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 
Abstract—In this paper, we present a fast and accurate numerical 

scheme for the solution of a Laplace equation with Dirichlet 
boundary conditions. The non-standard finite difference scheme 
(NSFD) is applied to construct the numerical solutions of a Laplace 
equation with two different Dirichlet boundary conditions. The 
solutions obtained using NSFD are compared with the solutions 
obtained using the standard finite difference scheme (SFD). The 
NSFD scheme is demonstrated to be reliable and efficient. 
 

Keywords—Standard finite difference schemes, non–standard 
schemes, Laplace equation, Dirichlet boundary conditions. 

I. INTRODUCTION 

APLACE equations have been used for many years in 
fluid mechanics, heat and mass transfer theory, elasticity, 

and electrostatics. 
The Dirichlet boundary conditions for Laplace equation are 

defined as finding a solution of u on a domain D, and this 
domain has a boundary conditions defined as a given 
functions. As an interpretation and application of this problem, 
the heat equation with fix temperature on the boundaries of the 
domain and wait until the interior temperature does not 
change. The solution to the corresponding Dirichlet problem is 
the temperature distribution [1]. Recently, several methods are 
proposed to solve partial differential equations [2]-[4], the 
variational iteration method (VIM) has been applied for exact 
solutions of Laplace equations [5], Sadighi and Ganji [4] 
obtained the exact solution of Laplace equations with Dirichlet 
boundary conditions using the homotopy-perturbation method 
(HPM) and Adomian decomposition method (ADM), Mustafa 
[6] gives the numerical solution of the Laplace equations with 
Dirichlet boundary conditions using the homotopy analysis 
method (HAM). 

One of the shortcomings of the SFD method is that the 
qualitative properties of the exact solution usually are not 
transferred to the numerical solution. Furthermore, are easily 
affected the stability properties of the standard approach. Also, 
in practice, using the standard method the limit of the step-size 
is not reached. What we obtain is the numerical solution for 
one or several values of step-size [7]. 

NSFD schemes have emerged as an alternative method for 
solving a wide range of problems whose mathematical models 
involve algebraic, differential and biological models as well as 
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chaotic systems [8]. These techniques have many advantages 
over classical techniques and provide an efficient numerical 
solution. In fact,the NSFD method is an extension of the SFD 
method. Non-standard schemes as introduced by Mickens [9]-
[12] are used to help resolve someof the issues related to 
numerical instabilities. In addition, Moaddy, Momani and 
Hashim used the NSFD for linear fractional partial differential 
equations in fluid mechanics [13], Dang and Hoang modeled a 
continuous-time predator–prey system with general functional 
response and recruitment for both species into a discrete-time 
by NSFD [14]. Furthermore, Mickens [9]-[12] introduced 
certain rules for obtaining the best difference equations.  

In this paper we constructed a NSFD scheme to solve the 
Laplace equations with Dirichlet boundary conditions, the 
scheme depends on two different denominator functions 𝜙ଵ 
and 𝜙ଶ. This technique has several advantages over the 
standard techniques, mainly in providing an efficient 
numerical solution with high accuracy. However, the NSFD 
scheme can be used to solve this problem effectively.  

The rest of the paper is organized as follows. In the next 
section, we present the SFD scheme for solution of the 
Laplace equations with Dirichlet boundary conditions. Section 
III briefly describes the NSFD scheme to solve the Laplace 
equations with Dirichlet boundary conditions. In Section IV, 
we apply the NSFD scheme to solve Laplace equations with 
Dirichlet boundary conditions. Two different Dirichlet 
boundary conditions of the Laplace equation are considered as 
test examples, and we discuss numerical approximations to the 
solutions. In the last section, we summarize the conclusions. 

II. SFD SCHEME FOR SOLUTION OF THE LAPLACE EQUATION 

The two-dimensional Laplace equation has the following 
form: 

 

 
డమ௨

డమ௫
൅ డమ௨

డమ௬
 ൌ  0               (1)  

 
We present SFD scheme for (1). The discrete model is 

constructed using a central difference scheme for the second 
derivative.  
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డమ௬
 ൌ  
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ሺ௱௫ሻమ                            (2) 
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Substitution of these directives of (1) gives: 
 

 
௨೔శభ,ೕିଶ௨೔.ೕା௨೔షభ,ೕ

ሺ௱௫ሻమ + 
௨೔శభ,ೕିଶ௨೔.ೕା௨೔షభ,ೕ

ሺ௱௬ሻమ  = 0     (4) 

  
 where, 

𝑢௜,௝  ൌ  ଵ

ଶ

థభሺ௱௫ሻሺ௨೔,ೕశభା௨೔,ೕషభሻାథమሺ௱௬ሻሺ௨೔శభ,ೕା௨೔షభ,ೕሻ

థభሺ௱௫ሻାథమሺ௱௬ሻ
    (5) 

 
 𝛥𝑥 ൌ  𝛥𝑦 ൌ  ℎ          (6) 

 
 𝑥௜  ൌ  𝑖ℎ, 𝑦௝  ൌ  𝑗ℎ           (7) 

 
from (5), (4) yields: 
 

𝑢௜ାଵ,௝ െ 4𝑢௜,௝ ൅ 𝑢௜ିଵ,௝ ൅ 𝑢௜,௝ାଵ ൅ 𝑢௜.௝ିଵ  ൌ  0     (8) 

III. NSFD SCHEME FOR SOLUTION OF THE LAPLACE EQUATION 

We will use (4) to simulate the solution of the Laplace 
equation by NSFD approximation. Based on the previous 
works and applying the NSFD scheme in [9] the following 
model is selected for Laplace equation: 
 

௨೔శభ,ೕିଶ௨೔,ೕା௨೔షభ,ೕ

థభሺ௱௫ሻ
൅

௨೔,ೕశభିଶ௨೔,ೕା௨೔,ೕషభ

థమሺ௱௬ሻ
 ൌ  0     (9)  

 
where the denominator functions 𝜙ଵ and 𝜙ଶ satisfy the 
following condition: 
 

𝜙௠ሺℎሻ  ൌ  ℎଶ ൅ 𝜊ሺℎସሻ, 𝑚 ൌ  1,2      (10) 
 

Solving (9) for 𝑢௜,௝ yields: 
 

𝑢௜,௝  ൌ  ଵ

ଶ

థభሺ௱௫ሻሺ௨೔,ೕశభା௨೔,ೕషభሻାథమሺ௱௬ሻሺ௨೔శభ,ೕା௨೔షభ,ೕሻ

థభሺ௱௫ሻାథమሺ௱௬ሻ
.    (11)  

 
Note that this scheme has the following features: 

1) The discrete model is explicit. 
2) The denominator functions for the discrete second-

derivative have non-standard form. 
3) A central difference scheme replaces the second order 

space derivative. 
4) If 𝜙ଵሺ𝛥𝑥ሻ  ൌ  𝜙ଶሺ𝛥𝑦ሻ then, the exact analytical 

expression 𝜙௠ሺℎሻ, for 𝜙௠ሺℎሻ, 𝑚 ൌ  1,2 is not needed 
since, with the condition of (9), the denominator functions 
drop out of the calculation [9]. 

5) For both linear and nonlinear terms involving the 
dependent variable may require “nonlocal” 
discretizations; as in [12] for example.  

 
𝑢 ൌ  2𝑢 െ 𝑢 → 2𝑢௞ െ 𝑢௞ାଵ      (12)  

 
 𝑢ଶ  ൌ  𝑢௞𝑢௞ାଵ         (13) 

IV. APPLICATIONS 

We will apply the NSFD to two physical problems to 
illustrate the strength of the method and to establish numerical 
solutions for these problems. 
Example I. Consider the two-dimensional Laplace equation 
 

𝑢௫௫ ൅ 𝑢௬௬  ൌ  0, 𝑥 ൐ 0, 𝑦 ൏ 𝜋 
 

with boundary conditions: 
 

𝑢ሺ0, 𝑦ሻ  ൌ  0, 𝑢ሺ𝜋, 𝑦ሻ  ൌ  𝑠𝑖𝑛ℎ𝜋 𝑐𝑜𝑠 𝑦     (14) 
 

𝑢ሺ𝑥, 0ሻ  ൌ  𝑠𝑖𝑛ℎ 𝑥, 𝑢ሺ𝑥, 𝜋ሻ  ൌ  െ 𝑠𝑖𝑛ℎ 𝑥   (15) 
 

The exact solution of this problem introduced by Mustafa 
[6] as follows:  

 
𝑢ሺ𝑥, 𝑦ሻ  ൌ  𝑠𝑖𝑛ℎ 𝑥 𝑐𝑜𝑠 𝑦        (16) 

 
For NSFD scheme we write the denominator functions and 

𝜙ଶ in the form: 
 

𝜙ଵ  ൌ  𝑠𝑖𝑛ℎଶ ቀ௱௫

ଶ
ቁ, 𝜙ଶ  ൌ  𝑠𝑖𝑛ଶ ቀ௱௬

ଶ
ቁ     (17) 

 
Substitution the denominator functions 𝜙ଵ and 𝜙ଶ in (11) 

yields: 
 

2 2
, 1 , 1 1, 1,

,
2 2

sinh ( ) sin ( )
2 2

.
sinh sin

2 2

i j i j i j i j

i j

x y
u u u u

u
x y

   
         

   
       

   

    (18) 
 

Example II. We consider to solve the Laplace equations with 
Dirichlet boundary conditions  

 
𝑢௫௫ ൅ 𝑢௬௬  ൌ  0, 𝑥 ൐ 0, 𝑦 ൏ 𝜋 

 
with boundary conditions: 

 
𝑢ሺ0, 𝑦ሻ  ൌ  𝑠𝑖𝑛 𝑦, 𝑢ሺ𝜋, 𝑦ሻ  ൌ  𝑐𝑜𝑠ℎ𝜋 𝑠𝑖𝑛 𝑦   (19) 

  
𝑢ሺ𝑥, 0ሻ  ൌ  0, 𝑢ሺ𝑥, 𝜋ሻ  ൌ  0  (20) 

  
In this example we follow the same technique of the above 

example and using the denominator functions 𝜙ଵ and 𝜙ଶ in 
(17). The exact solution 𝑢ሺ𝑥, 𝑦ሻ of example II is given by 
Sadighi, and Ganji [1] as follows: 

 
𝑢ሺ𝑥, 𝑦ሻ  ൌ  𝑐𝑜𝑠ℎሺ 𝑥ሻ 𝑠𝑖𝑛ሺ 𝑦ሻ              (21) 

V. RESULTS AND DISCUSSION 

In Maple, the number of variable digits controlling the 
number of significant digits is set to 18, In all the calculations 
done in this paper.  

Tables I and II show the accuracy of the NSFD for solution 
of the Laplace equation in example I and example II, 
respectively. we present the absolute errors between NSFD 
and SFD solutions and the exact solutions at steps size 
(ℎ ൌ  𝜋/5), comparing NSFD results with the exact solution, 
we see that the maximum difference between the NSFD 
solution and the exact solution at time step (ℎ ൌ  𝜋/5) is of 
the order of magnitude of 10ି଴ଽ. 
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TABLE I 
COMPARISON OF SFD AND NSFD RESULTS FOR EXAMPLE I 

𝑢ሺ𝑥, 𝑦ሻ |𝐸𝑥𝑎𝑐𝑡 െ 𝑆𝐹𝐷| |𝐸𝑥𝑎𝑐𝑡 െ 𝑁𝑆𝐹𝐷| 

( / 5, / 5)u    
1.111E-02 4.616 E-10 

(2 / 5, / 5)u    
2.449E-02 1.040E-09 

𝑢ሺ3𝜋/5, 𝜋/5ሻ 4.018E-02 1.165E-09 

(4 / 5, / 5)u    
4.815E-02 1.228E-09 

( / 5,2 / 5)u    
5.849E-03 8.517E-11 

𝑢ሺ2𝜋/5,2𝜋/5ሻ 2.754E-02 2.218E-10 

𝑢ሺ3𝜋/5,2𝜋/5ሻ 2.046E-02 1.356E-09 

𝑢ሺ4𝜋/5,2𝜋/5ሻ 2.357E-02 2.013E-09 

𝑢ሺ𝜋/5,3𝜋/5ሻ 5.849E-03 6.851E-10 

𝑢ሺ2𝜋/5,3𝜋/5ሻ 1.275E-02 1.378E-09 

𝑢ሺ3𝜋/5,3𝜋/5ሻ 2.046E-02 2.643E-09 

𝑢ሺ4𝜋/5,3𝜋/5ሻ 2.357E-02 2.896E-09 

( / 5,4 / 5)u    
1.110E-02 9.616E-10 

𝑢ሺ2𝜋/5,4𝜋/5ሻ 2.449E-02 2.040E-09 

𝑢ሺ3𝜋/5,4𝜋/5ሻ 4.018E-02 3.165E-09 

𝑢ሺ4𝜋/5,4𝜋/5ሻ 4.815E-02 4.228E-09 

 
TABLE II 

COMPARISON OF SFD AND NSFD RESULTS FOR EXAMPLE 2 

𝑢ሺ𝑥, 𝑦ሻ |𝐸𝑥𝑎𝑐𝑡 െ 𝑆𝐹𝐷| |𝐸𝑥𝑎𝑐𝑡 െ 𝑁𝑆𝐹𝐷| 

( / 5, / 5)u    
3.178E-02 6.152E-10 

(2 / 5, / 5)u    
5.730E-02 1.572E-09 

𝑢ሺ3𝜋/5, 𝜋/5ሻ 7.572E-02 2.235E-09 

(4 / 5, / 5)u    
7.162E-02 3.057E-09 

( / 5,2 / 5)u    
5.141E-02 9.974E-10 

𝑢ሺ2𝜋/5,2𝜋/5ሻ 9.272E-02 1.836-09 

𝑢ሺ3𝜋/5,2𝜋/5ሻ 0.123 3.387E-09 

𝑢ሺ4𝜋/5,2𝜋/5ሻ 0.116 5.507E-09 

𝑢ሺ𝜋/5,3𝜋/5ሻ 5.141E-02 9.974E-10 

𝑢ሺ2𝜋/5,3𝜋/5ሻ 9.272E-02 1.836E-09 

𝑢ሺ3𝜋/5,3𝜋/5ሻ 0.123 4.387E-09 

𝑢ሺ4𝜋/5,3𝜋/5ሻ 0.116 8.507E-09 

( / 5,4 / 5)u    
3.1780E-02 7.152E-10 

𝑢ሺ2𝜋/5,4𝜋/5ሻ 5.730E-02 1.752E-09 

𝑢ሺ3𝜋/5,4𝜋/5ሻ 7.5728E-02 2.235E-09 

𝑢ሺ4𝜋/5,4𝜋/5ሻ 7.162E-02 4.057E-09 

 
 

 

Fig. 1 The contour plot for the solution of example I using the NSFD 
where (y = 𝜋 /50) and time step (h = 𝜋 /50) 

 

Fig. 2 The contour plot for the solution of example II using the NSFD 
where (y = 𝜋 /50) and time step (h = 𝜋 /50) 

 
We note that if the denominator functions 𝜙ଵ and 𝜙ଶ are 

equal then the NSFD scheme become SFD scheme because 
the denominator functions will drop out of the calculation.  

Figs. 2 and 3 show the counter plots of the Matrix’s 
solutions of the Laplace equation using the NSFD scheme of 
example I and example II, respectively. 

Figs. 3 and 4 show the solution of NSFD for the Laplace 
equation in example I and example II, respectively. We can 
conclude that the NSFD solutions for the time step (ℎ ൌ  𝜋/
50) are sufficiently accurate. 

 

 

Fig. 3 Numerical solution for example 2 using NSFD where (y = 𝜋 
/50) 

 

 

Fig. 4 Numerical solution for example I using NSFD where (y = 𝜋 
/50)  

 
It was found that the NSFD solutions agree very well with 
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the exact solutions and the maximum difference between the 
NSFD solution and the exact solution at time step (ℎ ൌ  𝜋/
50) is of the order of magnitude of 10ିଵ଺ and it was 10ିହ for 
the SFD solution.  

VI. CONCLUSION 

In this paper, we construct a NSFD scheme for the Laplace 
equation. Solutions to the Laplace equation with Dirichlet 
boundary conditions were presented to demonstrate the 
efficiency of the NSFD scheme. Comparison of results 
showed that the NSFD scheme results in less error than did 
results using SFD. 
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