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Abstract—Fuzzy random variables have been introduced as an 

imprecise concept of numeric values for characterizing the imprecise 
knowledge. The descriptive parameters can be used to describe the 
primary features of a set of fuzzy random observations. In fuzzy 
environments, the expected values are usually represented as fuzzy-
valued, interval-valued or numeric-valued descriptive parameters 
using various metrics. Instead of the concept of area metric that is 
usually adopted in the relevant studies, the numeric expected value is 
proposed by the concept of distance metric in this study based on two 
characters (fuzziness and randomness) of FRVs. Comparing with the 
existing measures, although the results show that the proposed 
numeric expected value is same with those using the different metric, 
if only triangular membership functions are used. However, the 
proposed approach has the advantages of intuitiveness and 
computational efficiency, when the membership functions are not 
triangular types. An example with three datasets is provided for 
verifying the proposed approach. 
 

Keywords—Fuzzy random variables, Distance measure, 
Expected value.  

I. INTRODUCTION 
N practical problems, we often faced a situation in which 
outcomes of random experiment are not suitable to be 

described as numeric values, but allowed to be represented as 
fuzzy values for characterizing the imprecise knowledge. 
Fuzzy random variables (FRVs) have been introduced as an 
imprecise concept of numeric values. The concept of FRVs, 
defined as the extension of classical random variable (CRV), 
was introduced by Kwakernaak [1], [2]. The various 
definitions about FRVs have been proposed in the literature. 
Puri & Ralescu [3] and Diamond & Kloeden [4] viewed an 
FRV as the extension of a random set. That is, FRVs are 
collected from a probability space, but are expressed in 
linguistic terms. Kwakernaak [1] and Kruse & Meyer [5] 
adopted FRVs to model the imprecise perception of a CRV. 
Almost all studies followed such definitions to construct 
various descriptive parameters. Furthermore, Couso & Dubois 
[6] proposed another view of FRVs, defining the most likely 
value (the largest membership grade) as the state of a standard 
randomness and the spread of a fuzzy set as the state of a 
fuzziness. Thus, FRVs are used to deal with two uncertainties, 
randomness and fuzziness.  

In general, the descriptive parameters are useful to 
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summary the main features of a set of collected data. In 
classical descriptive statistics, the expected value is well-
defined as a measure of center. In fuzzy environments, the 
expected values are usually developed by the various metrics. 
To develop the expected value of FRVs, the area metric to 
measure the difference between two fuzzy numbers is adopted 
by almost all the existing studies. Three kinds of approaches 
were used: (1) Hausdorff metric [3] and [7], (2) L2-metric on 
the space of Lebesgue integrable [8] and [9], and (3) 
possibility theory [6] and [10]-[12]. Those approaches 
addressed the data types of expected value as: (1) fuzzy set 
[10]-[12], (2) numeric value [3], [5], [8], (3) interval value [9]-
[13].Although various approaches were proposed, they suffer 
from the cumbersome computations. Instead of the concept of 
area metric that is usually adopted in the relevant studies, the 
numeric expected value is proposed by the concept of distance 
metric in this study based on the two characters (fuzziness and 
randomness) of FRVs. The proposed approach is based on the 
concept of distance in the study of Chen & Hsueh [6], [7] to 
develop the numeric expected value, in which the fuzzy 
distance is calculated by several α-cuts between a pair of fuzzy 
numbers. The proposed approach has the advantages of 
intuitiveness and computational efficiency. 

In the following section, we introduce the expected value of 
FRVs. In Section III, an example with three datasets is used to 
verify the proposed approach. Finally, some conclusions are 
provided in Section IV. 

II. EXPECTED VALUE 
To develop the numeric expected value of FRVs, firstly 

consider a metric D defined over the class of fuzzy subsets of 
R, (R)F  (i.e., the set of compact fuzzy subsets of the real 
line). The expected value of an FRV, : (R)X FΩ → , with 

respect to the probability space (Ω,A,P) is formulated as 

{ }( ) ( , ) 0E X D X d
Ω

= ∫ P , where {0} is a singleton (i.e., 

{0} ( ) 1xμ = , if x=0; otherwise, 0). 

Definition 1. Let X  be a triangular FRV, as shown in Fig. 
1. A data set consists of n observations denoted as a triple 
element set ( ), ,i i i iX a b c= , i=1,…,n. Such that, m =b, l = b−a 
and r = c−b, represent the most likely value, left spread and 
right spread, respectively, signifying the most likely values 
(m) as the state of a standard randomness and the range of 
spread (l and/or r) as the state of a fuzziness. The α-level sets 
of X , { :  ( ) }XXα ω μ ω α= ∈ Ω ≥ , are closed for all
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(0,1]α ∈ . 
Firstly, the expected value proposed by Puri & Ralescu 

[14], [15] is introduced for the subsequent comparisons. They 
defined the expected value ( )PRE X as a fuzzy set for

(R)X F∈ , such that ( )( )  PRE X X dα αΩ
= ∫ P  for (0,1]α ∈

.Hence, the expected value ( )PRE X is formulated as 
 

1 1 1

1 1 1
( ) ,  ,  

n n n
PR L M U

i i i
i i i

E X X X X
n n n= = =

≡ ⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑ ∑
       

(1) 

 

where LX , MX  and UX  are the lower bound, the most likely 
value and the upper bound of the FRV X , respectively. In the 
followings, we will review some approaches in terms of the 
concept of area metric, and then introduce the proposed 
expected value. 
 

 
Fig. 1 A generalized triangular FRV 

A. The Concept of Area Metric 
Gil & Lrpez-Diaz [3] employed the λ-average function (2), 

suggested by Campos & González [13], to develop the 
expected value. The λ-average function will produce a 
numeric value as 

 
( )[ ]2 1(0,1]

( ) 1  ( )SV X x x dSλ

α αλ λ α= + −∫      
(2) 

 
where the function 

SV λ  is carried out for each (R)X F∈  

using the α-cuts, [ ]1 2,X x xα α α= , for each (0,1]α ∈ . The 
parameter value of (0,1]λ ∈ is determined as a subjective 
degree of optimism-pessimism, and S is an additive measure 
on (0,1] to determine the weight associated with different α-
cuts. For the comparison purpose, without loss of generality, 
we set 1 2λ = in Gil &Lrpez-Diaz’s approach, and replace 1xα

 

and 2xα
 by ( )i i ic c bα− −  and ( )i i ia b aα+ − in (2), 

respectively, based on triangular membership functions. Then 
( )S iV Xλ = (1/ 4)[ 2 ]i i ia c b+ +  can be obtained, and the 

numeric expected value of FRVs is determined as
1 2

( ) ( ( ))GL

SE X E V X
λ

λ
=

= = ( )(1 / 4) 2a c b+ + , where a , b , 
and c  are the corresponding averages. 

Following Fréchet’s principle, Körner [16] applied the L2-
metric on the space of Lebesgue integrable as (3) to obtain the 
definition of the expected value of FRVs as  

 

{ }2 2

2 2
( R )

( ) (R) : ( , ) inf ( , )F
C F

X B F d X B d X C
∈

= ∈ =E E E . 

( )1

2 2

1 21

0

( , )

            ( , ) ( , ) ( ) 
n

X B

X BS

d X B s s

n s u s u du dα α μ α
−

= −

= ⋅ −∫ ∫
(3) 

 

where the support function { }( , ) sup , :Xs u u a a X αα = ∈ ,
1 ,  [0,1]nu S α−∈ ∈ , 1nS −  is the (n-1)-dimensional unit sphere 

of R, and ,⋅ ⋅  is the inner product of the Euclidean space. By 
using the Steiner point of a fuzzy set, defined as

1

1

0
( ) ( ) d

nX XS
n u s u duσ μ α

−
= ⋅ ⋅∫ ∫ , the approach obtains the 

numeric expected value of an triangular LR-fuzzy number as 
 

( )
R L

Kr

LR X XX m r lσ σ= + ⋅ − ⋅E E E E
     

(4) 
 
where LX  and RX  are the fuzzy set with the membership 
function L(x) and R(x), respectively (i.e., L(x)=R(x)=1-x). And, 
(4) can be revised as 
 

1 1( 1) ( 1)

0 0

1 1
( ) ( ) ( )

2 2
Kr

LRX m R d r L d lα α α α− −= + ⋅ − ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫E E E E (5) 

 
where 

LXσ  and 
RXσ are obtained by 

1 ( 1)

0

1 1
( )

2 4LX L dσ α α−= =∫  and 
1 ( 1)

0

1 1
( )

2 4RX R dσ α α−= =∫ , 

respectively. Therefore, the numeric expected value of FRVs 

in Körner’s approach is 
1 1

( )
4 4

Kr

LRX m r l= + ⋅ − ⋅E E E E , 

which can then be derived as ( )1
2

4
a c b+ +  based on 

triangular membership functions. 
Based on possibility theory, a numeric expected value is 

developed by Liu & Liu [9]. For any closed subset (R)F  of 

R, an FRV X connected with a probability space, 

( )R( ) { ( ) (R)} sup ( )XxX Pos X F xωω ω μ∈= ∈ =  is a 

measurable function of ω ∈ Ω , where ( )X ωμ  is the possibility 

distribution function of FRV ( )X ω . To obtain the well-known 
uncertain functions, possibility measure (6), necessity measure 
(7) and the credibility measure (8) of event { }X r≤ , the 

numeric expected value of X  is defined as (9). 
 

{ } sup ( )X
t r

Pos X r tμ
≤

≤ =
        

(6) 

0 

1 

x 

( )
X

xμ  

a 
r 

b=m 
l 
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{ } 1 sup ( )X
t r

Nes X r tμ
>

≤ = −
       

(7) 

( )1
{ } ( ) ( )

2
Cr X r Pos X r Nes X r≤ = ≤ + ≤

     
(8) 

0

0
( ) { } { } LLE X Cr X r dr Cr X r dr

∞

−∞
= ≥ − ≤∫ ∫     

(9) 

 
where { } 1 { }cCr X Cr X= −  is a self-dual set function. Using 

(9), the expected value of FRVs is ( )(1 / 4) 2i i ia c b+ +  based 
on triangular membership functions, then the numeric 
expected value of FRVs in Liu & Liu’s approach is 

determined as ( ) (1 / 4)( 2 )LLE X a c b= + +  [10]-[12]. 

B. The Proposed Concept of Distance Metric 
Different from the use of the concept of area metric, the 

proposed expected value is developed by employing the 
concept of α-cut between a pair of fuzzy numbers. For the ith 
fuzzy observation 

iX , the distance of a fuzzy random 

observation 
iX  from the single point{0}  at the kth α-level is 

defined as ( ) ( ) ( )( ) ( ) ( )( )1 2 {0} {0}
k kk k

L UL U

i iX Xα αα α
− + −⎡ ⎤⎣ ⎦ , 

which are illustrated in Fig. 2 as the average distance between 
two fuzzy numbers at the kth α-level (let 1k k hα = − ,k = 0, 
1, …, h-1).Hence, the mean distance between the ith fuzzy 
random observation and {0}is determined as the average from 
hα-cuts as 

 

( ) ( )
1

0

1
( ,{0}) ( ) ({0}) ( ) ({0})

2 k k k k

h
L L U U

i i i
k

D X X X
h α α α α

−

=

≡ − + −⎡ ⎤⎣ ⎦∑ (10) 

 

 

Fig. 2 The distance of a fuzzy random observation
iX  from the single 

point{0}  
 
The expected value can be formulated as the average of the 

distance measures ( ,{0})iD X , i = 1, …, n, from n fuzzy 
random observations: 

 

( )
( )

1

1 0

( ) ({0})1 1
( )

2 ( ) ({0})

k k

k k

L L
n h

i

U U
i k

i

CC
X

E X
n h X

α α

α α

−

= =

− +
≡

−

⎧ ⎡ ⎤⎫⎪ ⎪
⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎣ ⎦⎭

∑ ∑ (11) 

Thus, we can have 

1

1 0

1 1
( ) ( ) ( )

2 k k

n h
L U

i i
i k

CCE X X X
n h α α

−

= =

= ⋅ +⎡ ⎤⎣ ⎦∑ ∑

( )1
2

4
a c b= + +

1 1

4 4
m l r= − ⋅ + ⋅ , 2h∀ ≥  

 
based on triangular membership functions. It is noted that the 
proposed expected value contains two parts, i.e., mand 

(1 / 4) (1 / 4)l r− ⋅ + ⋅ , in which m  is contributed from the 
randomness, while (1 / 4) (1 / 4)l r− ⋅ + ⋅  can be attributed from 
the fuzziness. In addition, obviously the proposed expected 
value ( )CCE X  is same as those from the other approaches, 
such as Gil & Lrpez-Diaz [12], [17], Körner [13], and Liu & 
Liu [9], i.e., ( )GLE X = ( )Kr

LRXE = ( )LLE X = ( )CCE X , when 
triangular membership functions are adopted. However, the 
proposed approach is intuitive in the formulation, and is 
efficient in computations, when the membership functions are 
not triangular type. With the non-triangular membership 
functions, the existing approaches should carry out the more 
complicated computations by the area metric, comparing with 
the proposed approach. 

III. ILLUSTRATIVE EXAMPLE 
Three datasets are used in this section to exemplify the 

various approaches mentioned before to determine the 
expected values of FRVs. The first dataset contains the fuzzy 
random observations with symmetric triangular membership 
functions, while the asymmetrical fuzzy random observations 
are considered in the other two datasets. 

Three datasets, as listed in Table I, were analyzed by 
Sakawa & Yano [10]-[12], