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Hydrodynamic Force – A New Approach
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Abstract—We propose a reduced-order model for the instantaneous
hydrodynamic force on a cylinder. The model consists of a system of
two ordinary differential equations (ODEs), which can be integrated
in time to yield very accurate histories of the resultant force and
its direction. In contrast to several existing models, the proposed
model considers the actual (total) hydrodynamic force rather than its
perpendicular or parallel projection (the lift and drag), and captures
the complete force rather than the oscillatory part only. We study
and provide descriptions of the relationship between the model
parameters, evaluated utilizing results from numerical simulations,
and the Reynolds number so that the model can be used at any
arbitrary value within the considered range of 100 to 500 to provide
accurate representation of the force without the need to perform time-
consuming simulations and solving the partial differential equations
(PDEs) governing the flow field.
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I. PROBLEM DESCRIPTION

W
HEN a uniform flow is interrupted by an infinite-

length cylinder, whose axis is perpendicular to the flow,

there is a threshold of undisturbed velocity (for a certain fluid

viscosity and cylinder diameter) over which a Hopf bifurcation

occurs and the steady symmetric wake becomes periodic due

to the existence of alternating vortices being shed in the wake

at a nondimensional frequency, using the cylinder diameter and

undisturbed velocity, that is known as the Strouhal number

(St). Experimental and numerical studies showed that this

threshold corresponds to a nondimensional velocity, using the

cylinder diameter and kinematic fluid viscosity, that is known

as the Reynolds number (Re) near 50 [1]–[3]. Before the

bifurcation, the resultant hydrodynamic force on the cylinder,

due to surface pressure and shear stresses, is parallel to the

undisturbed flow. When the threshold Reynolds number is

exceeded, this force becomes alternating in both the amplitude

and direction, but its average has a non-zero value in the

parallel direction. It is a common practice in hydrodynamics

and aerodynamics to decompose this force into two orthogonal

projections and represent them as a ‘nondimensional’ lift

coefficient CL and ‘nondimensional’ drag coefficient CD by

scaling these projections with a reference force (per unit

length) that is the product of the fluid density, square of the

undisturbed velocity, and the cylinder diameter.

In this study, we consider the total force directly but we still

use a nondimensional representation, which we denote as the

total-force coefficient (CT ). We denote the angle of the total

force relative to the undisturbed-flow direction (being positive

in the clockwise direction) by β as illustrated in Fig. 1. Typical
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histories of CT and β (at Re = 300) are presented in Fig. 2. In

these figures (and all subsequent ones), the time is normalized

using the cylinder diameter and the undisturbed velocity. These

histories require performing numerical simulation and solving

the incompressible Navier-Stokes equations (continuity and

momentum conservation laws), which govern the unsteady

velocity and pressure fields of the constant-density, constant-

temperature fluid, which is followed by a post-processing step

to compute the surface pressure and shear stress at the cylinder

surface and then integrating them to find the resultant force.

Whereas well-established techniques and numerical schemes

have been developed for this purpose [4]–[6], solving this

system of nonlinear, coupled partial differential equations with

high accuracy requires a lot computational resources and time.

It is therefore desirable to circumvent these simulations by

replacing this PDE system by a reduced ODE one that still

describes accurately CT and β but with much less computa-

tional demands and without the need of post-processing of the

velocity and pressure fields. This is the main objective of our

study. Whereas details about the flow field can not be obtained

through the reduced-order model, the force on the cylinder is

of primary importance when we are concerned with the design

of a cylinder (or a pipe) and the implied fatigue problem.

A full cycle of β corresponds to a full cycle of shedding

where two contra-rotating vortices are shed in the wake.

We marked four equally-spaced instants of time over ap-

proximately one cycle of β starting from a point where β
is maximum. The corresponding distributions of the surface

pressure (nondimensional) at these instants are presented in

Fig. 3, and we superimposed an arrow indicating CT and

its direction. We should mention here that we only show the

distributions of the surface pressure and not the surface shear

because the former is very small compared to the latter (except

at very low Re before shedding takes place, which is not of

interest here) as also indicated in Ref. [7]. However, in all the

results of CT and β we obtained through solving the Navier-

Stokes equations and present in this study, we accounted for

the contribution of both the pressure and shear. The average

(over time) surface pressure distribution is symmetric and the

average CT is not zero but the average β is zero as indicated

in Fig. 4.

