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A New Quadrature Rule Derived from Spline
Interpolation with Error Analysis

Hadi Taghvafard

Abstract—We present a new quadrature rule based on the spline
interpolation along with the error analysis. Moreover, some error
estimates for the reminder when the integrand is either a Lipschitzian
function, a function of bounded variation or a function whose
derivative belongs to Lp are given. We also give some examples
to show that, practically, the spline rule is better than the trapezoidal
rule.

Keywords—Quadrature, Spline interpolation, Trapezoidal rule, Nu-
merical integration, Error analysis.

I. INTRODUCTION

QUADRATURE is an old-fashioned word that refers to
the numerical approximation of definite integrals. There

are several reasons for carrying out numerical integration. The
integrand f(x) may be known only at certain points, such as
the one obtained by sampling. The formula for integrand may
be known, but it may be difficult or impossible to find an
antiderivative which is an elementary function. An example
of such an integrand is f(x) = e−x2

, the antiderivative of
which cannot be written in an elementary form. It may be
possible to find an antiderivative symbolically, but it may be
easier to compute a numerical approximation than to compute
the antiderivative. That may be the case if the antiderivative
is given as an infinite series or product, or if its evaluation
requires a special function which is not available.

Numerical integration methods can generally be described
as combining evaluations of the integrand to get an approxi-
mation to the integral. An important part of the analysis of any
numerical integration method is to study the behavior of the
approximation error as a function of the number of integrand
evaluations. A method which yields a small error for a small
number of evaluations is usually considered superior. Reducing
the number of evaluations of the integrand reduces the number
of arithmetic operations involved, and therefore reduces the
total round-off error. Also, each evaluation takes time and the
integrand may be arbitrarily complicated.

This paper is organized as follows. In section 2, we present
a new three-point quadrature rule which is based on the spline
interpolation while section 3 is devoted to error analysis.
Section 4 provides an estimate for the remainder when f is
a Lipschitzian function while the fifth section deals with an
upper bound for the remainder in spline inequality for the class
of functions of bounded variation. Section 6 gives an inequality
for functions whose derivatives belong to Lp. In section 7,
some examples are presented to show that the new quadrature
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rule is better than the trapezoidal rule. Finally, conclusions in
section 8 close the paper.

II. NEW QUADRATURE RULE

A large class of quadrature rules can be derived by con-
structing interpolating functions which are easy to integrate.
Typically, these interpolating functions are polynomials. We
know that cubic spline functions are popular spline functions,
for a variety of reasons. They are smooth functions with
which to fit data, and when used for interpolation, they do
not have the oscillatory behavior which is the characteristic
of high-degree polynomial interpolation. Let Δ = {xi| i =
0, 1, 2..., n} be a fixed partition of the interval [a, b] by
knots a = x0 < x1 < x2 < · · · < xn = b, and
yi = f(xi) ; i = 0, 1, 2, ..., n, be (n + 1) prescribed real
number. In addition let hi+1 := xi+1−xi ; i = 0, 1, 2, ..., n−1;
then the cubic spline function SΔ(x) which interpolates the
values of the function f at the knots x0, x1, ..., xn ∈ Δ and
satisfies S′′

Δ
(a) = S′′

Δ
(b) = 0 is readily characterized by their

moments, and these moments of interpolating cubic spline
function can be calculated as the solution of a system of linear
equations. We can obtain the following representation of the
cubic spline function in terms of its moments [4]:

SΔ(x) = αi + βi(x − xi) + γi(x − xi)2 + δi(x − xi)3, (1)

for x ∈ [xi, xi+1], i = 0, 1, 2, ..., n − 1, where

αi = yi , γi =
Mi+1 − Mi

6hi+1

,

βi =
yi+1 − yi

hi+1

− 2Mi − Mi+1

6
hi+1

M0 = Mn = 0, Mi = S′′
Δ

(xi); i = 0, 1, 2, ..., n,

and the moments Mi, for i = 0, 1, 2, ..., n obtain the following
system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0
μ1 2 λ1 0
0 μ2 λ2 0

. . .
. . .
0 μn−1 2 λn−1

0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M0

M1

M2

.

