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A new implementation of Miura-Arita algorithm for
Miura curves
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Abstract—The aim of this paper is to review some of standard fact
on Miura curves. We give some easy theorem in number theory to
define Miura curves, then we present a new implementation of Arita
algorithm for Miura curves.

Keywords—Miura curve, discrete logarithm problem, algebraic
curve cryptography, Jacobian group.

I. INTRODUCTION

THE The goal of this paper is to describe a practical and
efficient algorithm for computing in the Jacobian of a CA

curves over a finite field. Authors in [6] proposed an algorithm
to complete the arithmetic in in the base field for superelliptic
curves, and the authors in [2], [7], generalise the algorithm
to the class of Cab curves and in [3] generalise the algorithm
to the class of CA curves, which includes superelliptic and
Cab curves as a special case. Furthermore, in [4], [5], [1], for
the case of C34 curves, has presented some faster method to
compute the addition of two point on the curve.

II. NUMERICAL SEMIGROUP

In this paper we denote by IN0, the set of all non negative
integers numbers, so IN0 is an additive semigroup. In addition
we suppose that M be a proper sub semigroup of IN0 such
that 0 ∈M �= 0.

Theorem 1: There is an integer number t and there exist
some members a1, a2, · · · at in M such that

M = 〈a1, a2, · · · , at〉, a1 < a2 < · · · < at, t ≤ a1.

In other words, M is a finitely generated semigroup in IN0.
Proof: Since < is a well-ordering order in IN0, then there

exists a minimal member, say a1, in M − {0}. On the other
hand since M is a proper semigroup, then 1 �= a1, so 1 < a1.
Now let T2 be the set of all members a ∈ M such that a ≡
1 mod a1, so there are two cases: if T2 is the empty set then
M = 〈a1〉 and the proof is completed, else if T2 �= ∅ then
the minimum of T2, denoted a2, exists. we then suppose T3

be the set of all members a ∈M such that a ≡ 2 mod a1, so
if T3 �= ∅ then the minimum of T3, denoted a3, exists. Here
suppose that the T2, T3, · · · , Tl and the a2, a3, · · · , al are
chosen, we claim that M = 〈a1, a2, · · · , at〉. The inclusion
M ⊇ 〈a1, a2, · · · , at〉 follow directly from the definition.
Going the other way, note that, w ∈M , by division algorithm,
there exist q ∈ IN0 and 0 ≤ r ≤ a1−1 such that w = a1q+r.
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Hence Tr+1 is a non empty set and has a minimum denoted
by ar+1 and so ar+1 = a1q

′ + r with q′ ≤ q and so

w = a1(q−q′)+a1q
′+r = a1(q−q′)+ar+1 ∈ 〈a1, a2, · · · , at〉

Example 2: If M = {0, 7, 8, 14, 15, 16, 19, 21, 22, 23, · · · }
then a1 = 7, a2 = 8, a3 = 16, a4 = 24, a5 = 25, a6 = 19
and a7 = 27.

The following theorem express whenever the complement
of any semigroup with identity of IN0 is finite?

Theorem 3: The set M̄ = IN0 − M is finite if and only
if gcd(a1, a2, · · · , at) = 1, and in this case, |M̄ | =∑a1−1

i=1 [ bi

a1
], where bi is the minimum amount of members

a in M with a ≡ i mod a1.
Proof: Firstly, suppose that M̄ is a finite set, to have a

contrast let there exists a prime number p such that p|ai for
all 1 ≤ i ≤ t. We claim that for all non negative integer q,
a1q+1 /∈M , if it is not the case then there exists q ∈ IN0 such
that a1q+1 ∈M and so the T = {a1u+1 : u ∈ IN0, a1u+1 ∈
M} is a non empty set and so has a minimum, denoted by a2.
Hence there exists r ∈ IN0 such that a2 = a1r + 1, but p|a1

and p|a2, and this implies that p divides 1 and this contradicts
the fact that p is a prime number. A consequence of all this
is that the set {a1q + 1 : q ∈ IN0} is a subset of M̄ and
so M̄ is infinite which contradicts the hypothesis. To get the
opposite direction, let gcd(a1, a2, · · · , at) = 1. Note that
for 0 ≤ i ≤ a1 − 1,

bi = min{λa1 + i : λ ∈ IN0, λa1 + i ∈M}
, let s = a1 − 1, bi = wia1 + i and for 1 ≤ i ≤ s put

