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Abstract—This paper generalizes Yeh Lam’s shock model for 

renewal shock arrivals and random threshold. Several interesting 

statistical measures are explicitly obtained. A few special cases and 

an optimal replacement problem are also discussed. 

Keywords— shock model, optimal replacement, random 

threshold, shocks. 

I. INTRODUCTION

LL real world systems are deteriorating in nature and the 

progressive system degradation is often reflected in 

higher production cost, lower product quality and missed 

targets. Thus the study of optimal replacement and repair 

strategies of deteriorating systems have widely attracted the 

attention of several operations researchers in the recent past. 

Among the many approaches to modeling deteriorating 

systems, shock models have found favor with reliability 

analysts because of their tractability and wide applicability to 

diverse areas (stochastic clearing systems, drug administration 

in chemotherapy [1] and fatigue failure). Shocks are events 

which cause perturbation to the system, leading to its 

deterioration and consequent failure. The effect of these 

shocks on the system is measured by a process called wear 

process or damage process. The wear process denoted 

by 0: ttD , represents the deterioration level or the 

cumulative damage level at time t . The shocks arrive at 

random instants of time, and are described by the associated 

counting process 0: ttN . The system failure is viewed 

as the first passage problem of )(tD past a threshold, fixed or 

random. The shock that leads to the threshold crossing is

known as the lethal shock. Interesting variations of the first 

passage problem have been studied by Shanthikumar and 

Sumita [2], Stadje [1] and Yeh Lam and Zhang [3]. Yeh Lam 

and Zhang [3] in a refreshing departure introduced a new class 

of shock models and called them shock  models. While the 

earlier shock models concentrated solely on the magnitude of 

the damage caused by the shocks, Yeh Lam and Zhang’s 

model paid attention to the frequency of the shocks. Thus in a 

shock model, a shock is a deadly shock if the time 

elapsed from the previous shock to this shock is less than a 

prespecified value hereinafter referred to as the threshold 

value, and the system fails at the time of the occurrence of the 

deadly shock. This approach is more practical because the 

cumulative damage process is abstract and many a times not 

physically observable. In addition, systems may not withstand 

successive shocks at short intervals. For instance, elastic 

materials will stretch on the application of a shock and will 

take time to recover. Any further shock before the recovery is 

complete will make the material break. The threshold time is

the recovery time. In view of the relevance of this class of 

models in real systems, it seems worthwhile to make a 

comprehensive analysis of such a modeling approach. This 

paper attempts such an analysis of shock  models in which 

the shock counting process is generalized to a renewal process 

and the threshold times are considered as random variables. 

Apart from deriving explicitly various statistical 

characteristics of the model we analyze an optimal 

replacement problem of such a system.  

II. NOTATION USED

:Z Random variable denoting the time between two successive 

shocks.

(.)f , (.)F , (.)F :Probability density, cumulative 

distribution and survivor functions of Z .

:D  Random variable denoting the threshold value. 

(.)g , (.)G , (.)G : Probability density, cumulative 

distribution and survivor functions of D .

:W  Random variable denoting time between two successive 

failures.

)(tk , )(tK , )(tK : Probability density, cumulative 

distribution and survivor functions of W .

:)(tN Counting variable denoting the number of failures in 

),0( t .

)()( tNEtM .

:)(sL f  Laplace Transform of the function )(tf .

:c  Repair cost rate. 

:r Reward rate when the system is operating. 

:R Replacement cost. 

nY : Repair time after the nth failure ,...2,1;nYn  ; nY ’s 

form an increasing geometric process with rate b  with 

expectation of 1YE .

:nW Operating time of the system after the 1n th failure, 

called the length of the nth subcycle. 
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:
n

D Random threshold in the nth subcycle. 

.nG : Distribution function of the threshold time 
n

D in the 

n th subcycle. 

:U Random replacement time with UE .

III. THE MODEL

Our model is governed by the following assumptions:                                   

A1. A new system is put on operation at time 0t . The 

system on failure is repaired and successive repairs are 

assumed to take negligible amount of time. 

