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Abstract—In this paper, we show that the stability can not be 

achieved with current stabilizing MPC methods for some unstable 
processes. Hence we present a new method for stabilizing these 
processes. The main idea is to use a new time varying weighted cost 
function for traditional GPC. This stabilizes the closed loop system 
without adding soft or hard constraint in optimization problem. By 
studying different examples it is shown that using the proposed 
method, the closed-loop stability of unstable nonminimum phase 
process is achieved. 
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I. INTRODUCTION 
TABILITY of MPC has drawn attention for many years, 
since local optimization in a finite preview horizon does 

not guarantee stability in general [1]. The most widely 
referenced approach to guarantee stability in MPC procedures 
is to add an equality constraint on the Final state in the 
prediction horizon (hard Constraint) [2, 3] or to put a weight 
on the final state in the cost function (soft constraint) [4-6]. 
Another approach is to use an infinite prediction horizon with 
a finite control horizon [7] that makes it possible to apply 
standard linear quadratic regulator (LQR) theory to guarantee 
stability. 

We will show that for some processes, stability doesn’t 
occur with the existing methods and therefore propose a new 
method to stabilize these processes. The main idea is to use a 
new time varying weighting matrices in the cost function of 
the GPC. 

The paper is organized as follows. In Section II, GPC 
controller is described. In Section III, the proposed varying 
weighting method is discussed. Numerical simulations are 
carried out in Section IV for illustration and verification of the 
presented methodology. Finally some concluding remarks are 
given in Section V. 

II. GPC CONTROLLER FORMULATION 
Generalized predictive control (GPC) has been widely used 

in process control engineering, because of its good tracking 
performance and ability to manipulate constraints. Since it is 
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usually designed based on the transfer function representation 
of the process, formulations are given on this basis. 

Consider the ARIMAX (Auto-Regressive Integrated 
Moving-Average eXogenous) model given by: 
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where q  is the shift operator, )(tu  and )(ty  are the input and 
the output of the process respectively. )(te  represents the 
unpredictable parts of the process behavior. For Convenience, 

)( 1−qC  is assumed to be one, which means that the 
disturbance sequences are white noise. 

In order to derive a GPC formulation, the future outputs of 
the system are predicted based on the knowledge of the future 
inputs and the past inputs and outputs. The following relations 
including Bezout identity are employed in this regard. 
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The vector-matrix form of relation in (2) is given as: 
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The cost function in an ordinary GPC is given by (4). 
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)( ityd +  is the desired trajectory for the closed loop output 

and is determined as the output of a first order filter described 
by the following transfer function. 
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)(tr  is the set point signal and α  assumes values between 0 
and 1. 

Minimizing of the cost function in (4) by adjusting input 
variations u∆  results in the following performances; 

1. Minimizing the difference between the process output 
and its desired trajectory. 

2. Minimizing the variation of the future inputs. 
The optimal input variations are derived as; 
 

)()( 1 fyQGRQGGu d −+=∆ − TT            (6) 
 
Using the first term of )(tu∆  (i.e. )(tu∆ ) )(tu  is obtained from 
the following equation and applied to the process. 
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Based on the obtained result and the latest measured data 
the whole procedure is repeated in the next sampling intervals. 

III. TIME VARYING WEIGHTING COST FUNCTION 
Since output of an unstable process grows with time, the 

error of predicted output grows with time as well. To stabilize 
an unstable process it is necessary to control the growth of 
prediction error. To do the job, we propose a new cost 
function in which the early sentences in the prediction horizon 
have greater weight than the later sentences. The goal is 
achieved by using variable parameters in the weight matrices 
of Q  and R  in the cost function of (5). Q , and R  matrices 
are selected as follows: 
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When α  and β  take values between 0-1, the prediction 

error is penalized tightly in the early stages. This matter leads 
to the point that the trust of the first sentences in optimization 
is greater than the final sentences. This action has two 
outcomes: first, the error weight of the first predictive steps in 
the optimization is considered more than the others, and 
second, first terms of the predictive outputs play more roles in 
the optimization. By applying this method on an unstable 
process it is expected to have bounded prediction errors. 

IV. COMPUTER SIMULATIONS 
To compare the proposed method with the ordinary GPC as 

well as its stabilizing variants, different simulations were 
conducted and some of the results are illustrated here. 

A. Process with Non-Repetitive Right Hand Side Poles 
In analyzing this kind of process such as the process of 

equation (5), current methods such as Constrained Receding 
Horizon Predictive Control (CRHPC) that stabilize the closed 
loop system using the hard constraint, and GPC with End 
point state Weighting (WGPC) that stabilize the system using 
the soft constraint are used where in each case by suitable 
selection of P  (predictive horizon) and M  (control horizon) 
(e.g. 86 −== MP ) and the final constraint number (e.g. 

3=m ), stability of the closed loop system is achieved. 
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B. Process with Non-Repetitive Right Hand Side Poles and 
Zeros 

The process of equation (8) has one pole and one zero in 
the right hand side of the s-plane. 
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Using ordinary GPC with any combination of the control 

parameters was not resulted in a stable closed loop system. 
However, application of the CRHPC design method along 
with the control parameters of 86 −== MP  and the final 
states constraint 3=m  stabilizes the closed loop system. 

C. Process with Repetitive Right Hand Side Poles 
The process of equation (9) has repetitive poles in the right 

hand side. 
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The existing methods of stabilization such as CRHPC, 

WGPC, and Mixed Weighting GPC (MWGPC) [8] were 
examined in which all the mentioned conditions (of each 
method) are considered. We couldn’t find any set of control 
parameters by which the closed loop system becomes stable. 

The proposed method of this paper was implemented by the 
following set of control parameters. Stability of the closed 
loop was achieved and the results are shown in Fig. 1. 
 

05.0,05.0,5 ==== αβMP  

D. Process with Repetitive Poles and Non-Repetitive Zeros 
in the Right Hand Side 
The process of equation (10) has real repetitive poles and 

non-repetitive zeros in the right hand side. 
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The existing stabilizing methods were implemented, but 

none of them was able to stabilize the closed loop system. 
Conditions required in each method were satisfied and wide 
range of the control parameters was examined. Our proposed 
method could able to stabilize the closed loop system by the 
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following set of parameters. Results of the simulation are 
given in Fig. 2. 
 

05.0,05.0,5 ==== αβMP  
 

 
 

Fig. 1 Simulation results for the process in (9) 
 

 
 

Fig. 2 Simulation results for the process in (10) 

V. CONCLUSION 
We propose a new method of choosing weighting matrices 

in order to penalize the prediction error in the early stages of 
the prediction horizon. It seems that this choice control rapid 
variations of the prediction error in some special unstable 
process. Among general advantages of the proposed method, 
the followings may be of considerable ones. 
1. Since the constraints don’t exit in the optimizing problem, 

the problems such as offset and feasibility are avoided. 
2. The optimal value of α  and β  can be determined offline, 

and then the controller can be used in online form. 
3. In studying different processes, it becomes appear that by 

selecting aforementioned optimized parameters; the system 
can be controlled with minimum control and predictive 
horizon. 

4. Since α  and β  are determined offline, in the practice one 
can use the broad and strong searching methods such as 

simplex search or genetic algorithm. 
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