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Abstract—The development of aid's systems for the medical 

diagnosis is not easy thing because of presence of inhomogeneities in 
the MRI, the variability of the data from a sequence to the other as 
well as of other different source distortions that accentuate this 
difficulty. A new automatic, contextual, adaptive and robust 
segmentation procedure by MRI brain tissue classification is 
described in this article. A first phase consists in estimating the 
density of probability of the data by the Parzen-Rozenblatt method. 
The classification procedure is completely automatic and doesn't 
make any assumptions nor on the clusters number nor on the 
prototypes of these clusters since these last are detected in an 
automatic manner by an operator of mathematical morphology called 
skeleton by  influence zones detection (SKIZ). The problem of 
initialization of the prototypes as well as their number is transformed 
in an optimization problem; in more the procedure is adaptive since it 
takes in consideration the contextual information presents in every 
voxel by an adaptive and robust non parametric model by the 
Markov fields (MF). The number of bad classifications is reduced by 
the use of the criteria of MPM minimization (Maximum Posterior 
Marginal). 
 

Keywords—Clustering, Automatic Classification, SKIZ, Markov 
Fields, Image segmentation, Maximum Posterior Marginal (MPM).  

I. INTRODUCTION 
HE survey of the human brain, that it is on the anatomical 
or functional plan, is currently a domain of research in full 

expansion. The main factors that contribute to make possible 
these studies are mainly the evolution of the materials and the 
imaging techniques, the capacity of calculation, constantly 
increasing, of the computers and finally the definition and the 
implementation of complex systems of data processing. 

Such systems are not limited to the roles of visualization of 
the data; they rather have for ambition to be able to help the 
practitioner in his choices of diagnosis, to signal him the 
possible pathological risks, and even to guide his surgical 
gesture. 
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The implementation of such systems is a difficult problem 
and has been studied extensively all over the world by 
numerous teams of research [18][31].The difficulties are 
located to different levels as for example the choice of 
acquisition's parameters of the images that will permit us to 
get a best data in order to  automate the treatments, the 
complexity of the human brain whose anatomy is extremely 
variable of an individual to another and this requires a 
developing  of other very adaptive methods for the treatments, 
or to act on the type of information that it will be necessary to 
provide to the systems to get a good working of these. 

The existing methods of segmentation are generally 
founded on very different principles as for example the 
process of classification, the use of deformable contours 
models or knowledge models. 

The work presented in this article has for goal the 
implementation of a segmentation system of cerebral MRI that 
permits us to combine between several complementary 
approaches in answer to the complexity of the posed problem. 
More precisely, the objective is to be able to integrate the 
approach proposed in a more global system dedicated to the 
segmentation of the cerebral tissues by the implementation of 
cooperation between heterogeneous approaches. The interest 
of such an approach is to be able to exploit the complementary 
information that results from the application of several 
methods in order to propose a complete segmentation system.  

II. MEDICAL IMAGE SEGMENTATION (STATE OF THE ART) 
The segmentation of the cerebral RMI is a difficult problem 

due to the big number of present organs and to the complexity 
of their structure. The use of operators of low level type of 
gradient detecting doesn't permit to provide the sufficiently 
structured information. In answer to this difficulty, many 
models have been proposed [20]. The more used models are 
the energizing models and the parametric models. Among 
those using an energizing model, we mention the method of 
Chiou and Hwang [4] that propose an approach using training 
by a neural network to define a specific knowledge [24]. 
Kapkur and al [18] propose an algorithm of brain detection in 
3 stages to improve the initialization of the contour and the 
determination of the energy bound to the image.  Davatzikos 
and Prince [6] propose a model of specific active contour to 
the cortex segmentation. The internal energy is limited to the 
use of elastic strengths in order to allow the contour to follow 
the convolutions of the cortical furrows. In [34], the contours 
of the furrows are initialized to the surface of a brain already 
segmented, to the points of minimal curvature. Barillo and al. 
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[2] propose a similar approach for the numeric representation 
of the cortical furrows. In [28], an extension of the active 
contours in 3D is used for the representation of deformable 
surfaces. 