A2. The system is subject to shocks. The interval between 

shocks Z , are assumed to be independently and identically 

distributed with distribution function (.)F .

A3. A shock is classified as a nonlethal shock if the time 

elapsed from the previous shock to this shock is greater than 

the threshold D . A shock is lethal if it occurs within D . A 

lethal shock results in system failure leading to its repair.  

A4. Threshold time D  is a random variable with distribution 

function (.)G .

A5. The shock arrival times and the threshold time are 

independent of each other. 

The term “shock” is used in a broad sense, denoting 

any perturbation to the system caused by 

environment or inherent factors, leading to a 

degeneration of the system. If shocks are due to 

environmental factors like high temperature, voltage 

fluctuations, humidity and wrong handling, then 

shocks due to each of such factors will arrive 

according to a renewal process. Thus the shock 

arrival process can be seen to be the superposition of 

independent renewal processes. Thus a Poisson 

process will provide an adequate approximation [3]. 

On the other hand, if the shocks are due to internal 

causes, then the renewal process is a reasonable 

approximation. For instance, shocks could be viewed 

as the failure of a component in a multi-component 

system.  

The random threshold D can be viewed as a built in 

mechanism in the system, which counters the after 

effects of a shock restoring the system to its original 

state. Thus any shock which arrives before the 

termination of D can prove to be fatal. For instance 

if the system is a “2 out of n ” system and a 

component failure is identified as a shock, then the 

system continues to function, despite the shocks. 

While the failed component is repaired, if the next 

shock (component failure) arrives before the failed 

component is repaired, then the system fails. 

IV. THE STATISTICAL CHARACTERISTICS

We first obtain the probability density function ofW , the 

time between two successive failures. From the stated 

assumptions, the survivor function tK  of the time between 

failures satisfies the integral equation  

t

dtKGftFtK

0

        (1)

Equation (1) may be derived as follows. The event 

tW can be decomposed into two mutually exclusive 

events as given below.  

1) The first shock itself occurs only after t , the 

probability of which is tF .

2) The other possible event is a conjunction of the 

following three events. 

a. The first shock occurs at some 

instant t,0 , the corresponding density 

being f .

b. The threshold time starting from 0t is

over by time , the probability of which is 

G  and 

c. In the remaining interval t,  of length 

t there is no failure, the probability of 

which is tK . Integrating over all 

possible t,0  we obtain the second 

term of equation (1). Simple differentiation 

of (1) yields the probability density tk  of 

the random variable W as

t

dttkGftGtftk

0

)()()()()()(
           (2) 

Finally application of Laplace transforms and rearrangement 

of terms yields  

)(1

)(
)(

sL

sL
sL

fG

Gf
k                              (3) 

We will now provide an alternate derivation of (3) which will 

be useful in our further analysis. Towards this end, it is to be 

noted that during W, a random number of shocks occur of 

which the last one is lethal while the earlier ones are not. From 

the definition of a lethal shock, we are led to the fact that W, 

the time between two successive failures comprises of the sum 

of a random number of intervals each of which is greater than 

D and one lone interval whose length is less than D. We first 

define a sequence of independently and identically distributed 

random variables Xi’s which are distributed as Z but 

conditional on Z>D. We also define a random variable YN

distributed as Z but conditional on Z D. YN is assumed to be 

independent of the sequence Xi’s.  We observe that W can be 

represented as the sum of a random number of random 

variables, so that
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1

1

N

i N

i

W X Y                               (4) 

The number of terms 1N  in the summation is a random 

variable representing the number of nonlethal shocks 

experienced by the system during one cycle. From our 

assumptions, it is immediate that N has the geometric 

distribution given by 

,...2,1,0,nqpnNP n

where ][ DZPq  and qp 1 .                              (5) 

Define the conditional distributions of iX and NY as

)(

)()(
/)(

DZP

xGxf
DZdxxZxPx              (6)

and
)(

)()(
/)(

DZP

xGxf
DZdxxZxPx       (7)

Now,  

0

/)(
n

nNPnNdttWtPdttWtPtk

0

)( )()(*
n

nn DZPDZPt                            (8) 

where )(*)( tn
is the convolution of the n fold

convolution of )(t and )(t .

Taking the Laplace Transform on both sides of (8) yields,

)(1

)(
)(

sL

sL
sL

fG

Gf
k                           (9) 

The moments of W for any shock arrival distribution 

)(tf are simply obtained by differentiating )(sLk

successively and setting 0s . By observing that

DZPDZZE
ds

sLd
nn

s

n

fG
n

/1

0

 and 

DZPDZZE
ds

sLd
nn

s

n

Gf
n

/1

0

,...2,1,0n

we obtain the mean and variance ofW , after simplification as  

DZP

ZE
WE                          (10) 

2

22 /2

DZP

ZEDZPDZZEZE

DZP

ZE
WVar

          (11)                      

We next proceed to obtain the statistical characteristics of the 

failure counting process tN . To this end, we appeal to 

elementary results of renewal theory. We first define the 

generating function of tN as

0

, ntNpuuEtuV ntN                (12) 

0

1 tKtKu nn
n                         (13) 

Where tKn  is the n fold convolution of tK  with itself. 

Taking the Laplace Transform of (13), we obtain  

suLs

sLu

s
suV

k

k

1

11
,                        (14) 

Differentiation of suV , with respect to u and setting 1u ,

yields the Laplace Transform of the mean 

function tNEtM . Thus 

sLs

sL
sL

k

k
M

1
                         (15) 

sLM  could be inverted for specific forms of .f and

.g . To obtain tNVar , instead of differentiating (4.14) 

twice, we use the formula,  

2

0

2 tMxdMxtMtMtNVar

t

   (16) 

V. SPECIFIC MODELS AND DISCUSSIONS

 Case 1:  We first consider the case when the systems are 

subjected to the same kind of shocks but consider different 

systems whose thresholds for recovery are different. 

Specifically we let the shocks arrive according to a Poisson 

counting process so that tetf , 0t . If the threshold 

density is chosen to be exponential so that tetg , 0t

then we observe that 1
ZE  and 

0

dxxgxDxZPDZP .

Thus WE is easily seem to be 
2

. In a similar manner 

in the case of constant and uniform threshold densities 

specified by dttg and
b

tg
1

, bt0 , the 

respective mean failure times are easily seen to be 

de1

1 and

1beb

b . In Figure 1 we plot the mean 

failure times for the three cases discussed above. To bring out 

the dependence of the mean failure time on the threshold 

distribution, we have chosen the mean of each of threshold 

distribution to be the same, and plotted WE . The plotted 

graph clearly exhibits the sensitivity of the mean failure times 

due to the threshold distributions for smaller mean values.
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Fig. 1 Mean failure times case 1 

Case 2:  When the system is subjected to the same kind of 

shock each time, the threshold time of the system is likely to 

remain a constant, a case discussed by Yeh Lam [3],[4]. Under 

such a scenario, we consider a few models for different shock 

arrival distributions. 

We choose the threshold times to be a constant d  so that       

dt

dt
tG

1

00                                                       (17) 

First, we assume the shock arrivals are according to an 

exponential density with mean 1 . The relevant statistical 

characteristics can be derived as

dn
n

nd
n

n

n
t UdntUndt

n
etk 1

0

1
!

  (18)

where U  is the Heaviside unit step function defined as  

t

t
tU a

0

1

de
WE

1

1                                  (19) 

22 1

212

d

dddd

e

edeee
WVar        (20)

dtettNEtM d
, dt     (21) 

2
1 ddd dedeettNVar         (22) 

Observations: 

 We first observe that the expected time between failures 

given in (19) is the same as that obtained by Yeh Lam and 

Yuan Lin Zhang [3]. Consider the limiting case as d .

