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A New Verified Method for Solving Nonlinear
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Abstract—In this paper, verified extension of the Ostrowski
method which calculates the enclosure solutions of a given nonlinear
equation is introduced. Also, error analysis and convergence will
be discussed. Some implemented examples with INTLAB are also
included to illustrate the validity and applicability of the scheme.
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I. INTRODUCTION

Sometimes it is desired to compute a sharp interval that is
guaranteed to enclose a real simple root x∗ of f(x) = 0, even
if rounding errors are taken into account. This can be done
using interval analysis tools [1], [4], [6].

An interval Newton method has been developed by
Moore [5] for solving nonlinear equations. Here, we develop
interval Ostrowski’s method and its convergence analysis.

This paper is organized as follows: In the next section, we
review some basic concepts and notations of interval analysis.
Section 3 introduces interval Ostrowski’s method. Section 4
deals with convergence analysis. Finally, in Section 5, some
computational results support the interval Ostrowki’s method
and order of convergence.

II. BASICS

We start by repeating some definitions, notations and basic
facts; For more information see [1], [5], [6].

Let [x] = [x, x], [y] = [y, y] be real compact intervals and
◦ one of the basic operations, that is ◦ ∈ {+,−,×, /}. Then
we define the corresponding operations for intervals [x] and
[y] by [x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} , where we assume
0 �∈ [y] in case of division.

If x ∈ [x], we call [x] an enclosure of x. If x = x, then the
interval [x] is degenerate or real number, i.e., x = [x, x].

Standard interval function [ϕ] = [ϕ,ϕ] is defined via its
range, i.e.,

[ϕ] = ϕ([x]) = {ϕ(x)|x ∈ [x]} .
Midpoint and width of [x] are respectively defined by

[x] =
1

2
(x+ x), [x] = x− x.
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An interval sequence {[x]k} is nested if [x]k+1 ⊆ [x]k for all
k.

An interval extension [f ] is said to be Lipschitz in [x]0 if
there is a constant L such that (f([x])) ≤ L [x] for every
[x] ⊆ [x]0.

III. INTERVAL OSTROWSKI’S METHOD

We now develop interval Ostrowski’s method (IOM) for
finding a simple zero x∗ in an interval [x]0 = [x0, x0] for
a strictly monotonically increasing or decreasing real function
having continuous derivatives of sufficiently high order. This
method is always convergent if some conditions are hold. The
principle used for construction is due to Ostrowski [7].

Using interval analysis tools as well as classic Ostrowski’
method, we consider the following iteration:

N [x]k = [x]k − f([x]k)

f ′([x]k)
. (1)

[y]k = [x]k ∩N([x]k), (2)

S([x]k, [y]k) = [y]k − f([y]k)

f([x]k)− 2f([y]k)
.
f([x]k)

f ′([x]k)
, (3)

[x]k+1 = [x]k ∩ S([x]k, [y]k), k = 0, 1, 2, . . . , (4)

The procedure can be stopped when [x]k+1 = [x]k or [x]k ≤
ε.

IV. ANALYSIS OF CONVERGENCE

In this section, we deal with the convergence analysis of
the IOM (4). First, we need [5]

Lemma 4.1: Suppose {[x]k} is such that there is a real
number x ∈ [x]k for all k. Define {[y]k} by [y]1 = [x]1 and
[y]k+1 = [x]k+1 ∩ [y]k for all k = 1, 2, . . .. Then {[y]k} is
nested, converges, and has the limit

x ∈ [y] = ∩∞
k=1[y]

k.

One of the most useful properties of the interval Ostrowski
operator S (3) is that we are provided with a means of
detecting when a region does not contain a root of f . As
this is a common situation, it is important that we can quickly
discard a set on the grounds of it containing no roots. Another
important contribution from the properties of S is a simple
verifiable condition that guarantees the existence of a unique
root within an interval. The following theorem addresses these.
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Theorem 4.2: Suppose f is a continuous differentiable on
an initial interval [x]0, and 0 �∈′ ([x]k) for k = 0, 1, 2, . . ..
(1) If x∗ ∈ [x]0 and S([x]k, [y]k) ⊆ [x]k, then [x]k contains

exactly one zero of f . Also

x∗ ∈ [x]∗ = lim
k→∞

[x]k.

(2) If [x]k∩S([x]k, [y]k) = ∅, then [x]k does not contain any
zero of f .

Proof.

Part (1) Since 0 �∈ f ′([x]k), then f ′(x) �= 0 for all x ∈ [x]k

and therefore f is monotonic on [x]k. In other words,
it has at most one zero in [x]. Hence, it is sufficient to
find a zero x∗ ∈ [x]k. Since S([x]k, [y]k) ⊆ [x]k, using
the Lemma (4.1), so f has exactly one root in [x]k and
x∗ ∈ [x]∗ = limk→∞[x]k.

Part (2) Now, suppose x∗ is a zero of f and x∗ ∈ [x]0, then
previous part results x∗ ∈ S([x]k, [y]k). Consequently
x∗ ∈ [x]k ∩ S([x]k, [y]k) which is contradiction. So the
proof is completed.

We need [5]:
Lemma 4.3: If [f ] is defined for [x] ⊆ [x]0, then [f ] is

Lipschitz in [x]0; In other words:

(f([x])) ≤ L [x]. (5)

We proved that the sequence (4) converges to x∗ if the
assumptions of the Theorem (4.2) are hold. Now we want to
show that if IOM converges, then the order of its convergence
is asymptotically 4.

Theorem 4.4: Assume that f is continuous differentiable
function on initial interval [x]0 with 0 �∈ f ′([x]0), and f has
a unique simple root x∗ ∈ [x]0. Then, if S([x]k, [y]k) ⊆ [x]k,
the sequence (4) has convergent rate four, i.e., there exists a
constant γ such that

[x]k+1 ≤ γ
(
[x]k

)4
. (6)

Proof. By Mean Value Theorem, since f(x∗) = 0, we have

f([x]k) = f ′(ξ)
(
[x]k − x∗) , (7)

where ξ is between [x]k and x∗. Since S([x]k, [y]k) ⊆ [x]k,
thus from (3), (4) and (7), we have

[x]k+1 = [y]k −
(
[y]k − x∗) f ′(ξ1)

(
[x]k − x∗) f ′(ξ2)

(f([x]k)− 2f([y]k)) f ′([x]k)
, (8)

where ξ1 is between [y]kand x∗ and ξ2 is between [x]k and
x∗. Also,

[x]k+1 =
|[y]k − x∗||f ′(ξ1)||[x]k − x∗||f ′(ξ2)|

|f([x]k)− 2f([y]k)|
(

1

f ′([x]k)

)
.

(9)
We have m[x]k, x∗ ∈ [x]k, therefore

|[x]k − x∗| ≤ [x]k. (10)

Furthermore, since [y]k is generated from interval Newton
iteration (2),

|[y]k − x∗| ≤ [y]k ≤ (
[x]k

)2
. (11)

Test functions Roots
f1(x) = exp(x)− 4x2 4.30658472822069882
f2(x) = x2 − exp(x)− 3x+ 2 0.25753028543986072
f3(x) = exp(−x) + cos(x) 1.746139530408012285
f4(x) = x2 − 3 1.7320508075688772
f5(x) = sin2(x)− x2 + 1 1.4044916482153411
f6(x) = (x+ 2) exp(x)− 1 −0.44285440100238854
f7(x) = x5 + x4 + 4x2 − 15 1.3474280989683043
f8(x) = cos(x)− x 0.73908513321516067
f9(x) = x5 − 10 1.5848931924611134

TABLE I
TEST FUNCTIONS AND THEIR ROOTS

fi(x) [x]0 Iterations Enclosure
NM SM

f1 [4, 5] 6 3 4.30658472822070506934
[4, 4.5] 5 3
[4.2, 4.3] 4 2

f2 [0, 1] 5 3 0.25753028543986087
[0, .5] 4 2
[2.4, 2.6] 3 2

f3 [1, 2] 4 3 1.74613953040801252
[1.5, 2] 3 2
[1.6, 1.8] 3 2

f4 [1, 2] 5 3 1.73205080756887742
[1.5, 2] 4 2
[1.6, 1.8] 4 2

f5 [1, 2] 5 3 1.40449164821534161
[1, 1.5] 5 3
[1.4, 1.5] 4 3

f6 [−1, 0] 5 3 −0.442854401002388545
[−.5, 0] 4 3
[−.5,−.4] 3 2

f7 [1, 2] 5 3 1.3474280989683054
[1, 1.5] 5 3
1.3, 1.4] 3 2

f8 [0, 1] 5 3 0.739085133215160687
[.5, 1] 4 2
[.6, .7] 4 2

f9 [1, 2] 5 4 1.58489319246111364
[1.5, 2] 4 2
[1.5, 1.6] 4 3

TABLE II
INTERVAL NEWTON AND OSTROWSKI SOLUTIONS

Also, from Lemma (4.3) we have
(

1

f ′([x]k)

)
≤ [x]k. (12)

Let |f ′(ξi)| ≤ γi, i = 1, 2 and |f([x]k) − 2f([y]k)| ≤ γ3.
Considering (9–12), we have

[x]k+1 ≤ γ1γ2
γ3

(
[x]k

)4
= γ

(
[x]k

)4
, (13)

where γ = γ1γ2/γ3, and the proof is completed.

V. NUMERICAL IMPLEMENTATION

In this section, we apply IOM to solve some examples
[2], [3]. Also we compare the computed results with interval
Newton’s method. Computational results support the IOM
theory discussed in this paper. We used INTLAB to carry out
numerical results [8].

The results of this example also show that the interval
Ostrowski method is faster than the interval Newton method.

Subsection text here.
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VI. CONCLUSION

In this paper, a new enclosure method, interval Ostrowski
method, was introduced to find the interval solution of a given
nonlinear equation. A fundamental distinction between the
interval Osrowski method and the ordinary Osrowski method
is that the former uses computation with sets instead of
computation with points. Again, this permits us to find all
zeros of a function in a given staring interval. Whereas the
ordinary Ostrowski method is prone to erratic behavior, the
interval version practically always converge. The difference
in performance of the two methods can be dramatic. This
method has the local order of convergence equal to 4 like
classic Osrowski method. Moreover, necessary and sufficient
conditions about the convergency were discussed in details.
Also, error bound and convergence rate were studied. To
verify the theory, this algorithm was then tested using some
examples via INTLAB. Furthermore, the suggested method
was compared with the interval Newton method. As expected,
according to the discussed theory, this method was better than
the interval Newton method.

ACKNOWLEDGMENT

The authors would like to thank the Islamic Azad Univeristy,
specially Hamedan and Toyserkan Branches.

REFERENCES

[1] G. Alefeld, J. Herzberger, Introduction to Interval Computations, Aca-
demic Press, New York, 1983.

[2] M. Grau, J. L. Diaz-Barrero, An improvement to Ostrowski root-finding
method, Appl. Math. Comput. 173 (2006) 450-456.

[3] J. Kou, X. Wang, Some improvements of Ostrowski’s method, Appl.
Math. Lett. 23 (2010) 92–96.

[4] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliff, NJ, 1966.
[5] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval

Analysis, SIAM, 2009.
[6] A. Neumaier, Interval Methods for Systems of Equations, Cambridge

University Press, 1990.
[7] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces,

third ed., Academic Press, New York, 1973.
[8] S. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable

Computing, T. Csendes, ed., Kluwer Academic Publishers, Dordrecht,
1999, pp. 77–104. http://www.ti3.tu-harburg.de/rump/. 2

Parisa Bakhitiari is a reasech student at Islamic Azad University, Hamedan-
Branch, Iran. Her research interests include verified and interval methods for
solving nonlinear eqautions. Parisa has a BS in Applied Mathematics from
the Bu–Alli–Sina university of Hamedan and an MS in Numerical Analysis
from Islamic Azad University- Hamedan Branch.

Katayoun Mahdiani is a PhD of Applied Mathematics. Her research in-
terests include verified and interval methods for solving nonlinear eqautions.
Katayoun has a BS in Applied Mathematics from the Yazd university of Yazd
and an MS in Numerical Analysis from the Islamic Azad University- Karaj
Branch.

Mehdi Salimi was born on 16 September 1980 in Toyserkan of Hamedan,
Iran. From 1987 to 1998 he attended primary and middle schools in Toyserkan.
In September 1998, he went to Bu-Ali Sina University of Hamedan to study
mathematics where he received his Bachelor degree in pure mathematics in
2002. He obtained his Master degree with specialization in pure mathematics
from Tarbiat Moallem University of Tehran in 2006. In July 2008, he enrolled
at Universiti Putra Malaysia as a PhD student. He graduated in PhD of Applied
mathematics at 2011. Then he became a lecturer at Islamic Azad University
of Toyserkan, Iran.

Taher Lotfi received his MS degree in Applied Mathematics from
Teacher Traning Tehran Univer- sity, Iran, in 2002 and his PhD degree in
Numer- ical Analysis from the University of Science and Resaerch Tehran
in 2007. In 2003, he joined the Faculty of the Basic Science, Department
of Applied Mathematics at Islamic Azad University where he has been an
Assistant Professor since 2008. During 2007-2010, he also served as head of
Math Faculty. His research interests include numerical analysis in solving
ODE, PDE, IE and soft computing. He has  authored and coauthored more 
than 20 research papers on these topics