Ai = {i, a1 + i, 2a1 + i, · · · , (wi − 1)a1 + i},
we claim that A1, A2, · · · , As are a partition of M̄ . We show
first that for i �= j, Ai

⋂
Aj = ∅, if this is not the case then

there are r, r′ such that

ra1 + i = r′a1 + j ⇔ (r − r′)a1 = j − i⇔ a1|j − i,

but 1 ≤ i, j ≤ s = a1 − 1 < a1, hence j − i = 0 which
is a contradiction and so Ai

⋂
Aj = ∅. we now show that⋃s

i=1 Ai = M̄ . To establish the desired equality, we use the
usual strategy of proving containment in both directions. The
inclusion

⋃s
i=1 Ai ⊆ M̄ follow directly from the fact that

Ai ⊆ M̄ for all 1 ≤ i ≤ s. To get the opposite inclusion,
suppose x ∈ M̄ so there are λ ∈ IN0 and 1 ≤ j ≤ s such that
x = λa1 + j. We claim that λ ≤ wj − 1 and this implies that
x ∈ Aj ⊆

⋃s
i=1 Ai ⊆ M̄ . If it is not the case, then wj ≤ λ,

hence

x = (wj + (λ− wj))a1 + j = bj + (λ− wj)a1 ∈M
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which is a contradiction. Hence A1, A2, · · · , As are a
partition of M̄ , and so

|M̄ | = |
s⋃

i=1

Ai| =
s∑

i=1

|Ai| =
s∑

i=1

wi

but since a1 > 1 we have

wi = [wi +
1
a1

] = [
wia1 + 1

a1
] = [

bi

a1
].

A semigroup M of IN0 with 0 ∈ M �= 0 is called a
numerical semigroup if its complement in IN0 be a finite set.

Example 4: The semigroup introduced in example 2 is a
numerical semigroup because

gcd(7, 8, 16, 24, 25, 19, 27) = 1

and

|M̄ = [
8
7
] + [

16
7

] + [
24
7

] + [
25
7

] + [
19
7

] + [
27
7

] = 14,

in this case we have

M = {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 17, 18, 20}.

In the rest of this article we suppose that M is a numerical
semigroup which is generated by the set {a1, a2, · · · , at}
and t ≤ a1. For a numerical semigroup M there is a unique
surjective map

ψ : IN t
0 →M

where

ψ(n1, n2, · · · , nt) =
t∑

i=1

niai

.
Definition 5: Every numerical semigroup M with the above

notations introduced a CA order as follow:
For α, β ∈ IN t

0 we say that α < β if ψ(α) < ψ(β)
or ψ(α) = ψ(β) and there exists 1 ≤ i ≤ t − 1 such that
α1 = β1, α2 = β2, ..., αi = βi and αi+1 > βi+1.

Note that if K is a field then the CA order defined a
monomial order in the polynomial ring K[x1, x2, · · · , xt].

Definition 6: For a ∈M we define

μ(a) = min{α ∈ IN t
0 : α ∈ ψ−1(a)}

and

B(A) = {μ(a) : a ∈M},

T (A) = {μ(bi) ∈ B(A) : 0 ≤ i ≤ a1 − 1},

at last we denote by V (A), the set of all γ ∈ IN t
0 − B(A)

such that for all α ∈ N t
0 − B(A) and β ∈ IN t

0, the equality
γ = α + β implies that β = 0.

III. MIURA CA CURVES

In this section we denote by K, a finite field with q
elements. For m ∈ V (A), suppose that the polynomial
Fm ∈ K[x1, x2, · · · , xt] has two following conditions:

i) for all m ∈ V (A),

Fm = Xm + alX
l +

∑

l �=n<m

anXn

where l = μ(ψ(m)), al �= 0.
ii) Span{Xn : n ∈ B(A)}⋂〈Fm : m ∈ V (A)〉 = 〈0〉.
In the above conditions Span{Xn : n ∈ B(A)} means the

set of all polynomials generated by Xn’s with coefficients in
K and 〈Fm : m ∈ V (A)〉 is the ideal generated by Fm’s in
K[x1, x2, · · · , xt].

Definition 7: Let M be a numerical semigroup of IN0

which is generated by A = {a1, a2, · · · , at} and let I be
an ideal in K[x] := K[x1, x2, · · · , xt] which is generated by
some polynomials which satisfy in the above two conditions.
In this case spec(K[x]

I ) is called a Miura curve or a CA curve
over the field of fractions R = K[x]

I .
Using Arita algorithm we can compute the addition of two

points on a CA curve, in Appendix A we give an another
implementation of this algorithm on Maple 11.