Other methods (also named parametric methods) permit to 
modeling better the objects. Two sub-families of methods 
have been developed: those using some knowledge and those 
using not any knowledge. Among those that use some 
knowledge for the parameterization we mention the approach 
of Staib and al [33] that proposes a parameterization founded 
on the Fourier's coefficients to describe present elements in 
biomedical images. In [1] the authors proposed a 
parameterization in 3D to segment cardiac structures. 
However, other parametric approaches [31] introduce some 
priori knowledge from a set of training to force better the 
space of variation of the parameters used for the modeling. 
Cootes and al. [5] proposed an approach to basis of 
deformable statistical models founded on the existence of a 
training set. Duta and Sonka [10] propose an extension of the 
approach of Cootes that adds the priori knowledge (contours 
forces, average localization of a contour, relations between 
contours) to improve the process of localization as well as the 
detection of the non valid shapes. 

To the same moment, other methods were developed, 
known as knowledge basis methods. Contrary to the 
approaches using processes of classification, the knowledge 
used in these methods is described explicitly.  It permits to use 
better the priori knowledge before the data processing. Gong 
and Kulikowski [14] propose a system to do the automatic 
generation of plans. Li and al. [19] propose a model of the 
brain integrating the symbolic and numeric knowledge to 
guide a process of interpretation. In [7] the proposed approach 
is guided by the knowledge founded on the generation of a 
fuzzy modeling of the attributes (size, mean gray level ...) of 
the different organs searched for in the RMI cuts. Sonka and 
al. [32] propose a basis knowledge approach founded on the 
genetic algorithms. The interest of the basis knowledge 
approaches that we presented amounts is their capacity to use 
a model of knowledge to control the segmentation processes. 

III. APPROACHES BY CLASSIFICATION 
The approaches by classification are used extensively for 

the segmentation in cerebral RMI. Several methods have been 
developed then; each among them leans on a very definite 
principle. We can differentiate them by two main features:  the 
existence of a modeling and its global or local character as 
well as the nature of the knowledge that can be implicit or 
explicit. 

Some approaches based on the Bayesian classification 
exploit this principle while introducing some priori knowledge 
to segment 3D images  of the brain in 4 classes (gray matter, 
white matter, cerebro-spinal liquid  and other) [11]. Wells and 
al. [35] propose an approach by Bayesian classification to 
segment in an adaptive manner the brain images. The 
objective is to integrate in the process of classification an 
evaluation of the bias that reflects the presence of 
inhomogeneities in the RM Images. 

Other approaches use the Markov fields; these last permits 
to associate the process of segmentation to the minimization 
of an energy function defined on the image to segment. 
Rajapakse and al. [27] propose to apply the classification by 
Markov fields to MRI where the brain has been isolated 
previously of the rest of the image. The approach consists in 
classifying the 3 classes remaining after isolation of the brain 
(gray matter, white matter and cerebro-spinal liquid). Jaggi 
[17] proposes another approach of classification by Markov 
fields in 2 stages. The first stage permits a classification in 5 
classes (gray matter, white matter, cerebro-spinal liquid, 
mixtures of gray and white matter and mixtures of gray matter 
and liquid). The result of the first classification is used to 
operate a second classification more refined which permits to 
extract the 3 present tissues in image (gray substance, white 
substance and cerebro-spinal liquid). Mangin [21] proposes to 
introduce a priori local knowledge in the process of 
segmentation. The use of stochastic processes of optimization 
permits to get the classifications corresponding to global 
minima of energy [15] [13]. The adaptability is also an 
important factor intervening in results quality of the 
segmentation that the approaches by classification can 
produce. The approaches proceeding by classification permit 
to get efficiently and quickly, in 2D as in 3D, very interesting 
segmentation results [22]. However, the knowledge that 
permits to guide these processes remains in the majority of 
cases less explicit in comparison with the approaches using 
models. 

