonzero
pattern A = [αij ] is an n× n zero-nonzero pattern B = [βij ]
such that βij = 0 whenever αij = 0. If B is a subpattern of
A, then A is a superpattern of B. A zero-nonzero pattern A
is reducible if there is a permutation matrix P such that

PAPT =
( A11 A12

0 A22

)

where A11 and A22 are square matrices of order at least one.
A pattern is irreducible if it is not reducible.

Recall that the inertia of a matrix A is an ordered triple
i(A) = (n+, n−, n0) where n+ is the number of eigenvalues
of A with positive real part, n− is the number of eigenvalues of
A with negative real part, and n0 is the number of eigenvalues
of A with zero real part. The inertial of zero-nonzero pattern
A is i(A) = {i(A)| A ∈ Q(A)}. An n × n zero-nonzero
pattern A is an inertially arbitrary pattern (IAP) if given any
ordered triple (n+, n−, n0) of nonnegative integers with n+ +
n− + n0 = n, there exists a real matrix A ∈ Q(A) such that
i(A) = (n+, n−, n0). Equivalently, A is an inertially arbitrary
pattern if all the (n+1)(n+2)/2 ordered triples (n+, n−, n0)
of nonnegative integers with n+ + n− + n0 = n are in i(A);
see, e.g., [2-4].
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Let S be a nonempty, proper subset of the set of all (n +
1)(n+ 2)/2 inertias for any n× n zero-nonzero pattern A. If
S ⊆ i(A) is sufficient for A to be inertially arbitrary, then S
is said to be a critical set of inertias for zero-nonzero patterns
of order n and if no proper subset of S is a critical set of
inertias, S is said to be a minimal critical set of inertias for
zero-nonzero patterns of order n; see, e.g., [3]. All minimal
critical sets of inertias for irreducible zero-nonzero patterns
of order 2 are identified. But as posed in [3], identifying all
minimal critical sets of inertias for irreducible zero-nonzero
patterns of order n ≥ 3 is an open question. Also open is the
minimum cardinality of such a set.

In this note, we concentrate on the minimum cardinality of
all critical sets of inertias for irreducible zero-nonzero patterns
of order 4. It is shown that the minimum cardinality of all
critical sets of inertias for 4 × 4 irreducible zero-nonzero
patterns is 3.

II. PRELIMINARIES AND MAIN RESULTS

A zero-nonzero pattern A = [αij ] has an associated digraph
D(A) with vertex set {1, 2, . . . , n} and for all i and j, an arc
from i to j if and only if αij is ∗. A (directed) simple cycle of
length k is a sequence of k arcs (i1, i2), (i2, i3), . . . , (ik, i1)
such that the vertices i1, . . . , ik are distinct. The digraph of
a matrix is defined analogously; see, e.g., [1]. A digraph is
strongly connected if for each vertex i and every other vertex
j (�= i), there is an oriented path from i to j. A zero-nonzero
pattern A is irreducible if and only if its digraph, D(A), is
strongly connected. For any digraph D, let G(D) denote the
underlying multigraph of D, i.e., the multigraph obtained from
D by ignoring the direction of each arc; see, e.g., [2].

The following lemma 1 was stated as Proposition 2 in [2],
which is useful to determine whether a zero-nonzero pattern
is inertially arbitray or not.

Lemma 1. Let A be an irreducible n × n zero-nonzero
pattern and let A ∈ Q(A). If T is a direct subgraph of D(A)
such that G(T ) is a tree, then A has a realization that is
diagonally similar to A such that each entry corresponding
to an arc of T is 1.

We proceed by showing the following zero-nonzero pattern
is nearly inertially arbitrary.
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Theorem 1 Let

N =

⎛
⎜⎜⎝

∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 0 0 ∗
∗ 0 ∗ 0

⎞
⎟⎟⎠ .

Then the zero-nonzero pattern N allows all inertias (n1, n2,
n3) with nonnegative integers n1, n2 and n3 such that n1+
n2 + n3 = 4 except inertia (0, 0, 4).

Proof. Since (0, 0, 4) ∈ i(N ) if and only if N allows some
characteristic polynomial of the form

x4 + (p+ q)x2 + pq

for p, q ≥ 0. Suppose A is a realization of N . By Lemma 1,
without loss of generality, let

A =

⎛
⎜⎜⎝

a 1 0 b
c d 1 0
0 0 0 1
e 0 f 0

⎞
⎟⎟⎠

for some nonzero real numbers a, b, c, d, e and f . Then the
characteristic polynomial of A is

pA(x) = x4 − (a+ d)x3 + (ad− c− be− f)x2

+[(a+ d)f + bde]x+ cf − adf − e.

Suppose
pA(x) = x4 + (p+ q)x2 + pq

Then
a+ d = 0

and
(a+ d)f + bde = 0

It follows that
bde = 0.

It is a contradiction. Hence, N does not allow (0, 0, 4).

Next we show that the zero-nonzero pattern N allows
all the remaining inertias. Note that for an arbitrary zero-
nonzero pattern N , (n+, n−, n0) ∈ i(N ) if and only if
(n−, n+, n0) ∈ i(N ). So to complete the proof, it suffices
to show that N allows inertias (1, 0, 3), (2, 0, 2), (1, 1, 2),
(3, 0, 1), (2, 1, 1), (4, 0, 0), (3, 1, 0) and (2, 2, 0).