IV. CONCLUSION

By the implementation presented in Appendix A we can
compute the addition of two distinct point on a CA curve or
compute the nit power of a point on the curve.
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APPENDIX A
IMPLEMENTATION OF THE ALGORITHM IN MAPLE 11

> with(Ore_algebra):

> with(PolynomialIdeals):

> with(Groebner):
> Initial:=proc(n1,p1)
> global p,nn,Tlex,C_A,A:
> local Jabr,i,xInput;
> nn:=n1;p:=p1;
> Jabr:=poly_algebra(t,seq(x[i],i=1..nn),characteristic=p):
> for i from 1 to nn do
> xInput:=scanf("%d",a);
> A[i]:=xInput[1];
> end do;
> Tlex:=MonomialOrder(Jabr,’matrix’([[1,seq(0,i=1..nn)],
seq([seq(0,j=1..nn-i),1,seq(0,j=0..i-1)],i=0..
> nn-1)],[t,seq(x[i],i=1..nn)])):
> C_A:=MonomialOrder(Jabr,’matrix’([[1,seq(0,i=1..nn)],
seq([0,seq(0,j=1..i),seq(A[j],j=i+1..nn)],i=0..
> nn-1)],[t,seq(x[i],i=1..nn)])):

> end:
> #[J:g]
> xQuotient:=proc(J,g,TT)
> local h,G,res,i:
> G:=Basis(expand([seq(t*h,h=J),(1-t)*g]),TT):
> res:=[]:
> for i from 1 to nops(G) do
> if (not member(t,indets(LeadingMonomial(G[i],TT))))
then
> res:=[op(res),Normal(G[i]/g) mod p]:
> fi:
> end do:
> return res:
> end:
> #I1 Intersect I2
> IntersectId:=proc(I1,I2,TT)
> local i,G,res:
> G:=Basis(expand([seq(t*i,i=I1),seq((1-t)*i,i=I2)]),TT):
> res:=[]:
> for i from 1 to nops(G) do
> if (not member(t,indets(LeadingMonomial(G[i],TT))))
then
> res:=[op(res),G[i]]:
> fi:
> end do:
> return res:
> end:
> #[J:K]
> QuotientId:=proc(J,K,TT)
> local i,G:
> G:=xQuotient(J,K[1],TT):
> for i from 2 to nops(K) do
> G:=IntersectId(G,xQuotient(J,K[i],TT),TT):
> end do:
> return G:
> end:
> #J1*J2
> ProductId:=proc(J1,J2,TT)
> local i,j:
> Basis([op(F),seq(seq(modp(expand(J1[i]*J2[j]),p),j=1..nops(J2)),i=1..nops(J1))],TT):
> end:
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> #Arita’s Algorithm
> AritaAlg:=proc(J12,Tlex,C_A)
> local J,fff,J3,J4,J5,h,i3:
> fff:=J12[1]:# step 2 of algorithm
> J3:=QuotientId([fff,op(F)],J12,C_A):#step
3
> J3:=Basis(J3,C_A):#step 3
> h:=modp(expand(op(1,J3)/lcoeff(op(1,J3))),p):#step
3
> # if modp(h-(coeff(h,y,3)*F),p)=0
then h:=J3[2] fi:
> i3:=1:
> while NormalForm(h,[op(F)],C_A)=0
and i3 < nops(J3) do
> i3:=i3+1:
> h:=J3[i3]:
> end do:
> if nops(J3)<i3 then print("Error"):
fi:
> J4:=Basis([op(F),seq(h*J12[i],i=1..nops(J12))],C_A):
> J5:=xQuotient(J4,fff,C_A):
> end:

> SumId:=proc(I1,I2)

> local Multi,Ans;

> Multi:=ProductId(I1,I2,C_A);

> Ans:=AritaAlg(Multi,Tlex,C_A);

> return Ans:

> end:
> Powern:=proc(n,II)
> local r,e,i,J12;
> r:=[1];
> e:=II;
> i:=n;
> while(i>0) do
> if(i mod 2)=1 then
> J12:=ProductId(r,e,C_A);r:=AritaAlg(J12,Tlex,C_A):
> print(r);
> i:=((i-1)/ 2);
> else
> i:=(i/2);
> fi;
> if(i>0) then
> J12:=ProductId(e,e,C_A);
e:=AritaAlg(J12,Tlex,C_A);
> print(e);
> fi;
> end do;
> return r;
> end:


