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A new splitting H!'-Galerkin mixed method for
pseudo-hyperbolic equations

Yang Liut, Jinfeng Wang?, Hong Li!, Wei Gao! and Siriguleng He'

Abstract—A new numerical scheme based on the H'-Galerkin
mixed finite element method for a class of second-order pseudo-
hyperbolic equations is constructed. The proposed procedures can
be split into three independent differential sub-schemes and does not
need to solve a coupled system of equations. Optimal error estimates
are derived for both semidiscrete and fully discrete schemes for
problems in one space dimension. And the proposed method dose
not requires the LBB consistency condition. Finally, some numerical
results are provided to illustrate the efficacy of our method..

Keywords—Pseudo-hyperbolic equations, Splitting system, H®-
Galerkin mixed method, Error estimates.

I. INTRODUCTION

I N this paper, we consider the following initial-boundary
value problem of pseudo-hyperbolic system

urr — (a(X)ute + a(T)uy)z +ur = f(2,1), (x,t) € Q x J,
u(0,t) = u(1,t) =0,t € J,
u(z,0) = up(z), ur(z,0) = ui(z),z € Q,

D

where Q = (0,1), J = (0,71 is the time interval with 0 <
T < 0. a(z) is smooth functions with bounded derivatives,
f(z,t), uo(z) and uq () are given functions, and

0 < amin < a(x) < amaz,T € Q

for positive constants ., and amaz-

The pseudo-hyperbolic equations are a class of high-order
hyperbolic partial differentia equations with mixed partial
derivative with respect to time and space, which describe heat
and mass transfer, reaction-diffusion and nerve conduction,
and other physical phenomena [1], [2], [3], [4], [5]. In [6],
Guo and Rui used two least-squares Galerkin finite element
schemes to solve pseudo-hyperbolic equations. Moreover, the
two methods get the approximate solutions with first-order and
second-order accuracy in time increment, respectively. Liu et
a. [7] proposed two splitting definite mixed finite element
schemes for the pseudo-hyperbolic equation and gave semi-
discrete and fully discrete error estimates.

In recent years, alot of researchers have studied mixed finite
element methods for elliptic, parabolic and hyperbolic partial
differential equations [10]-[17]. Pani [18] (in 1998) proposed
the H'-Gaerkin mixed finite element method which is not
subject to the LBB consistency condition. Since then, the
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method has been applied to many problems [19], [20], [21],
[22].

In this paper, a new numerical scheme based on the H'!-
Galerkin mixed finite element method for pseudo-hyperbolic
equationsis constructed. The proposed procedures can be split
into three independent differential sub-schemes and does not
need to solve a coupled system of equations. Optimal error
estimates are derived for both semidiscrete and fully discrete
schemes for problems in one space dimension. And some
numerical results are provided to illustrate the efficacy of
our method. Throughout this paper, C' will denote a generic
positive constant which does not depend on the spatial mesh
parameter h and time discretization parameter At. At the same
time, we give a important integral inequality

//w; \dsdT<c/ (b (s)[2ds,

where ¢ is a integrable function in [0,¢],¢ € [0, T].

@)

Il. SEMIDISCRETE SCHEME AND ERROR ESTIMATES

If our concern is to approximate ¢ = a(x)uyz, 0 = ut — Gy
accurately, we reformulate the pseudo-hyperbolic equation (1)
as the first-order system

(a) ¢ = a(z)us,
(b) 0= ut — qu,
(¢) o¢ + 0= f(x,t).

©)

To derive the splitting H'-Galerkin mixed method, we con-
sider the following weak formulation of (3): find {u,q,0} :
[0,T)— Hi x H' x L? satisfying
(a) (ug,vs) = (q,v,),V v € HY,
(b) (g, w) + (qu, wy) = —(0,w,),¥Y w € H',
(©) (01,2) + (0,2) = (f,2),V z € L*.
where o« = 1/a, for (4b), we have used integration by parts

and the Dirichlet boundary conditions u(0,¢) = u:(1,t) =0
to get

4

(ug, wz) = (ug, w) ; — (Utg, w) = —(Utz,w) = — (g, w). (5)