IV. PROPOSED METHOD 
The approach that we proposed for the classification of the 

data is founded essentially on an evaluation of the Probability 
Density Function ( ). .p d f . The evaluation of this function 
constitutes one of the bases of the statistical data processing 
[16], and several methods permit to estimate the density are 
described in [30]. 

The Bayesian approach takes in account a model of . .p d f ; 
the model that maximizes a likelihood criterion is kept to 
estimate the density. We can notice that the proposed models 
make some hypotheses implicitly on the number of classes or 
on the shape of these classes. The density of probability will 
be estimated by the kernel method called Parzen method [26] 
which is not based on any previous model. In what follows, 
we propose a study of the estimation of the probability density 
by the kernel method [23]. This estimation depends on a 
parameter of smoothing whose importance will be underlined. 
The multi-dimensional data of which we arrange are 
considered like a sample of a population, the population being 
constituted by the set of all potentially possible data. The 
density of probability is the function describing the 
distribution of this population. 

A. Estimation of the Probability Density Function 
The data to classify are in a space n� of dimension n . Let's 

consider a sample of N data  1( )i i NX ≤ ≤  represented by 

N points with:  ( ),1 ,2 ,,  ,  ...,  i i i i nX x x x=  
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The probability density function is defined on n�  by a 
function f  satisfying at least to the following conditions: 

, ( ) 0  and  ( ) 1
n

nx f x f x dx∀ ∈ ≥ =∫
�

�  (1) 

In the practice, this function, f  is unknown and several 
methods exist to estimate it. The most widespread method 
consists in approaching the function f  by a histogram, but 
the gotten evaluation doesn't present the properties of 
continuity required by most applications. Besides, the widths 
of the classes (or elements) of the histogram are delicate to 
determine. Among the methods of evaluation of the density by 
a continuous function, one of the most known is the method of 
the nearest neighbors. The evaluation of the density function 
is defined by: 

1ˆ ( )
2 ( )k

kf x
Nd x
−

=  (2) 

Where k  is the fixed number of the nearest neighbors 
(typically k N=  according to Silverman [3]) and ( )kd x  is 
the distance of x to its ièmek  nearest neighbors (while 
classifying by growing order the distances of x to each of the 
N data, ( )kd x is the ièmek distance). 

The estimation by the method of the k  nearest neighbors 
doesn't permit to get a derivable function and besides it will 
give peaks corresponding to data situated in the densest 
regions. In the literature, we consider that these continuous 
evaluations but non derivable of the density are not smoothed 
enough and remain very approximate [30]. 

The methods solely based on the maximum of likelihood 
permit to drift the estimated function, but the interpolation 
between the data is merely heuristic. The likelihood of the 
estimated f̂  of density for the samples 1( )i i NX ≤ ≤  is defined: 

( )( ) ( )1
1

ˆ ˆ/
N

i ii N
i

L f X f x
≤ ≤

=

=∏  (3) 

Maximize the likelihood doesn't permit to estimate the density 
outside of the sample 1( )i i NX ≤ ≤ (i.e. ˆ ( )f x  for ix X≠ ). It is 

necessary to impose some restrictions to f̂  permitting an 

acceptable interpolation of f̂  between the data. These 
restrictions or penalties have for goal to smooth the estimation 
of the function. In dimension 1, we most often use a criterion 
of the following type: 

( ) ( ) ( )2

1
log  

N

i
i

f f x fα α
∞

−∞
=

′′= −∑ ∫l  (4) 

The first term ( )1
log  N

ii
f x

=∑  is the logarithm of the 
likelihood that it is necessary to maximize, the second term 

( )2fα
∞

−∞
′′∫  is a penalty that it is necessary to minimize and 

that is controlled by the parameterα . This parameter is more 
or less adjusted to smooth the estimation of the density [30]. 
In dimension 2 or more, this method of the penalties is more 
delicate to put in work, it is necessary to find the good 
compromised between the parameter of smoothing and the 
likelihood. In this type of approach, the part of heuristic is 

important. Because of this rigor's lack, it seemed preferable to 
us to estimate the density by the classic method of the kernel 
(even named Parzen-Rosenblatt method) described below.  