This implies that with the threshold value being large, every 

shock leads to system failure. In this case, we see 

that tetk , (which is the shock arrival density) 

and ttM . Also for a given , the expected time between 

failures is a function of the threshold time d ,

say
de

dg
1

1 . We note that dg  is a monotonically 

decreasing function of d with 1
dg as an asymptote. On 

the other hand as 0d , the system cannot fail, which is 

confirmed by the governing equations with WE .

Further, for a fixed d , WE is again a decreasing function 

of . Finally we note that the expected number of failures 

is t , dampened by a factor dte d . This factor arises 

out of the interaction of shock arrival process and threshold 

process.

We consider four more shock arrival distributions namely: 

(a)
a

bbte
tf

abt 1
, 0t , 0,ba

(b)
ab

tf
1

, bta

(c)
tettf 1

, 0t

(d) tf  is degenerate at t .

The mean failure time using (11) are specifically given by

(a)
bdab

a

,

1
 where ba,  is the complete gamma 

function

(b)
ad

abab
*

2

(c)
1

1

1
1

ee

(d)
d

d

,

,

The other statistical characteristics could be obtained in a 

straight forward manner. It is to be noted that (a) and (c) have 

been obtained by Yeh Lam but using lengthy probability 

arguments.  

To conclude this section, we present in Figure 2, the mean 

time to failure for various shock arrival distributions. As 

before to bring out the degree of dependence of the mean 

failure time on the shock arrival density, we have chosen the 

mean of each of the shock arrival distribution to be the same. 

This ensures that for large d , WE  remains the same while 

the sensitivity gets pronounced for smaller values of d .

We observe that for a given threshold value the exponential 

density gives the least mean failure time. Also, as the order of 

the gamma density increases, the mean failure times increase. 

Threshold time densities with mean 0.05 
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VI. OPTIMAL REPLACEMENT MODEL

With our success in obtaining the various statistical 

characteristics of the shockmodel under a more general 

setup, we analyze an optimal replacement model first 

introduced by Yeh lam [3]. The replacement model is 

described by the following assumptions:  

A1. A new system is put on operation at 0t . The system is 

repaired on failure and replaced after N such failures by a new 

and identical system. The successive times between failures 

are called subcycles so that replacement is done at the end of 

the end of the Nth of the subcycle. The replacement time is a 

random variable U write UE .

A2. The system is subject to shocks with a shock coinciding 

with the installation of the system after repairs. The time 

between shocks, Z  are independently and identically 

distributed with the distribution function .F .

A3. If the system has been repaired n times, then in the 

1n th subcycle the threshold time 1nD  is a random 

variable with the distribution function .1nG . This means 

that during the operating time of the system after the (n+1)th

repair, the system fails whenever the time between two 

successive shocks is less than 1nD  for the first time. We 

assume that the system is deteriorating so that .nG is

stochastically decreasing.

A4. The successive repair times nY of the system after 

failures form a geometric process with rate b so that 

1nn
b

YE where 1YE . During the repair time, the 

arriving shocks have no effect on the system.  

A5. The shock arrival times, threshold times and repair 

times are mutually independent variable times.  

To compute the long run average cost we first observe that 

the system renews after every replacement, so that the time till 

the N th failure since its installation forms the length of each 

cycle. Thus the successive cycles together with the cost 

incurred in each cycle will form a renewal reward process. By 

applying the standard result in renewal reward process, the 

long run average cost per unit time is given by C(N)= 

(Expected cost incurred in a cycle)/ (Expected length of a 

cycle)

Let nW be the operating time of the system following the 

1n th repair in a cycle and let nY be the repair time after 

the nth failure in a cycle. We see that     

UYWE

RWrYcE

NC
N

n

n

N

n

n

N

n
n

N

n
n

1

11

1

1

1                (23) 

Let nn WE . n ’s could be obtained using the 

formula (11) by replacing D  with nD  in the n th subcycle. 

