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Abstract—Fluid flow and heat transfer of vertical full cone 

embedded in porous media is studied in this paper. Nonlinear 
differential equation arising from similarity solution of inverted cone 
(subjected to wall temperature boundary conditions) embedded in 
porous medium is solved using a hybrid neural network- particle 
swarm optimization method. 

To aim this purpose, a trial solution of the differential equation is 
defined as sum of two parts. The first part satisfies the initial/ 
boundary conditions and does contain an adjustable parameter and 
the second part which is constructed so as not to affect the 
initial/boundary conditions and involves adjustable parameters (the 
weights and biases) for a multi-layer perceptron neural network. 
Particle swarm optimization (PSO) is applied to find adjustable 
parameters of trial solution (in first and second part). The obtained 
solution in comparison with the numerical ones represents a 
remarkable accuracy. 
 

Keywords—Porous Media, Ordinary Differential Equations 
(ODE), Particle Swarm Optimization (PSO), Neural Network (NN).  

I. INTRODUCTION 
OST scientific problems such as boundary layer 
similarity solution for forced, natural and mix 

convection in porous medium, and other fluid mechanic and 
heat transfer problems are inherently of nonlinearity. Except a 
limited number of these problems, most of them do not have 
analytical solution. Therefore, these nonlinear equations 
should be solved using other methods see [1-12]. Recently, 
artificial intelligence techniques are used in order to solve 
various nonlinear differential equations [13-18]. 

The prediction of natural convection heat transfer 
characteristics from heated bodies embedded in a porous 
media has a number of thermal engineering applications [1].  
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Many problems have been investigated about external 

natural convection in a porous medium adjacent to heated 
bodies in the form of flat plate [2, 3], cylinder [2, 4, 5], sphere 
[2, 5, 6] and cone [1, 2, 7-12].  

This study presents a reliable method to solve the nonlinear 
ordinary differential equations of natural convection of 
Darcian fluid about a vertical full cone embedded in porous 
media. A remarkable accuracy for the presented method is 
achieved when the obtained results are compared with 
numerical solution. 

The paper is organized as follows: Governing equation of 
fluid flow and heat transfer of full cone embedded in porous 
medium is presented in Sections 2. A brief review of Artificial 
Neural Networks (ANN) and Particle Swarm Optimization 
(PSO) are brought in Sections 3 and 4, respectively. 
Mathematical formulation to solve mentioned equations in 
section 2 is discussed in section 5. Numerical results are 
discussed in Section 5. Finally, conclusions and directions for 
future research are presented in section 6.  

II. GOVERNING EQUATION 
Consider an inverted cone with semiangle γ and take axes 

in the manner indicated in Fig.1(a). The boundary layer 
develops over the heated frustum x = x0. In terms of the 
streamfunction ψ defined by: 
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Fig. 1: (a) Coordinate system for the boundary layer on a heated 

frustum of a cone, (b) full cone, x0 = 0 
 

For a thin boundary layer we have approximately r = x sin 
(γ). We suppose the temperature is power function of distance 
from the vertex of the inverted cone. Accordingly, the 
boundary conditions are: 
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For the case of a full cone (x0 = 0, Fig. 1(b)) a similarity 

solution exists.  
In the case of prescribed wall temperature, we let: 
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The dimensionless momentum and energy equations are, 
Ref. [7]: 
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subjected to boundary conditions as: 
0)(,1)0(,0)0(f =∞θ=θ=                                (7) 

Finally from Eq. (2.6) and (2.7) we have: 
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This study uses a hybrid artificial neural network-particle 
swarm optimization (HNNPSO) method to solve Eq.8. A brief 
review of Artificial Neural Networks (ANN) and Particle 
Swarm Optimization (PSO) are brought in Sections 3 and 4, 
respectively. 

 
 

 

III. GOVERNING EQUATION 
Neural networks are computational models of the biological 

brain. Like the brain, a neural network comprises a large 
number of interconnected neurons. Each neuron is capable of 
performing only simple computation [19].Any how, the 
architecture of an artificial neuron is simpler than a biological 
neuron. ANNs are constructed in layer connects to one or 
more hidden layers where the factual processing is 
performance through weighted connections. Each neuron in 
the hidden layer joins to all neurons in the output layer. The 
results of the processing are acquired from the output layer. 
Learning in ANNs is achieved through particular training 
algorithms which are expanded in accordance with the 
learning laws, assumed to simulate the learning mechanisms 
of biological system [20]. However, as an assembly of 
neurons, a neural network can learn to perform complex tasks 
including pattern recognition, system identification, trend 
prediction, function approximation, and process control [19].  

