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Abstract—In this article, our objective is the analysis of the 

resolution of non-linear differential systems by combining Newton 
and Continuation (N-C) method. The iterative numerical methods 
converge where the initial condition is chosen close to the exact 
solution. The question of choosing the initial condition is answered 
by N-C method. 
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Differential Equation. 
 

I.   INTRODUCTION 
UMERICAL continuation methods have provided 
important contributions toward the numerical solution of 

nonlinear system. The methods may be used not only to 
compute solutions, which might otherwise be hard to obtain, 
but also to gain insight into qualitative properties of the 
solutions [1]. In this study, our objective is the analysis of the 
resolution of finite non-linear algebraic systems. These 
systems are represented by the following shape: 

0)( =uF                                        (1) 

Where, nn IRIRF →:  is a non-linear function. 
For nT

n IRuuuu ∈= ),...,,( 21 ,
nT

n IRuFuFuFuF ∈= ))(),...,(),(()( 21  each of the 

scalar functions ),(uFi  is non linear. Our goal is setting up 
efficient and powerful algorithms in order to solve (1) using 
the Continuation method. The origin of the non-linear discreet 
systems is varied. These systems arise frequently in 
engineering and scientific problems, because those problems 
are often formulated as determining a function that satisfies 
some set of equations, for example, the Navier-Stokes 
equations, Maxwell’s equations, or Newton’s law [2]. 

Without loss of generality, we consider the non-linear 
Poisson equation [3]-[8], (has one or two dimensional space). 
For Ω   opened on IR, search 
for )(,: Ω∂∪Ω=Ω→Ω IRu , which verifies: 
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IRIRf →: , is generally a real function that has a real non-

linear variable. The equation (2) models the bending of a 
beam. 
 

II.   DISCRETIZATION OF THE PROBLEM 
Let's consider the following problem: Being given a non-

linear function f, with one real variable. Find a U function two 
times continuously derivable on [0, 1] as: 
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This mechanical situation problem is the one of bending the 
beam, stretched according to its axis by a linear load strength 
g(x) and merely supported its ends. Then the moment of 
bending non-linear f (u) at the point of abscissa x is the 
solution of the problem (3) with c(x) = f/EI(x), E the Young 
modulus of the material, I(x) is the principal moment of 
inactivity of the beam section at the x point. 

Except for some rare cases, a formula that permits to get 
u(x) explicitly doesn't exist for all x∈[0,1]. It therefore 
requests to find a means to approach the values of the solution 
of the problem (3) more accurately. A method to reach this 
goal consists in finding a number of finite 
parameters },...,1/{ niui = , as either an approximation of 

.,...,1),( nixu i =  We are interested in the method of finite 
differences.  
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III. METHOD OF THE FINITE DIFFERENCES  

Let n be positive, put 
1

1
+

=
n

h  with h is the step of 

discretization (supposed to be uniform here); ihxi =  for 

}{,1,...,0 ixni +=  are the discretization nodes. 
 

 
 

Besides, it’s possible to demonstrate that u is a regular 
function (for example u is class C4) that [9]: 

 
 
 

(4) 

 
   To solve (3) numerically, based on (4), and calculate the 
values iu  (we note )( ii xuu ≅ ) with ni ≤≤1 , cautious to 

be approximately )( ixu  (after replacing the formula with the 
differences (4) in (3) : 
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The problem (5) is called approach problem (or discreet 

problem) gotten, by a method of finite differences, by 
opposition to the problem (3) declares a continuous problem. 
The vector shape of (5) is presented as follows:   

Find ),(),...,( 101 βα === +n
T

n uetuwithuuu  as 

0)( =uF  with (6): 
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We, therefore, represent by (6) a non-linear system of n 
equations for the n unknown ),...,( 1 nuu . Hence, to solve this 
system, it is necessary to linearize while using one of the 
following iterative methods:  method of the successive 
approximations, Newton’s method, Newton-cord and 
Shamanski’s methods [7]. These methods look for a 
linearization by a highly determined procedure. For example, 
the use of Newton’s method is based on the following 
formula:   