Let Vi, Wy, and L;, be finite dimensional subspaces of H{,
H*', and L?, respectively, with the following approximation

properties: for 1 < p < oo and k, r, [ positive integers [20]

lIelf {llv —wrllzr + hllv —vrllwie } < CREFY ]| ettn,
v

vE H1 Wktlr,
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inf {[|w—wn||zs +hljw—wh|lwir} < CHH[w] |y, llo = onll < C(a)h*.
h
we HinWwrbe, and forl < p < oo
e < Chl+1Hwer+1 2 E L2 N Wl+1 P Hu _ uh”Lv < C’(u, q, O_)hmin(k+1,r+l,l+1)
. . . . .. _ » < C hmin(r+1,l+1)
The semidiscrete splitting? !-Galerkin mixed finite element _ lla _qh”L <Clg,0) _
scheme for (4) consists in determinifigy,, g, 04} : [0,7] —  Proof. Since estimates of, p and ¢ are given by (10)-(12),

Vi, x Wy, x Ly, such that respectively, it is sufficient to estimate £ and . Choosing
vy, = < in (15(a)), we have

inf ||z — zp|
zp€L

(a) (uhwavhx) = (QQhavhx)7v v, € Vi,

(b) (QQ}Lt, wh) + (th‘7 whw) = _(O-}H UJhl‘)7v Wh € Wh, (<x7 §x) = (Oép, §x> + (CM&, Cx).
() (ontszn) + (on, zn) = (f,21),Y 21 € Ly,. Using the Cauchy-Schwarz’s inequality, we have
(©) el < ) (16)

with given w(0), ¢»(0) andoy,(0). . o .
For use in the error analysis, we define the Ritz projectioife have, from the Poincaré’s inequality

by ll < Cllsalo< € 2. )
(Ux — ahx’l}hx) = 07’Uh € Vh. (7) Takmg Zn = ’Yt in (15C) we have
Further, we also define a elliptic projectign € W), of ¢ as
the solution of PG projectiam < T 014 bl + 5 11 =~ ) — (5,%) s
1
- 2 2 L 2
Alq — Gnywp) = 0,wp, € Wi, 8) < C(IOI +110el1%) + 5 el
where A(q,w) = (qu,ws) + A(g,w). Here X is chosen On integrating with respect tg we obtain

appropriately so thatl is H'—coercive, i.e.,

t t
[ B+l < € [ QiR + 1) ds. 9

We choosew;, = gt in (15b) to obtain
where o is a positive constant. Moreover, it is not hard to

check thatA(-, -) is bounded. laz& || + ——A(g £)

We also define thd.?-projections;, € L;, by 2dt
he —(p, &) + A(p+&,&) — (6 +7, &)

- (aptvgt) + A(p + gagt) + (5t + Vtuéx) -

A(w,w) = pollwl[i,w € H',

(O’ — &h,zh) =0,zp, € Ly. (9)

(20)
On integrating with respect t@ and using the Cauchy-

d

—(
With p = ¢ — Gn, n = u — @, ands = o — &3, the following dt

estimates are well known [23]: fq‘r: 0,1

I 8;17”] <C =0,1,2, (10) Schwartzs inequality, the Young’s inequality, we obtain
lpll; < CH 173 lg] 4, Hptuj < cw“w\qtum. (11) / l1&(s)II*ds + 1€l

1811 < Ch* Mo, (18]l < CR™F Yloellisr. (12) (21)

t
SC/O (lvell® + 118l + 1ol + [el* + [I€]17)ds

Moreover, forj = 0,1, and1 < p < co, we have ) )
+ C(I[V[1° + 110]]7)-

il < CRE1 lullynsn, (13)
lpllwar < CH gl (14) (19), we get

Using the projection$ay,, Gy, 61 }, we writeu—uy, = u—tp+ ]2 < C/t 1€ (s)[]2ds + ||€][2
Up—up =0+, ¢=qn =q—qn+tdn—qn =p+&0—0p = 0
o —0p+6r —op =39+ . From (4)-(9), we then obtain
(@) (Su>Vhe) = (p, Vne) + (@€, Vpe ),V vp € Vi,
(0) (e, wn) + A(&,wn) = —(apr, wh)
((5 +7,whx) + )\(p+§,wh) YV wp € Wh,
(

t
< C'/O (1811 + 11861 + lol* + [l el 1*)ds + C1l8]|*.
(22)

Use (16), (17), (19), (22), (10)-(12) and the triangle insiy
to obtain theL? and H'-norm.