Multi-layer Perceptron (MLPs) are perhaps the most 
common type of feedforward networks [21]. Their application 
in function approximation is well known [13]. Fig.2 shows an 
MLP which has three layers: an input layer, an output layer 
and a hidden layer. 

Neurons in input layer only act as buffers for distributing 
the input signals ix to neurons in the hidden layer. Each 
neurons j (Fig. 3) in the hidden layer sums up its input signals 

ix after weighting them with the strengths of the respective 
connections jiw from the input layer and adding the bias ib  

to them, and computes its output jn as a function g of the sum, 

viz. 
( )∑ += jijij bxwgn                                       (9) 

where jn  is each neuron output and g can be a simple 
threshold function or a sigmoid, Gaussian, hyperbolic tangent 
or radial basis function. 
 

 
Fig. 2. A Multi-Layer Perceptron 
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Fig. 3. Details of a neuron 

 
From Kolmogorov existence theorem, any continuous 

function of n variable can be approximated using a three-
layered perceptron with ( )1n2n +  nodes [22, 23]. So, the 
accuracy of the approximation dose not depend on the number 
of the hidden layers, but it fully depends on the number of 
neurons in the hidden layer [13].  

Fig.4 shows a three-layered perceptron with one input x , 
one hidden layer consisting of H neuron, and one output 

)p,x(N . This structure is used in the present method. For 
each entry x  the network output is computed 

by ( )( )∑ =
+ν=

H
1i iii bxwg)p,x(N , which iw  is a weight 

parameter from input layer to ith neuron in hidden layer; iν  is 
a weight parameter from ith neuron in hidden layer to output 
layer, and ib  is a bias for ith neuron in hidden layer. For more 
details readers are referred to [24]. 

 

 
Fig. 4. Details of a three layerd perceptron with one input, one 

hidden layer (consist H neuron), and one output 
 

Some of benefits of hybrid ANNs and optimization 
techniques are listed in [16]. 

The training of an MLP network involves the minimization 
of an error function. As it is mentioned subsequently, this 
study lets the network learn from the theory of differential 
equations in order to approximate a function consisting 
adjustable parameters. 

IV. PARTICLE SWARM OPTIMIZATION (PSO) 
The Particle Swarm Optimization algorithm was first 

proposed by Eberhart and Kennedy [25], inspired by the 
natural flocking and swarming behavior of birds and insects. 
The concept of PSO gained in popularity due to its simplicity. 
Like other swarm-based techniques, PSO consists of a number 
of individuals refining their knowledge of the given search 
space. The individuals in a PSO have a position and a velocity 
and are denoted as particles. The PSO algorithm works by 
attracting the particles to search space positions of high 
fitness. Each particle has a memory function, and adjusts its 
trajectory according to two pieces of information, the best 
position that it has so far visited, and the global best position 
attained by the whole swarm. If the whole swarm is 
considered as a society, the first piece of information can be 
seen as resulting from the particle’s memory of its past states, 
and the second piece of information can be seen as resulting 
from the collective experience of all members of the society. 
Like other optimization methods, PSO has a fitness evaluation 
function that takes each particle’s position and assigns it a 
fitness value. The position of highest fitness value visited by 
the swarm is called the global best. Each particle remembers 
the global best, and the position of highest fitness value that 
has personally visited, which is called the local best.  

Many attempts were made to improve the performance of 
the original PSO algorithm and several new parameters were 
introduced such as the inertia weight [26]. The canonical PSO 
with inertia weight has become very popular and widely used 
in many science and engineering problems [27-30]. 

In the canonical PSO, each particle i has position iz and 
velocity iυ  that is updated at each iteration according to Eq.2.      