B. Parzen-Rosenblatt Method 
In Parzen-Rosenblatt method, we estimate the density of 

probability while using a convolution kernel. The kernel is a 
function K  that is generally itself a function of probability 
density. In this description, we take like kernel the multi-
normal function (centered and reduced) definite by: 

( )
1

1ˆ,    
N

n i
n

i

x X
x f x K

hNh =

−⎛ ⎞∀ ∈ = ⎜ ⎟
⎝ ⎠

∑�  (5) 

h  being the parameter of smoothing of the estimation. 
In this density approach, each data iX  contribute in the 

same way to the calculation of f̂  and this contribution 
depends on h . The kernel K  being a unimodal and positive 
function, the contribution of every data to f̂  be added and is 

worth at more 1
nNh

( the maximal contribution of a data iX to 

( )f̂ x  is gotten when ix X= ). This estimation of the 
probability density corresponds to a convolution of the 
function K  with the function ∆  definite by: 

( ) ( )

( )

1

1

0   
 

1 otherwise        

N

i
i

i
i

x x
N

if x X
with x

δ

δ

=

∆ =

=⎧
= ⎨
⎩

∑
 (6) 

The parameter h  corresponds to the square root of variance of 
the kernel K . More h , will be small, more the kernel will be 
"narrow" and f̂  will present some "peaks" of probabilities to 
the points iX . In this setting, h  be called the window of the 
estimation or window of smoothing. This type of estimation of 
the probability density function depends on the choice of the 
smoothing window.  

C. Evaluation Criteria 
The density approach of f , by the Parzen method,  

suppose that we can determine an optimal value of the 
window h .  

The estimation f̂ of the density f  can be valued by a 

criteria that measures a distance between f̂ and f . Such a 
criteria supposes the existence of a functional space in which 
is defined a distance between functions. Several functional 
spaces are used in the literature [30]. 

The most known functional space is the space 2ℑ  for 
which we define a distance between two functions that we will 
note 1d . The distance ( )1 ,d f g  between two functions f and 

g  can be defined by: ( ) ( )2
1 ,

n
d f g f g= −∫�  
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In the discreet space D , this distance is more known as 
criteria of the least squares noted LS  (Least Squares). This 

criteria is defined by: ( ) ( ) ( )( )2ˆ ˆ
x D

LS f f x f x
∈

= −∑  (7) 

To determine the optimal value of h , it is necessary to 

minimize this criteria ( )ˆLS f . 

In the functional space 1ℑ , we define the distance 
( )2 ,   

n
d f g f g= −∫� . 

In the discreet space D , this distance corresponds to the sum 
of the absolute values of the differences between the estimated 
f̂ and f . This distance is noted SAVD  (Sum of Absolute 

Values of Differences) and is defined by: 

( ) ( ) ( )ˆ ˆ  
x D

SAVD f f x f x
∈

= −∑  (8) 

There again, this criteria will be minimized to determine the 
optimal value of h . This last criteria is more robust than LS  
in relation to possible aberrant data. 

We have therefore two criteria LS and SAVD  hat it is 
necessary to minimize to determine the optimal value of the 
window h . We note that these two criteria reach their 
minimum for the same value of if the discretization of the 
space is sufficient to really separate the different data.  

D. Unsupervised Classification by Iterative SKIZ 
The probability density f  is defined on a space D  to 

included values between 0 and a maximal value noted 
max f . To explain our procedure, we are going to consider a 
threshold s  included between 0 and max f . The thresholded 
part sP of the space D is defined by:  

( ){ }\sP x D f x s= ∈ ≥  (9) 

This thresholded part contains related components (i.e. 
components in only one piece). More precisely, a set is 
connected when two any points of this set can be related by a 
path who is himself on the considered set.  