(¢) (ves 2n) + (75 2n) = —(0ts 21) — (0, 2n), ¥ 21 € L(hl.s) For1 < p < oo, we have, from the Sobolev embedding

theorem,
Theorem 2.1: Assume thatu,(0) = a,(0), ¢n(0) = ) )
Gr(0) andoy, (0) = &, (0) then [[€llze < CllEll1, € € HY, |[sllze < Cllszll,s € Hy.
[[u = unll; < Clu,q,0)

g — anll; < C(g,o)hmnr =2l

(10)-(14) and the triangle inequality completes the proof.

Using the Gronwall's lemma, the integral inequality (2) and

pmin(k41—j,r+1,141) The use of the convergence results (19) and (17) with
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II. CRANK-NICOLSON-GALERKIN SCHEME AND ERROR
ANALYSIS

In this section, we get the error estimates of fully discrete

schemes. For the Crank-Nicolson procedure,Olet ¢, <
t] < tg < --- < tpr = T be a given partition of the time
interval [0, T] with step lengtht,, = nAt, At = T'/M, for
some positive integed/. For a smooth functiow on [0, T,
define ¢" = ¢(t,) and ;6" = (" — ¢" 1)/ At, "z =
(¢" +o"71)/2.

The system (4) has the following equivalent formulation

a(g” +q" 1)

5 ,Vz)

—— ) = (
+ (R, v,),V v € H,

B 1L+ :7L7.,71 0’"—}—0’”71
(adhg" ) + (B ) = —(F—
+ (R}, w,),¥Y w € H,
o™ +0.n71
T
(R}, 2),V z € L?,

, Wy )
+ (Ry,w)
(Op0™, 2) + (

=(f""%,2) +

where

-1
uy +uy n—x
Ty U tad 2
0’"4—0’”71 .

2

n—i
n—y

n o__
Rl —_—

_1
RY = (adiq" — g, ?) +

qz—’_qi}l n*%
f_ x )

= (ét()'n —

Ot

LetU™, Z™ and@™, respectively, be the approximations«gf

(@) (2™ %, vn2) = (R}, vne) + (ap" "%, vpy)
+ (€™ F  opg), Y vn € Vi,
(b) (a0 ™, wp) + AE™ 2, wy) = —(adip™, wp)

+ (R, wn) + (RE, wha) + (7" 4+ 0" % wpy)
+ )\(p”_% +&nT

(€) (Ber™ zn) + (Y72, 2) =
+ (RZ,Zh),V Zh € Lh.

%,wh),v wp € Wh,
_(6t6nvzh)

(25)

Theorem 3.1: Assume thatQ? = G,(0), Z° = 5,(0), then

there exists some positive constantsndependent of and
At such that for0 < At < AtpandJ =0,1,--- , M

(a).][un=2 — U2 ||;
S C(u,q,U)(thLTL(k+1 3,r+1,141) + (At)Q),

- 3
(b)lla” = Q11+ (ALY llg" - Q[3)
n=1
< C(q’o.)(hmin(rJrl,H»l) + (At)g),
(e)]lo” = Z7|| < Clo) (' + (A1)?).