,...3,2,1,0),()]([ 11 =−= −+ juFuDFuu jjjj               (7) 
by means of DF which is the Jacobian matrix (Jacobian). 
Therefore DF (u) of (6) = 
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which is a sparse matrix (three diagonals) dependent on the 
solution of problem (6). Consequently, calculating 1+ju  
from ju , is done by solving the following system:  

)())(( 1 nnnn uFuuuDF =− +  
The algorithm of resolution proceeds as follows: 
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   For such an iterative method (Newton’s method), it is 
normal to ask the following questions:  
1) Existence: Is the method well defined? )(1 juDF −  exists 
at every iteration?  
2) Convergence: The continuation { }ju  is its convergent in 

the way that lim uu j
j =∞→  where u verifies 0)( =uF ? 

For example, for the problem (5), we demonstrate the 
following: 

)()()(2)(

)()()(

2
2

11
2

2

22/12/1

hO
h

xuxuxu
dx

ud
then

hO
h

xuxu
dx
du

iii

i

ii

i

+
+−

=

+
−

=

−+

−+



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

113

 

 

Theorem 3.1. Let u be a solution of the system (5). Let 

.
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∂
= ≤≤  if c, h and f  verify the condition 

,1,,2 niifhc ≤≤∀>  then )(1 uDF − exists.   
Proof. It is obvious that the matrix )(uDF  is symmetrical, 

)(uDF  is also defined positive. Indeed: 
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The outcome of this result is that if the initial condition 0u  of 
the iterative algorithm is chosen close to u then 

)( 01 uDF − exists on one hand. If the sequence of the 

iterations { }ju exists in the region, then )(1 juDF −  exist. 
In this concern, we can find more precise results on the 
convergence of Newton’s method, for example in [3]:  
 
Theorem 3.2. If F is continuously derivable two times in 

relation to the variables ju , ,1 nj ≤≤ and if u  is as 

)(uF =0 and if )(uDF  is then regular, the continuation 

)( ju  defined by Newton’s method converges towards u when 

∞→n  provided that 0u  is chosen sufficiently close to u.. It 
appears therefore that the choice of 0u  sufficiently close to u 
is fundamental.  

 
IV.   METHOD OF CONTINUATION 

The above stated iterative methods give the solutions that 
converge locally toward the solution a of 0)( =uF , so when 
the initial condition is chosen close to the exact solution. The 
question of choosing the initial condition is asked therefore to 
find an efficient method permitting to guarantee a perceptive 
choice. It is then the method of Continuation that permits to 
introduce a precise approach proposes forcing recognition to a 
parameter [ ]1,0∈t  and hence of 0=t , to make 1=t  at the 
solution a  of )(uF . A new algorithm for the partition of 

[ ]1,0  was studied in [6]. This method has been introduced by 
[4]. From that time, it has been used by several authors Avila 
[5]-[7]. Reference [7] introduces it in the setting of the 
equations in the non-linear partial differential, while leaning 
on the method of the topological degree of Leray-Schauder. 
This technique demonstrated all its power in the analysis of 
the solutions existence of the non-linear PDE.  

V.   PRINCIPLE OF THE CONTINUATION METHOD 
The Continuation method consists of proposing the problem 

,0)( =uF  in the setting of a related problems parameterized 

by a variable [ ]1,0∈t .  

Either 
[ ]

),(),(
1,0:

utFut
IRIRF nn

→
→×

 

As nIRuuFuF ∈∀= ),(),1( .  

We also suppose that for 0=t , the problem 0),0( 0 =uF  

admits a unique solution 0u  , capable to be calculated by the 
use of a simple algorithm. The choice of the initial condition 
to calculate the answer for 1=t , depend undoubtedly on 0u . 
So while following the related solutions 0),( =tutF , 
from 0=t , one can make at 1=t   the solution of 

0)( =uF  under precise hypotheses of the related functions 
(.,.).F  It is the principle of the Continuation method. 

Numerically, it results by the successive research of the 
problem solutions, mjatF jj <<= 0,0),(  

with 1...0 210 =<<<<= mtttt , { }it  is a discretization 

of [ ]1,0 . The ultimate phase of this process    is finite 

for 1=mt , giving then, aam =  verifying: 

.0)(),1(),( === mmmm aFaFatF  

    Suppose the existence of the solution  ja  (where         

ja approximation of ja )  as: 0),( =jj atF (and 

jjjj atF εε ,),( ≤  small). Search for the pair { }11 , ++ jj at  

with n
jjj IRatt ∈≤< ++ 11 ,1 , as 0),( 11 =++ jj atF . 