.

.
Mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0

d1

d2

.

.

.
dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that for i = 1, 2, 3, ..., n − 1

λi =
hi+1

hi + hi+1

, μi = 1 − λi ,
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di =
6

hi + hi+1

(
yi+1 − yi

hi+1

− yi − yi−1

hi

)
,

and d0 = dn = 0. By integrating on both side of (1) on
[xi, xi+1], we obtain the formula∫ xi+1

xi

SΔ(x)dx =
hi+1

2
(yi +yi+1)−

h3

i+1

24
(Mi +Mi+1) (2)

for i = 0, 1, 2, ..., n − 1.
Now, let us suppose that Δ = {a, a+b

2
, b} is a uniform

partition of the interval [a, b]. Then by solving the system⎛
⎝2 0 0

1

2
2 1

2

0 0 2

⎞
⎠
⎛
⎝M0

M1

M2

⎞
⎠ =

⎛
⎝d0

d1

d2

⎞
⎠

with d0 = d2 = 0, M0 = M2 = 0 and d1 = 3

h2 [f(a) −
2f(a+b

2
) + f(b)], we obtain

2M1 =
3
h2

[f(a) − 2f(
a + b

2
) + f(b)].

On the other hand, from (2) we have∫ b

a

SΔ(x)dx =
∫ a+b

2

a

SΔ(x)dx +
∫ b

a+b
2

SΔ(x)dx

=
h

2

[
f(a) + 2f(

a + b

2
) + f(b)

]

−h3

24
[M0 + 2M1 + M2]

=
h

8

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
.

Therefore∫ b

a

SΔ(x)dx =
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
,

and∫ b

a

f(x)dx ≈
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
,

which is the desired three-point quadrature rule that henceforth
we call it the spline rule.

Let a = x0 < x1 < x2 < · · · < xn−1 < xn = b be
the nodes of the partition σn of the interval [a, b]. The spline
quadrature formula of the integral

∫ b

a
f(x)dx on the partition

σn has the form∫ b

a

f(x)dx =
n−1∑
i=0

hi

16
[3f(xi) + 10f(

xi + xi+1

2
)

+ 3f(xi+1)] + R(f, σn), (3)

where hi = xi+1 − xi for i = 0, 1, 2, ..., n − 1.

III. ERROR ANALYSIS

In this section, we analyze the error of the spline rule, i.e.,

ε(f) =
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
.

The standard derivation of quadrature error formulas is
based on determining the class of polynomials for which these

formulas produce exact results. The next definition is used to
facilitate the discussion of this derivation [6].

Definition 1: The degree of accuracy, or precision, of a
quadrature formula is the largest positive integer n such that
the formula is exact for xk, for each k = 0, 1, 2, ..., n.

Remark 1: Definition 1 implies that the spline rule has the
degree of precision one.

Definition 2: For quadrature rule L(f) � ∫ b

a
f(x)dx with

error ε(f) =
∫ b

a
f(x)dx−L(f), Peano’s kernel of the degree

n is defined by Kn(t) = 1

n!
ε((x − t)n

+
), where

(x − t)n
+

=

⎧⎨
⎩

(x − t)n if x ≥ t

0 if x < t.

We have the following theorem from [5] which is known as
Peano’s kernel theorem:

Theorem 1: Let L(f) � ∫ b

a
f(x)dx be a quadrature rule

such that for each polynomial p of the degree n, ε(p) = 0. If
f ∈ Cn+1[a, b], then

ε(f) = −
∫ b

a

f (n+1)(t)Kn(t)dt.

Now, let f and K1 be integrable functions on the interval
[a, b] where f ∈ C2[a, b] and K1(t) is Peano’s kernel of the
degree 1 such that it doesn’t change sign on [a, b]. Via theorem
1, we have

ε(f) = −
∫ b

a

f
′′
(t)K1(t)dt. (4)

Indeed, according to the mean value theorem for integrals,
there exists a ζ ∈ (a, b) such that∫ b

a

f
′′
(t)K1(t)dt = −f ′′(ζ)

∫ a

b

K1(t)dt (5)

On the other hand, since the spline rule is accurate for
polynomials of the degree 1, a simple calculation shows that

ε(x2) = −2
∫ a

b

K1(t)dt. (6)

Therefore, from 4, 5 and 6, one obtains

ε(x2) = −f ′′(ζ)
2

ε(x2) = − (b − a)3

192
f ′′(ζ) , ζ ∈ (a, b).

Therefore the following theorem has been proved:
Theorem 2: Let f ∈ C2[a, b]. If Peano’s kernel K1(t)

doesn’t change sign on [a, b], then there exists a ζ ∈ (a, b)
such that

ε(f) = − (b − a)3

192
f ′′(ζ),

where ε(f) is the spline rule error.
For a uniform partition of the interval [a, b], the following

corollary is obtained:
Corollary 1: Under the assumptions of Theorem 2, for a

uniform partition σn of [a, b], the remainder term R(f, σn) in
the composite spline rule (3) satisfies

R(f, σn) = −b − a

192
h2f ′′(ζ).
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or

|R(f, σn)| ≤ b − a

192
h2‖f ′′‖∞,

and this conclusion shows that the composite spline rule error
decreases with the minimum rate of h2.

IV. SPLINE INEQUALITY FOR LIPSCHITZIAN FUNCTIONS

In this section, we present an inequality of spline type for
L-Lipschitzian functions and show that the error estimate in
the spline rule is less than the one in Simpson’s rule for L-
Lipschitzian functions.

Definition 3: A real function f : [a, b] → R is called an
L-Lipschitzian function if there exist a constant L > 0 such
that

|f(x) − f(y)| ≤ L|x − y| ∀x, y ∈ [a, b].

Dragomir [1] proved the following inequality of Simpson’s
type for L-Lipschitzian functions:

Theorem 3: Let f : [a, b] → R be an L-Lipschitzian
function on [a, b]. Then

∣∣∣∣∣
∫ b

a

f(x)dx − b − a

3

[
f(a) + f(b)

2
+ 2f(

a + b

2
)
]∣∣∣∣∣

≤ 5
36

L(b − a)2. (7)

Also, we have the following result from [1].
Lemma 1: If p : [a, b] → R is a Riemann integrable

function on [a, b] and v : [a, b] → R is a L-Lipschitzian
function on [a, b], then

∣∣∣∣∣
∫ b

a

p(x)dv(x)

∣∣∣∣∣ ≤ L

∫ b

a

p(x)dx. (8)

Let s(x) be a function defined as

s(x) =

⎧⎨
⎩

x − 13a+3b
16

x ∈ [a, a+b
2

)

x − 3a+13b
16

x ∈ [a+b
2

, b]

Using integration by parts for Riemann-Stieltjes integral, we
obtain

∫ b

a

s(x)df(x) =
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]

−
∫ b

a

f(x)dx.

In fact,∫ b

a

s(x)df(x) =
∫ a+b

2

a

(
x − 13a + 3b

16

)
df(x)

+
∫ b

a+b
2

(
x − 3a + 13b

16

)
df(x)

=
[(

x − 13a + 3b

16

)
f(x)

] a+b
2

a

+
[(

x − 3a + 13b

16

)
f(x)

]b

a+b
2

−
∫ b

a

f(x)dx

=
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]

−
∫ b

a

f(x)dx. (9)

Now, let f : [a, b] → R be an L-Lipschitzian function on
[a, b]. Using lemma 1, one obtains∣∣∣∣∣

∫ b

a

s(x)df(x)

∣∣∣∣∣ ≤ L

∫ b

a

|s(x)dx|.

On the other hand,∫ b

a

|s(x)|dx =
∫ a+b

2

a

∣∣∣∣x − 13a + 3b

16

∣∣∣∣ dx

+
∫ b

a+b
2

∣∣∣∣x − 3a + 13b

16

∣∣∣∣ dx

=
∫ 13a+3b

16

a

(
13a + 3b

16
− x

)
dx

+
∫ a+b

2

13a+3b
16

(
x − 13a + 3b

16

)
dx

+
∫ 3a+13b

16

a+b
2

(
3a + 13b

16
− x

)
dx

+
∫ b

3a+13b
16

(
x − 3a + 13b

16

)
dx

=
17
128

(b − a)2.

Thus, we have proved the following theorem:
Theorem 4: Let f : [a, b] → R be an L-Lipschitzian

function on [a, b]. Then the following inequality holds:∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 17

128
L(b − a)2. (10)

Corollary 2: Suppose that f : [a, b] → R is a differentiable
function such that f ′ ∈ L∞[a, b], i.e.,

‖f ′‖∞ := sup
x∈[a,b]

|f ′(x)| < ∞,

then ∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 17

128
‖f ′‖∞(b − a)2.
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Remark 2: By comparing (7) and (10), we conclude that
the error estimate in (10) is less than the one in (7).

Remark 3: We state that the constant 17

128
, which occurred

in the inequality, is the best constant. Namely, for the 1-
Lipschitzian function

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + 13a+3b
16

, x ∈ [a, 13a+3b
16

)

x − 13a+3b
16

, x ∈ [ 13a+3b
16

, a+b
2

)

−x + 3a+13b
16

, x ∈ [a+b
2

, 3a+13b
16

)

x − 3a+13b
16

, x ∈ [ 3a+13b
16

, b)

we have |R(f)| = 17

128
(b − a)2.

Via Theorem 4, we obtain the following estimation for the
remainder R(f, σn).

Corollary 3: Under the assumptions of Theorem 4, the
remainder term R(f, σn) in the composite spline quadrature
formula (3) satisfies

|R(f, σn)| ≤ 17
128

· L
n−1∑
j=0

h2

j , (11)

If σn is a uniform partition of [a, b], we have the following
corollary:

Corollary 4: Under the assumptions of Theorem 4 for a
uniform partition σn of [a, b], the reminder satisfies the esti-
mation

|R(f, σn)| ≤ 17
128

· L

n
(b − a)2.

Remark 4: If we want to approximate the integral
∫ b

a
f(t)dt

by the composite spline rule (3) with an accuracy less than
ε > 0, we need at least nε ∈ N points for the division σn,
where

nε =
[

17
128

· L

ε
(b − a)2

]
+ 1,

and [r] denotes the integer part of r ∈ R.

V. SPLINE INEQUALITY FOR FUNCTIONS OF BOUNDED

VARIATION

In this section, we present an inequality of the spline type
for functions of bounded variation and show that the error
estimate in the spline rule is less than the one in Simpson’s
rule for functions of bounded variation.

Dragomir [2] proved the following inequality of Simpson’s
type for functions of bounded variation:

Theorem 5: Let f : [a, b] → R be a function of bounded
variation. Then∣∣∣∣∣

∫ b

a

f(x)dx − b − a

3

[
f(a) + f(b)

2
+ 2f(

a + b

2
)
]∣∣∣∣∣

≤ 1
3
(b − a)

b∨
a

(f), (12)

where
∨b

a(f) denotes the total variation of f on the interval
[a, b] and the constant 1

3
is the best constant.

We have the following lemma from [2]:

Lemma 2: Let p, v : [a, b] → R be continuous and of
bounded variation, respectively, on [a, b]. Then∣∣∣∣∣

∫ b

a

p(x)dv(x)

∣∣∣∣∣ ≤ max
x∈[a,b]

|p(x)|
b∨
a

(v). (13)

Let s(x) be a function defined as

s(x) =

⎧⎨
⎩

x − 13a+3b
16

x ∈ [a, a+b
2

)

x − 3a+13b
16

x ∈ [a+b
2

, b].

With the same procedure which passed in the previous section,
we have∫ b

a

s(x)df(x) =
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]

−
∫ b

a

f(x)dx,

Now, let f : [a, b] → R be a function of bounded variation
on [a, b]. Using lemma 2, one obtains∣∣∣∣∣

∫ b

a

s(x)df(x)

∣∣∣∣∣ ≤ max
x∈[a,b]

|s(x)|
b∨
a

(f). (14)

Since s is a non-decreasing function on [a, a+b
2

) and [a+b
2

, b]
and

s(a) =
3(a − b)

16
, s((

a + b

2
)−) =

5(b − a)
16

,

s((
a + b

2
)+) =

5(a − b)
16

, s(b) =
3(b − a)

16
,

we deduce that

max
x∈[a,b]

|s(x)| =
5(b − a)

16
.

Thus, we have proved the following theorem:
Theorem 6: Let f : [a, b] → R be a function of bounded

variation. Then the inequality∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 5

16
(b − a)

b∨
a

(f), (15)

holds, where
∨b

a(f) denotes the total variation of f on the
interval [a, b].

Remark 5: We state that the constant 5

16
which occurred in

the inequality is the best constant. In order to show this, let
us assume that for a constant C > 0, the following inequality
holds:∣∣∣∣∣

∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ C(b − a)

b∨
a

(f). (16)
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Let f : [a, b] → R be a function defined as

f(x) =

⎧⎨
⎩

1 x ∈ [a, a+b
2

) ∪ (a+b
2

, b]

−1 x = a+b
2

.

Then we have∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 5

4
(b − a) (17)

and

(b − a)
b∨
a

(f) = 4(b − a). (18)

Now, using the above inequality, we get 4C(b−a) ≥ 5

4
(b−

a) which implies that C ≥ 5

16
and then 5

16
is the best possible

constant in (15).
Corollary 5: Suppose that f : [a, b] → R is a differentiable

function whose derivative is continuous on (a, b) and

‖f ′‖1 :=
∫ b

a

|f ′(x)|dx < ∞,

then ∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 5

16
‖f ′‖1(b − a)2. (19)

Remark 6: By comparing (12) and (15), we conclude that
the error estimate in (15) is less than the one in (12).

Via Theorem 6, we obtain the following estimation for the
remainder R(f, σn).

Corollary 6: Under the assumptions of Theorem 6, the
remainder term R(f, σn) in the composite spline quadrature
formula satisfies

|R(f, σn)| ≤ 5
16

· γ(h)
b∨
a

(f), (20)

where γ(h) := max{hi| i = 0, 1, ..., n − 1}.
The case of uniform partition of [a, b] are presented in the

following corollary:
Corollary 7: Under the assumptions of Theorem 6 for a

uniform partition σn of [a, b], the reminder satisfies the esti-
mation

|R(f, σn)| ≤ 5
16

· b − a

n

b∨
a

(f).

Remark 7: If we want to approximate the integral
∫ b

a
f(t)dt

by the composite spline rule (3) with an accuracy less than
ε > 0, we need at least nε ∈ N points for the division σn,
where

nε =

[
5
16

· b − a

ε

b∨
a

(f)

]
+ 1,

and [r] denotes the integer part of r ∈ R.

VI. SPLINE INEQUALITY IN TERMS OF THE p-NORM

In this section, we present an inequality of the spline type
for functions whose derivatives belong to Lp([a, b]) and show
that the error estimate in the spline rule is less than the one
in Simpson’s rule for functions whose derivatives belong to
Lp([a, b]).

Dragomir [3] proved the following inequality of Simpson’s
type for functions whose derivatives belong to Lp([a, b]):

Theorem 7: Let f : [a, b] → R be an absolutely continuous
function on [a, b] whose derivative belongs to Lp([a, b]). Then∣∣∣∣∣

∫ b

a

f(x)dx − b − a

3

[
f(a) + f(b)

2
+ 2f(

a + b

2
)
]∣∣∣∣∣

≤ 1
6

[
2q+1 + 1
3(q + 1)

]1/q

(b − a)1+1/q‖f ′‖p, (21)

where 1/p + 1/q = 1, p > 1.
Let s(x) be a function defined as

s(x) =

⎧⎨
⎩

x − 13a+3b
16

x ∈ [a, a+b
2

)

x − 3a+13b
16

x ∈ [a+b
2

, b].

With the same procedure which passed in the third section,
we have∫ b

a

s(x)df(x) =
b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]

−
∫ b

a

f(x)dx,

Applying Hölder’s inequality, we obtain

∫ b

a

s(x)f ′(x)dx =

(∫ b

a

|s(x)|qdx

)1/q

‖f ′‖p.

On the other hand,∫ b

a

|s(x)|qdx =
∫ a+b

2

a

∣∣∣∣x − 13a + 3b

16

∣∣∣∣
q

dx

+
∫ b

a+b
2

∣∣∣∣x − 3a + 13b

16

∣∣∣∣
q

dx

=
∫ 13a+3b

16

a

(
13a + 3b

16
− x

)q

dx

+
∫ a+b

2

13a+3b
16

(
x − 13a + 3b

16

)q

dx

+
∫ 3a+13b

16

a+b
2

(
3a + 13b

16
− x

)q

dx

+
∫ b

3a+13b
16

(
x − 3a + 13b

16

)q

dx

=
(3q+1 + 5q+1)(b − a)q+1

8(q + 1)16q
.

Therefore, we have proved the following theorem:
Theorem 8: Let f : [a, b] → R be an absolutely continuous

function on [a, b] whose derivative belongs to Lp([a, b]). Then



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:7, 2011

1010

the inequality∣∣∣∣∣
∫ b

a

f(x)dx − b − a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]∣∣∣∣∣
≤ 1

16

[
3q+1 + 5q+1

8(q + 1)

]1/q

(b − a)1+1/q‖f ′‖p, (22)

holds, where 1/p + 1/q = 1, p > 1.
Remark 8: By comparing (21) and (22), we conclude that

the error estimate in (22) is less than the one in (21).
Via Theorem 8, we obtain the following estimation for the
remainder R(f, σn).

Corollary 8: Under the assumptions of Theorem 8, the
remainder term R(f, σn) in the composite spline quadrature
formula satisfies

|R(f, σn)| ≤ 1
16

[
3q+1 + 5q+1

8(q + 1)

]1/q
⎛
⎝n−1∑

j=0

hq+1

j

⎞
⎠

1/q

‖f ′‖p . (23)

The case of uniform partition of [a, b] are presented in the
following corollary:

Corollary 9: Under the assumptions of Theorem 8 for a
uniform partition σn of [a, b], the reminder satisfies the esti-
mation

|R(f, σn)| ≤ 1
16n

[
3q+1 + 5q+1

8(q + 1)

]1/q

(b − a)1+1/q‖f ′‖p .

Remark 9: If we want to approximate the integral
∫ b

a
f(t)dt

by the composite spline rule (3) with an accuracy less than
ε > 0, we need at least nε ∈ N points for the division σn,
where

nε =

[
1

16ε

(
3q+1 + 5q+1

8(q + 1)

)1/q

(b − a)1+1/q‖f ′‖p

]
+ 1,

and [r] denotes the integer part of r ∈ R.

VII. NUMERICAL RESULTS

According to section 3, the error of the spline rule like the
error of the trapezoidal rule decreases with the minimum rate
of h2. Also, it was shown that the error of the spline rule is less
than the error of the trapezoidal rule . According to these facts,
we compare the spline rule with the trapezoidal rule to show
that, practically, the spline rule is better than the trapezoidal
rule. In Table I , some examples are presented to compare
the spline rule with the trapezoidal rule on the interval [0, 1]
which is divided into ten partitions. All the programs have
been written in MATLAB environment.

VIII. CONCLUSIONS

In this paper, a new quadrature rule which is derived
from cubic spline functions along with the error analysis
was presented. Moreover, some estimates for the reminder,
when the integrand was a Lipschitzian function, a function of
bounded variation or a function whose derivative belongs to
Lp, were given and it was observed that these error estimates
were less than the similar ones for Simpson’s rule. Also, we
presented some examples to show that, mainly, the spline rule
is better than the trapezoidal rule.

TABLE I
NUMERICAL RESULTS

f(x) Exact Spline rule Trapezoidal rule
cos(x) − x 0.341470 0.341296 0.340769

1

x4+4x2+3
0.241549 0.241510 0.241392

x log(
√

x + 1) 0.698959 0.699018 0.699197

log(x2 + 1) 1.169229 1.169188 1.169062

e2x cos(ex) -1.176887 -1.181349 -1.195234

x3 + x − 1 -0.25 -0.249375 -0.2475

et2+7t−30 − 1 -1 0.999999 0.999999
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