For the same case of Re=300, we present in Fig 5 typical

spectra of CT and β. We normalize the frequencies by

the Strouhal number. As mentioned earlier, the fundamental

frequency of β is the shedding frequency. The fundamental

frequency of CT is twice the fundamental frequency of β, thus

is twice the Strouhal number. The total-force coefficient can

be represented as a superposition of an average value (denoted

as a0T ) and a harmonic function with a frequency at 2St and
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amplitude a2T , which is the magnitude of the CT harmonic at

a frequency equal to 2St. All odd harmonics and other even

harmonics of CT are negligible as indicated in Fig 5. On the

other hand, all even harmonics of β (at even multiples of St)

are negligible. The magnitude of the third harmonic a3β is one

order of magnitude smaller than the fundamental harmonic

(whose magnitude is a1β), and the higher odd harmonics are

negligible. These features of CT and β are common for the Re

range we consider here (from 100 to 500), and we will utilize

them when proposing our new ODE system that models CT

and β.

II. MODELING OVERVIEW AND OUR OBJECTIVES

Birkhoff and Zarantonello [8] observed that the wake of

a stationary cylinder, with its continuous swinging, can be

modeled by an oscillator and alluded to a linear one. Seven

years later, Bishop and Hassan [9] conducted a thorough ex-

perimental study of a cylinder forced to oscillate perpendicular

to a uniform flow. When the forcing frequency was close to the

Strouhal number, the wake responded at the forcing frequency

and not at the Strouhal number, and we speak of a wake

synchronized with the motion of the cylinder. Based on this

observation, Bishop and Hassan proposed that the periodic

wake can be modeled by a simple oscillator. They did not

specify a particular oscillator (which they called ’wake’ or

’fluid’ oscillator), but indicated that it is nonlinear and self-

excited. Since then, several models have been proposed for the

wake of a rigid cylinder [10]–[23]. Each model is a nonlinear

ODE that, when integrated in time, yields the history of the

lift coefficient.

Two candidate models have been commonly used so far for

the lift force on a cylinder in a uniform flow: the Rayleigh

oscillator [10], [11], [13], [14], [19] and the van der Pol

oscillator [20]–[23]. The van der Pol oscillator for the lift

coefficient (CL) has the form

C̈L + ω2 CL + µ ĊL + c C2

L ĊL = 0 (1)

and the Rayleigh oscillator has the form

C̈L + ω2 CL + µ ĊL + c Ċ3

L = 0 (2)

Both are self-excited self-limiting nonlinear oscillators with

a cubic nonlinearity. Krenk and Nielsen [18] proposed a

combination of these two oscillators, and Griffin et al. [24]

and Skop and Griffin [25] even added a Duffing term (C3

L).

Landl [15] proposed a variant of the van der Pol oscillator with

an additional quintic term (C4

L ĊL) as an additional hydrody-

namic damping, but this increased the model parameters to be

determined and its complexity. It should be noted that only

odd nonlinearities can be considered in the wake oscillator

for CL because its spectrum mainly consists of a dominant

component at St and harmonics at odd multiples of St.

It was Nayfeh et al. [20] who justified their choice of the

van der Pol oscillator, rather than the Rayleigh one, to describe

the lift coefficient exerted on a stationary cylinder by the wake.

They reinforced that the van der Pol oscillator produces a

phase of the third harmonic, at 3St, relative to the fundamental

one, at St, that is equal to 90o as compared to 270o in the

case of the Rayleigh oscillator. They found that correspond-

ing phase obtained from numerical simulations (solving the

Reynolds-averaged Navier-Stokes equations at different Re)

was approximately 90o. Qin [22] and Marzouk et al. [23]

based their choice of the same oscillator on the reasoning

of Nayfeh et al. [20], whereas Facchinetti et al. [21] did not

give a reason for choosing this oscillator. The wake oscillator

of Facchinetti et al. [21] lacks the flexibility of describing

the changes in the lift coefficient at different wake regimes

(different Reynolds numbers) because the coefficient of the

(negative) linear damping and (positive) nonlinear damping are

equal, thus the model yields a unique limit cycle irrespective

of the Reynolds number, which is a serious violation of the

physics of the problem. The model also assumes a constant

Strouhal number of 0.2, which also should be allowed to

vary with the Reynolds number as found in experimental and

numerical studies (see Appendix A). We note that the model

variable in the work of Facchinetti et al. [21] is the CL scaled

to a reference constant and not the CL itself. However, this

does not affect the model dynamics.

Marzouk et al. [23] added a Duffing term to the van der

Pol oscillator. Although Griffin et al. [24] and Skop and

Griffin [25] have previously included a Duffing term in their

mixed (van der Pol and Rayleigh) wake oscillator, they did

not provide a reason behind including such term, which seems

to be just an attempt to generalize the oscillator. In contrast,

Marzouk et al. [23] explained the need for this term by the

ability of the model to capture exactly the relative phase of the

third harmonic of CL, which would be fixed at 90o without

this Duffing term. They also provided expressions relating the

model parameters to the CL characteristics (e.g., the frequency

and magnitude of the fundamental harmonic).

Ogink and Metrikine [26] started from where Facchinetti et

al. [21] ended and modified the cubic term in the van der Pol

oscillator from C2

L ĊL to 1/(a + b C2

L)ĊL, where 0< a <1

and 0< b are two tuning parameters. This modification was

proposed so that for increasing values of CL, the influence

of the nonlinearity in the modified model decreases. However,

they did not discuss how a and b are related to the Reynolds

number or the wake characteristics. They set these extra tuning

parameters to constant values of a=1/2 and b=1.

Some studies [16], [20], [22], [23], [27] also considered a

reduced-order model for the drag. Currie and Turnbull [16]

used a Rayleigh oscillator to describe the oscillatory part

only of the drag coefficient. Assuming a harmonic oscillatory

drag, a relationship between the parameters of the linear and

nonlinear damping was established such that the amplitude of

the oscillatory drag coefficient becomes 0.2, and the model

does not allow any variation of this value with the Reynolds

number. This is a remarkable drawback in the model, which

also specifies the individual values of these parameters based

on matching the model results to an arbitrary data set in a

trial-and-error fashion.

Kim and Perkins [27] considered an elastic cable suspen-

sion, and introduced a drag model in which the oscillatory

part of the drag coefficient was represented as the product

of a time-dependent function and a spatial function whose

argument is the longitudinal coordinate (divided by the cable
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diameter) along the cable in the static condition. The time-

dependent function was modeled by a van der Pol oscillator

whose natural frequency is at twice the Strouhal number. A

similar oscillator was used for the lift coefficient but the natural

frequency is at the Strouhal number. Kim and Perkins used

seven quadratic coupling terms in the two oscillators with

seven parameters that need to be identified. These parameters

were grouped in four functions, whose values were simply

selected manually to fit some experimental data, which also

was followed in determining other model parameters for the

uncoupled part of the oscillators. Therefore, their coupled lift

and drag models have many parameters to identify; there is

no robust method of determining these parameters, and the

average drag is not reproduced.

Nayfeh et al. [20], Qin [22], and Marzouk et al. [23]

assumed the oscillatory part of the drag coefficient to be a

harmonic function at twice the Strouhal number and modeled

it by an algebraic function of the independently-modeled lift

coefficient. Nayfeh et al. [20] used a single-term quadratic

function (proportional to CL ĊL). This freezes the phase

between the drag and lift to 270o. Qin [22] used another

single-term quadratic function (proportional to the oscillatory

part of C2

L) and added a linear coupling term (proportional

to CL). However, our simulations show that such linear

coupling (which was proposed only by Qin) is not necessary.

Marzouk et al. [23] extended the drag model of Nayfeh et

al. [20] by combining their coupling term with the one used

by Qin [22], so that the resulting two-parameter algebraic

model can reproduce any value of the relative drag phase.

The coefficients of these terms were analytically related to the

relative drag phase.

Marzouk and Nayfeh [28] modeled the total-force coeffi-

cient and its angle, and considered a mixed van der Pol and

Duffing nonlinear terms for the angle oscillator, but used an

algebraic quadratic equation to relate the oscillatory part of

the total-force coefficient to the evolving angle. Thus, their

differential/algebraic wake model cannot resolve the average

value of the total-force coefficient. In addition, they considered

a single Reynolds number. The present study addresses these

limitations.

The quality of a reduced-order model for the force on

a cylinder due to the periodic distributions of the pressure

and shear stresses on its surface as a result of the near-

wake shedding process is gauged by the capability of the

model to capture qualitatively and quantitatively the main

characteristics of this force, which inevitably depend on the

Reynolds number and not universal constants. Therefore, we

propose in this study a new wake model, which consists of

two coupled ODEs for the nondimensional (or coefficient CT )

resultant force of the instantaneous surface stresses and its

angle. The model has three advantages: First, it directly models

the actual hydrodynamic force rather than modeling the lift and

drag, which are two ‘convenient’ components of this actual

force. It is still possible to retrieve the lift and drag in a

simple post-processing step of the resolved total force, where

CL = CT sin(β) and CD = CT cos(β). Second, we provide

closed-form expressions relating the parameters of the model

to the main flow characteristics, which depend on the Reynolds

number. Therefore, our ODE system implicitly accounts for

the variations of the wake regime with the Reynolds number

and does not freeze any of these characteristics (such as the

Strouhal number or amplitude of the lift coefficient). The

model parameters can be obtained in a schematic way which

is faster and more accurate than manually matching these

parameters to match a target set of data. Third, our proposed

ODE system captures directly the average component of the

total force (thus the average drag) and does not ignore it. This,

in addition to directly modeling the actual hydrodynamic force,

makes the model better than the existing ones in terms of being

able to mathematically describe the physical aspects of the

problem with simple equations which are much easier to solve

than the full Navier-Stoked equations. We provide continuous

functions of the model parameters, within the considered

range of Reynolds number, so that one can use the proposed

model at any arbitrary value of Reynolds number, which can

then be coupled with a structural oscillator to investigate

the two-degree-of-freedom fluid-structure interaction between

the elastically-mounted cylinder and the flow. The modeling

concept we followed here is not strictly limited to a circular

cylinder. Rather, it can be extended to other geometries that

exhibit a similar shedding phenomenon [29].

III. PROPOSED ODE SYSTEM

As indicated in the simulation results in Fig. 5, the spectrum

of β consists of a dominant component at St (with magnitude

a1β) and a third harmonic at 3St (with magnitude a3β). Such

behavior of β suggests a self-excited oscillator such as the

van der Pol or the Rayleigh oscillators. Looking at the phase

by which of the component at 3St leads the one at St (which

we denote by ψβ3) over the range of Re under consideration,

we found it to lie between 148.8o and 154.5o. Therefore, the

van der Pol oscillator (which implies a modeled ψβ3=90o) is

preferred to the Rayleigh oscillator (which implies a modeled

ψβ3=270o). However, we still need to adjust the van der Pol

oscillator by either combining it with a Rayleigh oscillator or a

Duffing one, so that the weights of the two cubic-nonlinearity

terms in the combined oscillators can be adjusted so that

the modeled ψβ3 is precisely equal to a desired value that

is known to occur at a certain Re. Whereas for the case of

modeling the force on a stationary cylinder, there is no obvious

preference of which oscillator to combine with the van der

Pol oscillator, we examine the case of a cylinder undergoing

harmonic oscillations to make this choice. Experimental [9],

[30], [31] and numerical [32]–[34] studies at low and high

Reynolds numbers show that the frequency-response curves

of the CL, CD, and surface pressure are asymmetric about the

St. When the oscillation amplitude is high enough, hysteresis

and jumps occur, which coincide with a transition between

two different wake modes (one having stronger forces than

the other). The forced van der Pol, Rayleigh, or a combination

exhibits symmetric frequency-response curves about the linear

frequency, and two symmetrically-located hysteresis locations

would be observed in that case [35], which does not match

the physics of the problem. On the other hand, adding the

Duffing term to the van der Pol oscillator can produce biased
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frequency-response curves with single location of hystere-

sis [36] because the backbone curve is no longer vertical (as in

the case of forced combination of the van der Pol or Rayleigh

oscillators). Therefore, we propose a combined (van der Pol

and Duffing) oscillator for β.

It is desired to use a linear oscillator for the amplitude of

the total-force coefficient CT because of its simplicity and

to reduce the number of overall-model parameters. However,

proper forcing is needed (unlike the free β oscillator) in order

to obtain a stable nontrivialCT response. A functional form of

β is a good candidate for this purpose because physically it is

the complementary feature needed with CT to fully describe

the evolution of the total force coefficient. Utilizing the two-

to-one frequency relationship between CT and β, we set the

linear frequency of the CT oscillator to be twice the frequency

of the β oscillator. We seek a forcing of the CT oscillator that

satisfies three conditions. First, it is at a frequency of 2St

(which is the correct frequency of the CT ). Second, it has

an average value, which provides the average CT . Third, it

has at least two terms, so that the resultant phase by which

CT leads β is not a universal constant and can vary with the

Reynolds number. Under these conditions, the simplest form

of the forcing is a combination of β2 and β β̇. We note that

β2 could be replaced by β̇2, but we will use the latter, mainly

for convenience as β is a more ‘visible’ quantity than β̇.

Based on this discussion and justifications, we propose the

following system to describe the time-dependent total-force

coefficient (CT ) and its angle, in radians, (β):

β̈ + ω2 β + µ1 β̇ + c1 β
2 β̇ + c2 β

3 = 0 (3a)

C̈T + 4ω2 CT + µ2 ĊT = q1 β
2 + q2 β̇ β (3b)

The proposed system in Eq. (3) has seven model parame-

ters; namely the linear frequency ω, the linear ‘destabilizing’

damping coefficient µ1 <0, the cubic ‘stabilizing’ damping

coefficient c1 >0, the Duffing-term coefficient c2, the lin-

ear ‘stabilizing’ damping coefficient µ2 >0, the quadratic

static-static coupling coefficient q1, and the quadratic static-

kinematic coupling coefficient q2. In the remaining part of

this section, we analyze the model and derive expressions

for these parameters, which analytically relate them to seven

target flow characteristics, which we assume they are known

(e.g., from processing of a simulated or measured flow field or

from interpolating the parameters from pre-determined values

at different Reynolds numbers). These flow characteristics are

the Strouhal number (St); the harmonics magnitudes a1β , a3β ,

a2T ; and the relative phases ψβ3 and ψT2. We use the method

of harmonic balance and find first the algebraic equations for

the four parameters in Eq. (3a) and then for the three remaining

parameters in Eq. (3b). In the following analysis, we do not

make any assumptions about the relative magnitudes of these

parameters.

A general Fourier series for the periodic β, with the dom-

inant component and its small superharmonic component can

be written as

β (t) = a1β cos(2π St t+ σβ) + a3β cos(6π St t+ 3σβ + ψβ3)
(4)

Because β has a self-excited limit cycle and no external

forcing appears in Eq. (3a), σβ1 is arbitrary. So, we can set

σβ1=0. With this, we re-write Eq. (4) as

β (t) = a1β cos(2π St t)

+a3β cos(6π St t) cos(ψβ3)

−a3β sin(6π St t) sin(ψβ3) (5)

Substituting Eq. (5) into Eq. (3a), and then collecting the

coefficients of cos(2π St t), sin(2π St t), cos(6π St t), and

sin(6π St t) results in the following system of algebraic

equations:

χ1 ω
2 + χ3 c1 + χ4 c2 = χ5 (6a)

δ2 µ1 + δ3 c1 + δ4 c2 = 0 (6b)

ε1 ω
2 + ε2 µ1 + ε3 c1 + ε4 c2 = ε5 (6c)

γ1 ω
2 + γ2 µ1 + γ3 c1 + γ4 c2 = γ5 (6d)

where

χ1 = a1β; χ3 = Λ a2

1β η

χ4 = 0.75a3

1β + 0.75a2

1β ξ + 1.5a1β ξ
2 + 1.5a1β η

2

χ5 = 16Λ2 a1β

δ2 = 4Λ a1β; δ3 = −Λ a3

1β − Λ a2

1β ξ − 2Λ a1β ξ
2 − 2Λ a1β η

2

δ4 = 0.75a2

1β η; ε1 = ξ

ε2 = −12Λ η; ε3 = 3Λ η3 + 6Λ a2

1β η + 3Λ ξ2 η (7)

ε4 = 0.25a3

1β + 1.5a2

1β ξ + 0.75ξ3 + 0.75η2 ξ; ε5 = 144Λ2 ξ

γ1 = η; γ2 = 12Λ ξ

γ3 = −Λ a3

1β − 6Λ a2

1β ξ − 3Λ ξ3 − 3Λ η2 ξ

γ4 = 0.75η3 + 1.5a2

1β η + 0.75ξ2 η; γ5 = 144Λ2 η

with

Λ = π St/2; ξ = a3β cos(ψβ3); η = −a3β sin(ψβ3) (8)

Solving Eq. (6) yields the four model parameters ω, µ1, c1,

and c2.

The time-dependent total-force coefficient can be approxi-

mated as

CT (t) = a0T + a2T cos(4π St t+ ψT2) (9)

which is expanded to

CT (t) = a0T

+ a2T cos(ψT2) cos(4π St t)

− a2T sin(ψT2) sin(4π St t) (10)

We will neglect the influence of the superharmonic compo-

nent of β on CT based on our finding that a3β is one order of

magnitude smaller than a1β and the linearity of the homoge-

nous part of Eq. (3b). We substitute β = a1β cos(2π St t) into

Eq. (3b) and solve for the particular solution of the forced
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system as

CT (t) =
q1 a

2

1β

8ω2
(11a)

+ (q1 τ1 + 2π St q2 τ2) cos(4π St t)

+ (q1 τ2 − 2π St q2 τ1) sin(4π St t)

with

τ1 =
a2

1β

2

4ω2 − 64Λ2

(4ω2 − 64Λ2)
2

+ (8Λ µ2)
2

(11b)

τ2 =
a2

1β

2

8Λ µ2

(4ω2 − 64Λ2)2 + (8Λ µ2)
2

(11c)

The equivalence between Eq. (10) and Eq. (11) yields the

required algebraic equations for the three remaining model

parameters (µ2, q1, and q2) as

q1 = 8
ω2

a2

1β

a0T (12a)

(

2q2 Λ a2

1β

)2

+
(

q1 a
2

1β/2
)2

= a2

2T

[

(

4ω2 − 64Λ2
)2

+ (8Λ µ2)
2
]

(12b)

arctan

(

−8Λ µ2

4ω2 − 64Λ2

)

− arctan

(

−4Λ q2
q1

)

= ψT2 (12c)

Equation (12a) can be solved directly for q1, then

Eqs. (12b) and (12b) are solved simultaneously for µ2 and

q2.

IV. RESULTS

We performed numerical simulations and solved the Navier-

Stokes equations over a range of the Re from 100 to 500,

with increments of 50 except near Re=100, where the changes

in the flow characteristics are fast and thus the increment is

reduced to 25. We chose this range of the Re because the

near-wake shedding is coherent enough to result in a regular

periodic hydrodynamic force, which can be precisely modeled

by a reduced-order system. At higher Re, this force exhibits

fast modulations and irregularity due to increasing disorder

in the wake and the intensified turbulence, thereby reflecting

adversely on the feasibility of modeling it quantitatively in

the time and spectral domains. In addition, this range is of

special importance in this problem because it exhibits rapid

changes in the flow features, such as the shedding frequency

and the amplitude of β and CL. Near the end of this range and

beyond it, these features become slowly-varying functions of

the Re. For example, the St Changes from 0.1654 to 0.21064

as the Re changes from 100 to 300. This is larger than the

change in the St for a Re range from 300 to 300,000 [3],

[37], [38]. We use the artificial compressibility method and

a body-fitted nonuniform grid with 43,200 grid points and

a fixed nondimensional time step of 0.02. For Re<300, we

solve the full Navier-Stokes directly; whereas for Re≥300, we

solve the Reynolds-averaged Navier Stokes equations (RANS)

in order to account for the developing turbulence in the

wake. We model the turbulence effects by the Spalart-Allmaras

model [39]. More details about the solution scheme can be

found in Refs. [6], [23], [34], [40], [41]. In Appendix A,

we compiled reported values of the St, amplitude and root

mean square of CL, and the average CD form experimental

and other computational studies [7], [42]–[57] for six values

of the Re and compared them with those obtained from our

simulations in Tables I-III, respectively. Our results are in

agreement with those reported from the other studies, which

validates the numerical simulations we performed.

For each simulation, we calculated the surface pressure

and shear stresses and integrated them (over the cylinder

surface) to obtain the time-dependent CL, CD, CT , and β.

Before we examine the performance of the proposed ODE

system, we examine the relationships between the Re and

the flow characteristics, to be used to determine the model

parameters as described before, in the Re range we con-

sidered. The relationship of the St (or the nondimensional

shedding frequency) with the Re is presented in Fig. 6. The

corresponding relationships of the β characteristics (a1β, a3β ,

ψβ3) are presented in Fig. 7, and the relationships of the

CT characteristics (a0T , a2T , ψT2) are presented in Fig. 8.

Whereas the St, a1β , a3β, and a2T always increase with the Re

(first rapidly then slowly); ψT2, a0T , and ψT2 do not follow a

similar trend. Rather, they first increase and reach a maximum

value before decreasing as the Re continues to increase.

We examined the proposed ODE system (as a reduced-

order model to describe the dynamics of CT and β) for

all the simulation cases we performed and found excellent

performance where the modeled CT (t) and β(t) from the

ODE system match well those from the simulations. To

illustrate this, we present comparisons between the modeled

and simulated model variables at the lower and upper bound

of the Re range we considered (i.e., Re=100 and 500) in

Figs. 9 and 10, respectively. The modeled and simulated β
are almost identical for slow shedding (e.g., Re=100) or fast

shedding (e.g., Re=500). As the shedding frequency increases,

slight deviation occurs in CT (t), but the model performance is

still very satisfactory. This can be explained by the increased

a3β , whose influence on β was neglected.

The relationships of the seven model parameters with the

Re are presented in Fig. 11. We adjusted mu2 for improved

matching of CT , and the figure reflects the values we used.

The linear frequency ω increases rapidly first with the Re

before it reaches a maximum at Re=400 and then becomes

nearly constant. As the Re (thus the shedding intensity and

frequency) increases, the destabilizing and nonlinear damping

coefficients increase. The Duffing-term coefficient is always

negative (softening-type stiffness). Its absolute value increases

with the Re and reaches a maximum at Re=350. The damping

and two coupling coefficients of CT follow the same behavior

as the Re is varied. Near Re=100, they are very large and

undergo a steep decrease up to Re=150, followed by an

oscillating behavior. In addition to presenting the values of

these parameters at the selected Re values of the simulations,

we provide the high-order polynomial functions (the R-square

ranges from 0.9927 to 0.9996) for each parameter in Ap-

pendix B. The dependent variable is Re/100. As mentioned

before, this provides a database of the model parameters so

that the model can be fully constructed at any arbitrary value

of the Re within the considered range.
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V. CONCLUSIONS

As a new approach for modeling the force on a stationary

circular cylinder, we proposed a two-degree-of-freedom ODE

system, having a self-excited oscillator with softening-type cu-

bic nonlinearity for the angle of the total (resultant) hydrody-

namic force and a coupled forced oscillator for the force coef-

ficient. In addition to its accuracy, the proposed reduced-order

model has several advantages over existing wake oscillators in

terms of directly describing the real problem and reproduce its

physical features, such as reproducing the average value of the

force and describing the actual exerted force rather than one

(or both) of its projections. We provided expressions for the

model parameters and evaluated them over a range of Reynolds

number near the wake bifurcation and onset of shedding,

where rapid changes occur in the wake and the shedding

frequency. The proposed model circumvents solving the PDE

system governing the flow field and the post-processing needed

to compute the evolution of the hydrodynamic force, provided

that we are not interested in the flow field itself but only in

the loads on the cylinder.

The model is not a mere fitting to sets of data, it gives insight

about the relationship between the nonlinear or damping

effects and the Re. By generating continuous functions of the

model parameters over a range of Re, as we did here, one

can use the model as accurate wake oscillator that governs

the evolution of the force on the cylinder, and which can be

coupled to a structural oscillator to study the fluid-structure

interaction analytically. Whereas the focus here was on a

circular cylinder, the presented approach can be extended to a

wide range of body shapes where shedding in the wake takes

place. However, a new set of model parameters (or database)

is needed for each case.
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APPENDIX A

COMPILATION OF FLOW CHARACTERISTICS AT DIFFERENT RE

TABLE I

STROUHAL NUMBER FROM OUR SIMULATIONS AND FROM OTHER STUDIES (ALL SIMULATIONS ARE TWO-DIMENSIONAL).

Re Source Comments St

Roshko (1953) measurements 0.168
Jordan and Fromm (1972) vorticity-stream function formulation 0.16

Braza et al. (1986) predictor-corrector pressure method 0.16
100 Williamson (1989) measurements 0.164

Stansby and Slaouti (1993) random-vortex method 0.166

Shiels et al. (2001) viscous vortex method 0.167
Our simulations artificial compressibility method 0.1654

Roshko (1953) measurements 0.175-0.187
150 Zhang et al. (1995) marker-and-cell method 0.191

Our simulations artificial compressibility method 0.18446

Roshko (1953) measurements 0.18-0.19
200 Zhou et al. (1999) vortex-in-cell 0.1992

Wang et al. (2008) RANS with SST K − ω turbulence 0.19
Our simulations artificial compressibility method 0.19635

Roshko (1953) measurements 0.204

300 Zhang et al. (1995) marker-and-cell method 0.217
Our simulations RANS with SA turbulence 0.21064

Roshko (1953) measurements 0.204

400 Kaiktsis et al. (2007) spectral element method 0.22017
Our simulations RANS with SA turbulence 0.21432

Roshko (1953) measurements 0.206-0.212
500 Blackburn and Henderson (1999) spectral element method 0.228

Our simulations RANS with SA turbulence 0.21475

TABLE II

AMPLITUDE AND ROOT MEAN SQUARE OF THE LIFT COEFFICIENT FROM OUR SIMULATIONS AND FROM OTHER STUDIES (ALL SIMULATIONS ARE

TWO-DIMENSIONAL).

Re Source Comments Amp. of CL RMS of CL

Braza et al. (1986) predictor-corrector pressure method 0.28 –

Stansby and Slaouti (1993) random-vortex method 0.35 0.248
100 Zhou et al. (1999) vortex-in-cell – 0.219

Shiels et al. (2001) viscous vortex method 0.3 –

Our simulations artificial compressibility method 0.3249 0.22967

Zhang et al. (1995) marker-and-cell method – 0.41
150 Ravoux et al. (2003) embedding method – 0.31

Norberg (2003) empirical function 0.1831 –
Our simulations artificial compressibility method 0.51706 0.36536

Braza et al. (1986) predictor-corrector pressure method 0.75 –

200 Zheng and Zhang (2008) immersed-boundary method 0.65 –
Our simulations artificial compressibility method 0.67902 0.47981

300 Zhang et al. (1995) marker-and-cell method – 0.7
Our simulations RANS with SA turbulence 0.91416 0.64695

400 Kaiktsis et al. (2007) spectral element method 0.98 0.76
Our simulations RANS with SA turbulence 1.00795 0.71338

Blackburn and Henderson (1999) spectral element method 1.2 –

500 Ravoux et al. (2003) embedding method – 0.64
Our simulations RANS with SA turbulence 1.00393 0.70875
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TABLE III
AVERAGE OF THE DRAG COEFFICIENT FROM OUR SIMULATIONS AND FROM OTHER STUDIES (ALL SIMULATIONS ARE TWO-DIMENSIONAL).

Re Source Comments Average of CD

Clift et al. (1978) empirical function 1.24418
Braza et al. (1986) predictor-corrector pressure method 1.29

100 Stansby and Slaouti (1993) random-vortex method 1.317
Henderson (1995) spectral element method 1.35
Shiels et al. (2001) viscous vortex method 1.33

Our simulations artificial compressibility method 1.33804

150 Zhang et al. (1995) marker-and-cell method 1.41
Our simulations artificial compressibility method 1.32471

Braza et al. (1986) predictor-corrector pressure method 1.3
Henderson (1995) spectral element method 1.35

200 Zhou et al. (1999) vortex-in-cell 1.32

Zheng and Zhang (2008) immersed-boundary method 1.35
Our simulations artificial compressibility method 1.33779

Wieselsberger (1921) measurements 1.2

300 Henderson (1995) spectral element method 1.4
Our simulations RANS with SA turbulence 1.37561

Jordan and Fromm (1972) vorticity-stream function formulation 1.23
400 Kaiktsis et al. (2007) spectral element method 1.42

Our simulations RANS with SA turbulence 1.37929

500 Blackburn and Henderson (1999) spectral element method 1.46
Our simulations RANS with SA turbulence 1.35685

APPENDIX B

FITTING FUNCTIONS FOR THE MODEL PARAMETERS

ω = 0.8122 + 0.0512<− 0.3553<2 − 0.1018<3 + 0.0079<4 (R2 = 0.9995)

µ1 = 0.0526− 0.0407<− 0.0508<2 + 0.0073<3 (R2 = 0.9996)

c1 = 1.6255 + 0.618< + 0.2225<2 − 0.0341<3 (R2 = 0.9986)

c2 = −2.1017− 0.4127<− 2.144<2 + 0.6189<3 − 0.0463<4 (R2 = 0.9979)

µ2 = 3497.6− 6759.5< + 5749<2 − 2560<3 + 629.53<4 − 80.887<5 + 4.2311<6 (R2 = 0.9978)

q1 = 1299.2− 2285.3< + 1845.7<2 − 786.91<3 + 187.22<4 − 23.505<5 + 1.2112<6 (R2 = 0.9987)

q2 = 5957.6− 11582< + 10030<2 − 4543.9<3 + 1144.6<4 − 151.43<5 + 8.1669<6 (R2 = 0.9927)

where 1< < ≡ Re/100 <5.
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Fig. 2. Typical histories of the total-force coefficient and its angle (at a Reynolds number of 300).
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