Proof. Choosezy, y”—% in (25c) and use the Cauchy-
Schwarz’s inequality and the Young's inequality to get

2 n—1(|2 nf— 2
L e [ R e
— (D", ") + (R}, ") (26)
a sn n ]- n,,
<C(110:6"1* + 1 BE 1) + 511"~ 211

Multiply (26) by 2At¢ and sum fromn = 1 to J to obtain
J

n—i
V17 + Ay 2|
n=1

g (27)
IO + CAtS (1188”17 + (IR 1)-

n=1

q ando att — t, which we shall define through the followingNote that

scheme. GivedU" 1, Zn=1 Q"~1} in Vj, x W}, x L,, we now
determine a triple{U", z", Q”} in V3, x Wy, x L, satisfying

UJ’I"L+U;L—1 n+ n—1
(fﬁvhm) = (Mavhm%V vp € Vh>
5 P Q!
(00.Q" wn) + (EEZ )
zn anl
=- (%ﬂﬂhz),v wy, € Wh,
_ Zn+Zn—1 a1
(6tZ"7Zh) + (ﬁyzh) = (f" 27Zh)7v Zh S L}L7
(24)
For fully discrete error estimates, we now split the errors
ulty) = U™ = (ultn) — Gn(tn)) + (@n(ta) — U") = 0" +
", q(tn) — Q" = (q(tn) — qn(tn)) + (Gn(ta) — Q™) = p" +
", o(tn)=2" = (0(tn)=Gn(tn))+(0n(tn)—2") = 6" +7".

Using (7)-(9) and (23)-(24), we then obtain

~ 1 [in
86”2§—/ 5:(s)||%ds,
10071 < 55 [ sl

and
no1

+ [log, 2|| )-

Y(llogs *

On substitution and noting thaf = 0, the resulting inequality
becomes

117 +Atz [y P

C’AtZAt/ 164 (s) \ds+CAtZ||R4||2

J
16¢(s)[[*ds + CJ - (A

17

IR}||* < C(AY)

t)° (||Uttt||%oc(L2) + ||UttH%°°(L2))

(hl“llatlliz(mﬂ) + (A (ol 7o 12) + llowellToe (12))-
(28)
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Choosew;, = £"~% in (25b) and use the Cauchy-Schwarz’s

inequality and the Young's inequality to get
(€™, €7 7) + A€ 2,6"2)
= — (D" "7 3) + (B3, €' %) + (Ry. & %)

_1
F (YT O E) AT TR )

5 N 7 7 n—1 n—1
<C(10ep"|1* + |1 B3I + ||RS 11 + o™~ 2]* + ll€" 2|1

n—1 n—1 HO | on—3
TP+ 10 E ) + e 1

(29)

Noting thatc(a+b)(a—b) = ca?—cb® = (cza)?—(c2b)%, ¢ >

0, we have

1 1
(a5n75 ) at£7l) =

- Teny2 _ Len—12
= apllo*€" I = llare ! 7).

(30)

On substitution and summing from= 1 to .J, we obtain

J
Aminl €717 + oAt Y 1€}
n=1

J
a9 n n n — L
<AEY (10" |IP + | RB|* + R[> + |l 2|

n=1
FERTE R 4 |y E |2 4 (6 E )
J
A _1
<AL (10" 1 + || REI1? + || RS + 10" %2
n=1

J
Iy E P 18 E ) + Aty €M

n=1

(31)

ChooseAt, in such a way that fof < At < Atg, (min —

CAt) > 0. Then an application of Gronwall’s lemma to obtain

J
€711 + At > [1€"]13
n=1

J
<AEY (100" 1P + IR + 1| R3]

n=1
n—1 n—y1 n—4i
"2 4 (P A+ (167 2]?).

Note that
_ 1 [t
10:p" 11 < —

" 2
<2 [7 llns)pas,

tn—1
_1 _1
1R3> < C(A) (lagee * 11> + [low 117,

and

1R3> < C(At)lgh 3.
On substitution and using (28), we can get
J
167117 + ae Y 11en3
n=1
SCth(HUH%Z‘(HHl) + ||Ut||2LZ(Hl+1))
+ CT - (A (lowst]| 7 (12 + llosel 7o (£2))
+ Chr+1(|‘Q“2L2(HT+1) + HfIt||2L2(Hr+1))
+ CT - (A1) (|geee || 7o (12 + lgeel 7o (£.2))-

(32)

(33)

TABLE |
L (L?)-ERRORS AND ORDER OF CONVERGENCE

h=2At  |lu—up|lpoo(r2) Order  |lg — qnllpoo (12 Order
1/5 2.7986E-02 5.4168E-02
1/10 7.1493E-03 1.968830 1.2409E-02 2.126094
1/20 1.7990E-03 1.990618 2.9587E-03 2.068322
1/40 4.5036E-04 1.998030 7.2123E-04 2.036427
1/80 1.1264E-04 1.999360 1.7794E-04 2.019069
1/160 2.8159E-05 2.000051 4.4184E-05 2.009795
1/320 7.0392E-06 2.000113 1.1008E-05 2.004972
1/640 1.7597E-06 2.000082 2.7472E-06 2.002519
1/1280 4.3991E-07 2.000049 6.8617E-07 2.001324

Choosingu, = <"~z in (25a), we have
n—3% , -1 nil n—3% n—1l n—1
llor 21 = (RY, &%) + (ap™ 3,60 ) + (a€" 72,60 7). (34)

Use the Cauchy-Schwarz, the Young’s inequality as well as
the Poincaré’s inequality and (33) to obtain

"5 <l |2
<C(|lp" 2|2 + [|€" 2 |12 + || R}|?)
<C(lp"|I” + 1€"117) + CT - (At ([lupy” *1 + llasy *11%)
SCth(HUHiZ(HlH) + H0t||i2(Hl+1)) + Cth+1(||Q||2L2(Hv-+1>
+ ||th%2(Hr+1)) +CT- (At)4(\\0ttt||%oc(L2) + HUttH%x(LZ)

+ lgeeel [T oo 12y + st Foo 12y + Nwsel | Foo (gr1y)-
(35)

Using (28), (33), (35) and the triangle inequality compdete
the L2-error estimate and th& ' -estimate.

IV. NUMERICAL EXAMPLE

In order to illustrate the efficiency of the splitting mixed
element method presented in this article, we consider the fo
lowing initial-boundary value problem of pseudo-hyperbol
system

Ut (X, ) — Ugat (T, 8) — Uga (2, t) + ur(z,t) = f(2,1),
(z,t) € (0,1) x (0,1],
u(0,t) = u(l,t) = 0,¢t € [0,1],
u(z,0) = sin(nwz), ut(x,0) = —2sin(rz),z € [0,1],
(36)
where f(z,t) = (2 — 72)e~ % sin(nzx).

It is not difficult to verify that the exact solution is
u(z,t) = e~ sin(rx). The corresponding basis functions are
piecewise linear functions. The errors Ir*°(L?)-norm and
the accuracy of the approximate solutiang ¢; ando;, are
provided in Table | and Table Il. Furthermore, the obtained
surfaces of the numerical solutiong, ¢, ando;, are shown
in Figs. 1-3, respectively. And the comparisons of the exact
solutions {, ¢, ) and the numerical solutions:{, ¢, o) at
t =0.25,0.5,0.75,1.0 are shown in Figs. 4-6.

We can see from the above data and figures that the
convergence order obtained in numerical simulations areeag
with the results obtained in theoretical analysis when ittne t
step and spatial step ratio is 1/2 (thatfis= 2At). The
numerical results show that the splittidg'-Galerkin mixed
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TABLE Il
L (L?)-ERRORS AND ORDER OF CONVERGENCE

h = 2At HO’*O’hHLoo(LQ) Order
1/5 5.3670E-02
1/10 1.3694E-02 1.970541
1/20 3.4661E-03 1.982183
1/40 8.7231E-04 1.990414
1/80 2.1882E-04 1.995096
1/160 5.4802E-05 1.997444
1/320 1.3713E-05 1.998684
1/640 3.4297E-06 1.999390
1/1280 8.5763E-07 1.999655

finite element method introduced in this article is efficient for
second-order pseudo-hyperbolic problem.
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Fig. 4. Comparison between the numerical
sojutions . and the exact solutions u with
te[0,1],z € [0,1],h = 2At = 0.05
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Fig. 5. Comparison between the numerical
solytions ¢ and the exact solutions g with
t€[0,1],z € [0,1], h = 2At = 0.05
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Fig. 6. Comparison between the numerical
solyfions o and the exact solutions o with
t€[0,1],z € [0,1],h = 2At = 0.05
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