We have L  levels for a . .f d p  going from 0 to 1L − . To 
every level ( )  0e e L≤ <  we associate eS  the set of points of 
which the density level is superior to e (i.e. eS S⊆ ). we use 
this set to define the temporary class of S to every level of 
density. First, some voluminous classes are defined. Then the 
classification is refined while incrementing the every time the 
level e . This sophistication is obtained by the division of the 
previous classes while using the procedure of the SKIZ  that 
we are going to describe in the following paragraphs. 

In this paper, we stand in the setting of a discreet topology 
or the connection is established while fixing the neighbors of 
every pavement of the discreet space. This kind of topology is 
known well in image processing where, in dimension 2, we 
also use the 4-connexity or the 8-connexity. 

While using the neighborhood network of dimension n  of 
the points of the S , the set eS  is composed of the connected 
regions (i.e. sets of the connected components). ( )ec s  definite 
the number of the connected regions. The algorithm of 

classification is described by the use of an example (Fig. 1) 
who shows the classification process for 4 levels ( 4)L =  in a 
data space of dimension 2 ( 2)n = . Every point is the 
prototype of a segment of the partition domain, the gray and 
black zones show the neighborhoods of the different points 
(i.e. the neighborhood network). The following paragraph 
illustrates the different stages of the classification algorithm 
by iterative SKIZ . 

E. Stages of the Classification Algorithm by Iterative SKIZ 
 Stage 0 (Level 0L = ) 
0  L = ⇒ 0S S= , therefore only one connected region 

0( ( ) 1)c S = (only one connected region); 1e e= + ; 
 Stage 1 (Level 1L = ) 
1 L = ⇒ 1 0S S S⊆ ⊆ , and 0( ( ) 2)c S = (2 connected regions);  

1e e= + ; 
 Stage e (Level L e= ) 

 L e= ⇒ eS S⊆ , and 0( ( ) )c S C=  (to the level e  there is 
C  classes);  1e e= + ; 

 Stage  1 e + ( Level 1L e= + ) 
1 L e= + ⇒ 1e e eS S S+ ⊆ ⊆  and 1( ( ) 1)ec C S +∩ > . 

F. Regulation by Markov Random Field 
The Markov random fields are extensively used in images 

analysis [9]. The Markovian modeling allows us to introduce 
contextual information and therefore to segment our image. 

The Markovian random fields or simply Markovian fields 
(MF) permit the modeling of the global properties while using 
local constraints. 
We note ( ( ) )S card s N=  the network of the image sites and 

{ }|sV V s S= ∈  the neighborhood system ( sV is the 
neighborhood of the site s ). 

We have { }1, , NX X X= K  a family of random variables 
defined on the network S . Each random variable iX  takes 
the value ( )i ix x ∈Ω . In the same way we note 

, NX x x= ∈Ω , to mean the following event: 
( )1 1, , N nX x X x= =K . x , called configuration, corresponds 
to one realization of the random field X . This configuration 
has a certain probability that we note ( )P X x= .  is called 
Markov field in relation to the system of neighborhood  if it 
verifies the 2 properties follow: 
 ( )( ) , 0Npositivity x P X x− ∀ ∈Ω = >  (10) 

 

( )

{ }( )
( )

  

  ,

| ,

| ,

N

s s r r

s s r r s

markovian propriety

s S and x

P X x X x r S s

P X x X x r V

−

∀ ∈ ∀ ∈Ω

= = ∈ − =

= = ∈

 (11) 

In the continuation, to facilitate the notations, we confound 
X and x . ( )P X x=  is noted then ( )P x . 