Thus

1

1
1

1

1

1

1
1

1

1

N

n
n

N

n
n

N

n
n

N

n
n

b

Rr
b

c

NC
                  (24) 

Lam Yeh showed that the optimal replacement policy 
*N

for the deteriorating system whose long run average cost C(N) 

is (24) can be determined by 1|min* NBNN  where 

1
1

1

1

1

1

N
N

N

n

nN
N

N

n

n

brR

brc

NB
. Now we present 

certain numerical illustrations to demonstrate the model and 

methodology and obtain explicitly the optimal replacement 

time and cost. Specifically we assume that the time between 

shocks is exponentially distributed with mean 1 . To 

demonstrate the effect of threshold times on the optimal N* we 

consider two different distributions for .nG . They are

n

n
n

dt

dt
tG

,1

0,0                          (25)

                and netG nn 1                       (26)

Let us choose the parameter values to 

be 20,50,6000,10,6 Rrc , ,1n
nd

1,05.1 ;
1nn

where 1, 95.0b . The choice 

of
nn

d ,  where motivated by the fact that we have the same 

mean threshold for the two distributions that we consider. The 

optimal *N  and the associated costs are presented in Table I. 

Shock arrival densities with mean = 0.2 
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TABLE I

THRESHOLD DENSITIES

Constant Exponential 

*N
*)(NC *N

*)(NC

1 4.127875 1 14.07407 

2 -2.26592 2 3.578641 

3 -4.51336 3 -0.27856 

4 -5.65205 4 -2.26962 

5 -6.3344 5 -3.47612 

6 -6.78457 6 -4.34709 

7 -7.10031 7 -4.90558 

8 -7.33103 8 -5.31643 

9 -7.5044 9 -5.62738 

10 -7.6371 10 -5.86737 

11 -7.73977 11 -6.05497 

12 -7.81953 12 -6.20261 

13 -7.88129 13 -6.31893 

14 -7.92855 14 -6.41012 

15 -7.96388 15 -6.48071 

16 -7.98919 16 -6.53411 

17 -8.00593 17 -6.26741 

18 -8.01519 18 -6.30628 

19 -8.01786 19 -6.33284 

20 -8.0146 20 -6.39043 

VII. CONCLUSION

This paper considers an important class of shock models for 

deteriorating systems focusing on the frequency of shocks. As 

remarked earlier, this class of models which analyzes 

deteriorating systems has wide applicability in diverse areas of 

which we will mention a few. The classes of warranty models 

known as renewing warranty policies have been of interest 

[5]. In such policies, if the item fails during the warranty 

period W  (fixed or random), the manufacturer agrees to 

replace it by a new item, which carries a further warranty 

period ofW . This goes on until there is no failure during a 

warranty period. By identifying the instants of shocks with the 

failure of the item and the threshold times as the warranty 

period and changing the definition of the lethal shock (item 

failure in this case) as the occurrence of a shock past the 

threshold period, we can study renewing warranty cost 

analysis. An interesting special case of our model arises when 

the shock occurrences are deterministic. This will lead us to 

fatigue failure models with cyclic loading, which we 

encounter in fatigue analysis. The developed model can be 

used to study reliability of one unit system with a single spare 

and one repair facility. Identifying shocks with failure times of 

the system or spare and the threshold times with repair times, 

the system failure times of our model can be identified with 

system breakdown. Finally another interesting and important 

application that we envisage is in the area of single neurons. 

Neurons which are the carriers of communication signals, 

receive two kinds of inputs Excitatory Post Synaptic Potential 

(EPSP) and Inhibitory Post Synaptic Potential (IPSP) from 

neighboring neurons. These two inputs are assumed to arrive 

according to two independent renewal processes. A signal or a 

spike is registered by the selective interaction of these two 

processes which is of fundamental importance in the study of 

neurons.

In our model the sequence of events of the shock arrival 

process is mapped onto the sequence formed by the failure 

process using the rule determined by the threshold value 

(selective interaction). Also, given the threshold value D , the 

sequence iZ of shock arrivals and the sequences it of

failure times are related by a one to one correspondence and 

may be reconstructed from each other. Finally our model 

registers the first shock which arrives during the threshold 

time as the lethal shock. However one can think of the 

memory extending to more than one such shock to be called 

lethal.
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