)z(c)z(c igi22iii11ii −ρϕ+−ρϕ+υω=υ                        (10)                   

Where ω  is the inertia weight described in [31, 32], iρ  is 
the best position found so far by particle iρ , and gρ is the 

global best so far found by the swarm. 1ϕ and 2ϕ weights that 
are randomly generated at each step for each particle 
component. 1c and 2c are positive constant parameters called 
acceleration coefficients (which control the maximum step 
size the particle can achieve). The position of each particle is 
updated at each iteration by adding the velocity vector to the 
position vector. 

iii zz υ+=                                               (11) 
The inertia weight ω (which is a user-defined parameter), 

together with 1c and 2c , controls the contribution of past 
velocity values to the current velocity of the particle. A large 
inertia weight biases the search towards global exploration, 
while a smaller inertia weight directs toward fine-tuning the 
current solutions (exploitation). Suitable selection of the 
inertia weight and acceleration coefficients can provide a 
balance between the global and the local search [26]. The PSO 
algorithm is composed of 5 main steps: 

1. Initialize the position vector z  and associated velocity 
υ of all particles in the population randomly. Then set a 
maximum velocity and a maximum particle movement 
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amplitude in order to decrease the cost of evaluation and to 
get a good convergence rate. 

2. Evaluate the fitness of each particle via the fitness 
function. There are many options when choosing a fitness 
function and trial and error is often required to find a good 
one. 

3. Compare the particle’s fitness evaluation with the 
particle’s best solution. If the current value is better than 
previous best solution, replace it and set the current solution 
as the local best. Compare the individual particle’s fitness 
with the population’s global best. If the fitness of the current 
solution is better than the global best’s fitness, set the current 
solution as the new global best.   

4. Change velocities and positions by using Eqs.(10) and 
(11). 

5. Repeat step 2 to step 4 until a stopping criterion is 
satisfied or a predefined number of iterations is completed. 
Particle size ( n ), inertia weight ( ω ) and maximum iteration 
number ( t ) are considered as important factors in PSO. 

As it is mentioned earlier, the multi layered feed forward 
neural networks are trainable. So, many different kinds of 
training algorithm can be used to gain optimum adjustable 
parameters for the corresponding multi-layered perceptron. In 
some cases which are called "ill-conditioned problems", the 
traditional training algorithms can not determine the 
adjustable parameters (weights and biases) properly [13]. 
Using particle swarm optimization algorithm in presented 
method helps not suffer from such difficulties. For more 
details readers are referred to [33-35]. 

V.  PROBLEM FORMULATION 
Consider governing equation of fluid flow and heat transfer 

of full cone embedded in porous medium which is expressed 
by Eq. (8) for wall temperature boundary condition.  

In order to solve Eq.(8), assume a discretization of the 
domain D with m arbitrary points. Now, the problem can be 
transformed to the following set of equations: 
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subject to given boundary conditions. 
Let’s assume ( )P,yT η  as an approximation solution to 

Eq.(8) where P   is a vector which contains adjustable 
parameters. These parameters (i.e. adjustable parameters) 
should be determined by minimizing the following sum of 
squared errors, subject to given conditions in (8) 
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In order to transform Eq.13 to an unconstrained problem 
( )P,xyT  is written in the following form: 

( ) ( )q,Nc
c2
ac31a)P,(Y 222

2
3

T η−ηη+η+η
+

+η=η    (14) 

where a is an adjustable parameter and c is a large enough 

amount which  represents physical infinity. ( )q,N η  is a three 
layer perceptron neural network which involves adjustable 
parameters (including weights and biases). So P  can be 
defined as follow: ( )q,aP = . Eq (14) satisfies all given 
conditions in (8). 

In order to calculate ( )PE , the trial function ( )( )P,yT η  
derivations respect to independent variable η  is needed (see 
Appendix). Although there are many different choices for the 
neural network transfer functions, sigmoid transfer function 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
η−+ exp1

1  is used in this study.  

Now, an optimization technique like PSO can be applied in 
order to determine optimal adjustable parameters of ( )P,yT η  

(i.e. P )  to minimize ( )PE  in Eq (2-13). 

VI. NUMERICAL RESULTS 
The algorithm was coded with MATLAB 2007. In order to 

demonstrate the presented method (HNNPSO), a fair 
comparison is made between presented method in this study 
(HNNPSO) and the other numerical methods (using MAPLE 
software). To aim this purpose, same step size (i.e. a step size 
of 0.2) and physical infinity amount (i.e. c=10) are used in this 
study which has been used in other numerical methods. 