Consider realizations of N⎛
⎜⎜⎝

−2 1 0 1
2− 22

3 3 1 0
0 0 0 1
− 4

3 0 1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 0 4
3− 1

2 1 1 0
0 0 0 1
− 3

4 0 1
2 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
2 1 0 2
1
4

1
2 1 0

0 0 0 1
2 0 −3 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

2 1 0 −2
4 1 1 0
0 0 0 1
4 0 2 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
2 1 0 2

3−3
4

1
2 1 0

0 0 0 1
−3 0 3 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

2 1 0 11
2

4 2 1 0
0 0 0 1
−2 0 4 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 0 −2
1 1 1 0
0 0 0 1
2 0 3 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 1 0 1
1
2 −2 1 0
0 0 0 1
− 3

2 0 1 0

⎞
⎟⎟⎠

with inertias (1, 0, 3), (2, 0, 2), (1, 1, 2), (3, 0, 1), (2, 1, 1),
(4, 0, 0), (3, 1, 0) and (2, 2, 0), respectively. It follows that N
allows all inertias except (0, 0, 4).

Corollary 1. Let S be a nonempty, proper subset of the
set of all (n + 1)(n + 2)/2 inertias for 4 × 4 irreducible
zero-nonzero patterns. If S is a critical set of inertias, then
(0, 0, 4) ∈ S.

Proof. By a way of contradiction assume that (0, 0, 4) does
not belong to S. Then S must contain some of the rest of
inertias. By Theorem 1, S ⊆ i(N ) and N is not inertially
arbitrary. It follows that S is not a critical set of inertias; a
contradiction.

The following result was stated as Theorem 4 in [2].

Lemma 2. Let the zero-nonzero pattern of order 4

M =

⎛
⎜⎜⎝

0 ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗

⎞
⎟⎟⎠ .

Then M allows all inertias (n1, n2, n3) with nonnegative
integers n1, n2 and n3 such that n1 + n2 + n3 = 4 except
(1, 0, 3), (0, 1, 3), (2, 0, 2) and (0, 2, 2).

The following corollary indicates that the minimum
cardinality of critical sets of inertias for irreducible 4 × 4
zero-nonzero patterns is at least 2.

Corollary 2. There is no critical set of inertias with a
single inertia for irreducible 4 × 4 zero-nonzero patterns.
Moreover, if S is a critical set of inertias for irreducible
4 × 4 zero-nonzero patterns, then S must contain (0, 0, 4)
and one of the inertias (1, 0, 3), (0, 1, 3), (2, 0, 2) and (0, 2, 2).

Proof. The first part of Corollary 2 follows directly from
Theorem 1 and Lemma 2. If S is a critical set of inertias,
then (0, 0, 4) ∈ S by Corollary 1. If none of the inertias
(1, 0, 3), (0, 1, 3), (2, 0, 2) and (0, 2, 2) is in S, the S ⊆ i(M)
in Lemma 2. But it is clear that M is not inertially arbitrary.
It follows that S is not a critical set of inertias; a contradiction.

Theorem 2. Let the zero-nonzero pattern of order 4

P =

⎛
⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ 0 0
∗ 0 0 0
∗ 0 0 0

⎞
⎟⎟⎠ .
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Then P allows all inertias (n1, n2, n3) with nonnegative
integers n1, n2 and n3 such that n1 +n2 +n3 = 4 except the
only inertias (4, 0, 0), (0, 4, 0), (3, 1, 0), (1, 3, 0) and (2, 2, 0).

Proof. Since P requires singularity, it follows that all of
the inertias (4, 0, 0), (0, 4, 0), (3, 1, 0), (1, 3, 0) and (2, 2, 0)
are not allowed by P .

Consider realizations of P⎛
⎜⎜⎝

1 1 1 1
−2 −1 0 0
1 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 1 1
1 1 0 0
1 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 1 1
−1 1 0 0
1 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

2 1 1 1
−3 −2 0 0
1 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 1 1
−1 2 0 0
−2 0 0 0
1 0 0 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

−1 1 1 1
−3 2 0 0
−1 0 0 0
2 0 0 0

⎞
⎟⎟⎠

with inertias (0, 0, 4), (1, 0, 3), (2, 0, 2), (1, 1, 2), (3, 0, 1)
and (2, 1, 1), respectively. It follows that the zero-nonzero
pattern P allows all inertias except (4, 0, 0), (0, 4, 0), (3, 1, 0),
(1, 3, 0) and (2, 2, 0).

It was known that the set {(0, 0, 4), (1, 0, 3), (4, 0, 0)} is a
minimal critical set of inertias for irreducible zero-nonzero
patterns of order 4. Other minimal critical sets on inertias can
be obtained by replacing (4, 0, 0) or (1, 0, 3) by its reversal;
see, e.g., [3, Theorem 7]. As mentioned in Section 6 in
[3], for n = 4, it is unknown that whether there are other
critical sets of inertias. Also mentioned is that the minimum
cardinality of all critical sets of inertias for 4 × 4 irreducible
zero-nonzero patterns is at most 3. The next theorem answers
this problem completely.

Theorem 3. The minimum cardinality of all critical sets of
inertias for irreducible 4 × 4 zero-nonzero patterns is 3.

Proof. By a way of contradiction suppose that the minimum
cardinality of all critical sets of inertias is 2. Let S be an
arbitrary critical set of inertias with cardinality 2. Then, by
Corollary 2, S must contain (0, 0, 4) and only one of the
inertias (1, 0, 3), (0, 1, 3), (2, 0, 2) and (0, 2, 2).

Case 1. S contains inertias (0, 0, 4) and (1, 0, 3) or its
reversal. Then S does not contain all the inertias (4, 0, 0),
(0, 4, 0), (3, 1, 0), (1, 3, 0) and (2, 2, 0). By Theorem 2, we
have S ⊆ i(P) and P is not inertially arbitrary. It follows that
S is not a critical set of inertias for irreducible zero-nonzero
patterns of order 4, which is a contradiction.

Case 2. The case that S contains inertias (0, 0, 4) and
(2, 0, 2) or its reversal is similar to Case 1. We omit its proof.
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