The theorem of Hammersley-Clifford [9] makes the relation 
with the Gibbs fields. This theorem permits to make the 
relation between the property of locality of the Markovian 
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fields (Markovian property) and the property of globality of 
the Gibbs fields (Gibbs distribution).  X  is a Markovian field 
in relation to the neighborhood system V if and only if its 
distribution ( )P X is a Gibbs distribution, i.e. :  

( )
( )( )exp E X

P X
Z

−
=  (12) 

( )
NX

Z E X
∈Ω

= ∑  is a constant of normalization named function 

of partition. 
( )E X  is a energy function defined like follows: 

( ) ( )cl
cl CL

E X V X
∈

= ∑  (13) 

cl  is a clique, i.e. a set of two to two neighboring sites  or a 
singleton site. 
CL  is the set of the cliques related to the considered 
neighborhood system. 

( )clV X  is a function of potential. 

The global energy ( )E X  can be written therefore like a 
sum of local energies (or sum of potentials). 

We used the Markovian modeling to regularize our image 
while introducing contextual information by the criteria of the 
MPM  (Maximum Posterior Marginal) [25] that minimizes 
the number of pixels badly classified. It is therefore more 
adapted to applications of classification-segmentation that the 
criteria of the MAP (Maximum A Posteriori) [8]. 

We note X    the random field relative to the observed 
image where its values are in NΩ . 

We also note L  the random field relative  to the labeled 
image to values in NΛ . 

X  being known, we look for the configuration L  that 
maximizes the following expression:  

( ) ( ) ( )
( )

|
|

P X L P L
P L X

P X
=  (14) 

what leads us, X  being known and therefore ( )P X constant, 

to maximize the following expression:  ( ) ( )|P X L P L  (15) 
 The data are modeled (model of texture, model of noise 
[12]…) what allows us to define the law ( )|P X L  on NΩ . 
We model the field L by a Markovian field what allows us to 
define a priori law ( )P L on NΛ . The priori model that we 
consider in the following chapter is the model of Potts. 

The approach of the MPM  consist in maximizing the 
posteriori marginal probabilities. Thus, the label ŝl  retained 
for the site is the one that maximizes the following 
probability: 

( ) ( )ˆ | |
   s s s s

s

P L l X x P L l X x

l

⎧ = = ≥ = =⎪
⎨
⎪ ∀ ∈Λ⎩

 (16) 

The estimator of the MPM  is obtained by Gibbs sampler [9]. 
The algorithm consists in generating a Markov chain on NΛ . 
Once the convergence reached, the posteriori marginal 
probabilities at s  are estimated while counting the number of 
time where each value of the set Λ  appears at s  for a set of 

configurations. The label ŝl  takes the value that appears the 
biggest number of time at s . 

We considered that the data follow a Gaussian law of which 
the parameters (mean and variance of the classes) are already 
estimated from the classification relatively precise (but that 
doesn't hold account of no contextual information), result of 
the SKIZ algorithm. The attachment law of considered data  is 
the following: 

( )
( )2

2

1| exp
22

i

ii

i l

i S ll

x
P X L

µ

σπσ∈

⎛ ⎞−⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

∏  (17) 

2
jσ  and jµ  are respectively the variance and the mean of the 

class j . 
The priori considered model is the model of Potts [29]. The 
priori probability is the following: 

( ) ( )
{ }

( )
( )

, ,

1 exp ,

, 1,      

, 0,     

i j

i j
cl l l cl CL

i j i j

i j i j

P L l l
Z

l l if l l

l l if l l

β

β δ

δ

δ

= ∈

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

= =

= ≠

∑

 

V. SEGMENTATION ALGORITHM 
In this part we are going to describe in detail the different 

stages of our hybrid algorithm that combine at a time a non 
parametric method of estimation of the probability density 
function, a mathematical morphology method for the 
classification of these data and another method based on the 
Markov fields for a final contextual segmentation. 

 Stage 1:  (estimation of the . .p d f ) 
- Fix the kernel K ,  
- nx∀ ∈ � , compute ˆ ( )f x  the estimation of ( )f x  by the 
formula ( 5). 
-Under the constraint of the minimization of the two criteria 
LS and SAVD (formulas (7) and (8) respectively) optimize 
the size of the window h . 