Conduct the resolution of the non- linear system 
0),( 11 =++ jj atF  by a method of Newton type, Newton 

cord or Shamanski getting the continuation therefore: 
{ }11 ,...,2,1,0/ ++ = j

k
j kka  with j

k
jj kaa j ,0

1 =+  denoting the 
indication of the last applied iteration in the approximation of 

.ja   
 

    Example 5.1. (The equation of Poisson) 
Let the following equation of Poisson: gufu =+Δ− )(  

is solved thus by a method of Continuation. To the 
parameter [ ]1,0∈t , look for the solution tu  of the problem: 

gutfu tt =+Δ− )( . The discretization of this model by the 
method of the finite Elements [10] gives 
then GutIfAu tt =+ )( , with A is the matrix of rigidity, 

)( tuIf  is the diagonal matrix: 
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When 0=t , the previous model is linearized to give 0u the 

solution of: GAu =0  resolute by an adequate linear solver. 

As indicated above, we pass from 00 =t  to 1=mt , by the 
resolution of n non-linear systems. The method performance is 
going to be bound therefore to a reduction of the number of 
step m with minimum iterations to every .,...,1, mjt j =  

 
VI. METHOD OF NEWTON - CONTINUATION 

An application of Newton method to every step 
.,...,1, mjt j =  gives: 
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with xDF  the Jacobean of F  in relation to x  and 

.1...0 10 =<<<= mttt  
 

VII.   ALGORITHM (MATLAB) 
 
function [u,i,k] = continuation(tol,tol0,F,DF,A,f,g,kmax) 
% input: 
%- tol is the precision of calculation to every t  
%- tol0 is the precision asked to the choice of ti  
%- F=F(t,u)=Au + tf - g = 0  
%- DF is the Jacobean matrix in relation to u 
% output: - u the solution of F(1,u) = 0, i the number of 
%step, k the total number of iterations, kmax the maximal 
%number of iterations, Resolution of F(0,u) = 0 
u0 = A\g ; 

t = min(1,t + tau);  
i = i + 1;  
[u,verif,ki] = newton(F,DF,t,u,tol,kmax);  
tau = tol0*norm(f(u0)) / norm(f(u));  
k = k + ki; 
if (ki > 1)  
tol0 = tol0/2; 
end 
if (i > 1)  
i = i-1; 
end 
end 
 

VIII.   APPLICATIONS 
In this paragraph, we will validate the theories exposed to 

the previous paragraph. We solve the non-linear Poisson 
equation that has one dimension. The discrete system obtained 
by approach-finished differences is solved by the method of 
Newton and the method of Continuation. The choice of initial 
condition in this last method illustrates its importance. 

In this application we will solve the following non-linear 
differential equation: 
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where, )1( xxu −=  is an exact solution. 

 
Fig. 1 Method of Newton (case of convergence) 

 
The Fig. 1 gives the solution of this model with a 

discretization of 8 points of the domain [0, 1], by using the 
method of Newton (  represent the initial solution, * the 
approached solution, the continuous curve represents the exact 
solution). 

We notice that the method of Newton converges in this 
example that is because the initial condition is chosen well. 
On the other hand if this condition is far from the exact 
solution (u0 = (-3.4, 9.75, 2.875, -37.5, 0.375, 2.5, -0.1038, -
0.0331), the method of Newton diverge (Fig. 2). 

 

 
Fig. 2 Method of Newton (case of divergence after 30 iterations) 

  Initial condition 
  * approached solution 
      (after 6 iterations) 
--- exact solution 
 

* approached solution 
   (after 30 iterations) 
--- exact solution 
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Fig. 3 Method of N-C 

 
The Fig. 3 represents the solution while using the method of 

continuation with a discretization of 24 points of the domain 
[0, 1], and a step of t=0.1 and k=1(number of iterations for 
this step), immediately we notice the convergence of this 
method. 
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