The method is successfully used to solve Eq.(8). The 
following combination of user-specified parameters of PSO 
was used for this problem: 

 
Inertia weight = 0.9  
Population = 100 
Maximum Iteration=150 
Acceleration factors = 2.5 
 
Table 1 shows the obtained optimal adjustable parameters 

in trial function (i.e. P ) and ( )pE  for various values of λ . 
The results for ( )η′f  have been shown in Table2 with two 

selected λ as 0 and 3/4 and have been made comparison 
between the HNNPSO solution and numerical solution. 

Relative errors show that HNNPSO gives analytical 
solution with high degree of accuracy. Fig.5 shows the results 
of this study and the other numerical solution. ( )η′f  for 
various value of λ are shown in Fig.5. 

VII. CONCLUSION 
Nonlinear differential equation arising from similarity 

solution of inverted cone embedded in porous medium was 
solved using a hybrid neural network- particle swarm 
optimization method. 

The proposed approach is quite general. PSO was applied 
in order to find the adjustable parameters of trial function 
regarding to minimize a fitness function including these 
parameters (i.e. adjustable parameters). These parameters 
were determined so that the trial function has to satisfy the 
boundary conditions. The obtained solution in comparison 
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with the numerical ones represents a remarkable accuracy. 
Future work is focused on comparing the effect of changing 
optimization technique on minimizing the error function. 

 
TABLE I  OBTAINED ( )pE  AND OPTIMAL ADJUSTABLE PARAMETERS IN TRIAL 

FUNCTION (i.e. P ) FOR DIFFERENT VALUES OF 1=λ  

λ  a ( )pE  
Adjustable parameters in ANN ( q ) 

iω 1 
ib  iν  

0 0.00812144 4.65E-05 
-0.84466 -5.55654 0.930942 
-0.56966 -7.1947 -5.48311 
-0.08243 -9.82999 -29.9622 

1/4 0.00823658 1.88E-05 
-0.91726 -4.78682 0.38473 
-0.61797 -7.15912 -5.22255 
-0.09206 -9.77156 -31.9281 

1/2 0.00833206 1.10E-05 
-1.11502 -5.42388 0.32241 
-0.53856 -7.25598 -3.96877 
-0.09064 -9.8666 -35.0701 

3/4 0.00841269 7.06E-06 
-1.32533 -5.70586 0.246702 
-0.50177 -7.25416 -3.8014 
-0.08855 -9.82857 -33.3897 

1 0.00848659 5.24E-06 
-1.56399 -5.86258 0.174057 
-0.48938 -7.1582 -3.60679 
-0.08676 -9.90936 -35.9438 

1 i is the index for the weights and biases 
 

TABLE II COMPARISON BETWEEN HNNPSO SOLUTION AND NUMERICAL 

SOLUTION FOR ( )η′f  WITH λ=0 AND λ=1/2 

η 

λ=0, f ' (η) λ=3/4, f ' (η) 

HNNPSO 
Solution 

Numerical 
Solution 

Relative 
Error 

HNNPSO 
Solution 

Numerical 
Solution 

Relative 
Error 

0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

0.2 0.8477 0.8471 0.0008 0.7984 0.7983 0.0001 

0.4 0.7036 0.7032 0.0006 0.6281 0.6282 0.0002 

0.6 0.5732 0.5737 0.0009 0.4882 0.4886 0.0008 

0.8 0.4598 0.4611 0.0030 0.3757 0.3762 0.0013 

1 0.3641 0.3658 0.0047 0.2869 0.2873 0.0014 

1.2 0.2854 0.2868 0.0053 0.2178 0.2180 0.0009 

1.4 0.2218 0.2227 0.0039 0.1645 0.1645 0.0001 
1.6 0.1713 0.1714 0.0005 0.1239 0.1238 0.0006 
1.8 0.1316 0.1310 0.0046 0.0930 0.0929 0.0004 
2 0.1007 0.0997 0.0103 0.0697 0.0698 0.0019 
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Fig. 5. HNNPSO solution for different value of λ as λ=0, 1/4, 1/2, 

3/4, 1. 
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