 Stage 2:  (classification by skiz) 
-Let  ( )

0
max . . ( )ii S

m p d f x
≤ <

=  

-Let t a threshold between 0 and ( ) 0m t m≤ <  
-Apply the algorithm describes in (4.5) while incrementing 
every time ( )   t by t tδ δ= +  

 Stage 3: (Segmentation by Markov random fields) 
-Maximize the posteriori marginal probabilities ( )MPM  
according to the formula (14) with as conditions the 
constraints described respectively by the formulas (17) and 
(18). 
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Fig. 1 Two estimations of the p.d.f and classification of simulated 
data 

A: 400 points of simulated data 

B: Estimation of the p.d.f with h=20 

C: Detection of 2 influence zones 

D: Estimation of the p.d.f with h=7 

E: Detection of 4 influence zones 

 

 

 

 

 

Fig. 2 Classification of the white matter 

A: T1-weighted image (axial cut) 

B:  skiz (h=20) (blue) +MRF (red) 

C: skiz (h=7) (blue) +RMF (red) 

 

Fig. 3 Extraction of a tumor (meningioma) 

A: PD-weighted image (axial cut) 

B: Data classification by SKIZ (h=7) 

C: SKIZ segmentation (h=7) + MRF Regulation 

D: Final segmentation and detection of the tumor (in red) 

VI.  RESULTS 
We applied the algorithm on different types of images. First 

of all, we have validated our classification algorithm on 
synthesis images (Fig. 1 (A-E)) that we generated by hand. 
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Each of these images is composed respectively of 400 points 
on a 2D space. We were able to noted that for the separation, 
by influence zones, the classification thus obtained is very 
obvious and the number of classes by skiz, who ensues of this 
last, is very close to the number of real classes. It is while 
necessary to underline that these results depend on the size of 
smoothing window h  (Fig. 1). The parameter h  has an effect 
of smoothing on the data. Indeed, if h  is too big the density is 
consequently smoothed and the number of classes is less 
important. With a reduced size of h , we notice the apparition 
of supplementary peaks and therefore of supplementary 
classes.  

After having proven the efficiency of the classification 
algorithm, we proceeded to the RMI segmentation. The image 
2(A) represent an axial cut of a human brain T1-weighted, the 
image 2(B) represent a classification by skiz, whereas the 
image 2(C) represent a segmentation after Markovian 
regulation by using the law of data attachment described by 
the equations (17) and (18). The introduction of the contextual 
information by the Markovian fields seems improved the 
results of the segmentation (Fig. 2(B) and 2(C). 
The algorithm is used for the extraction of a cerebral 
pathology of a picture so-called RMI in density of proton 
(image 1 (A)). After the evaluation of the probability density, 
a classification by iterative SKIZ is operated (Fig. 3(B)), the 
contextual information of the texture and to the distribution of 
the pathology are introduced by the Markovian random fields, 
what improved the classification considerably (Fig. 3(C)) and 
that permitted to extract the pathology thereafter (Fig. 3(D)). 

VII.  CONCLUSION 
Our method of data classification of medical images rests 

on the iterative SKIZ with successive thresholding of the 
density function. Our original approach of the unsupervised 
classification requires no previous hypothesis nor on the shape 
nor on the number of classes. For this reason, this method of 
classification is a qualitative progress in relation to most 
classic methods that suppose implicitly or explicitly that the 
classes are topologically convex. However it remains again to 
compare the different methods of classification while using 
quantitative criteria.  Cooperation between several techniques 
of segmented seems to be efficient. Indeed, the regulation by 
Markov fields pushes the segmentation farther while 
introducing contextual information. However, this technique 
will depend on several parameters to know the kernel for the 
estimation of the probability density, the size of the smoothing 
window  and the law of data attachment. 
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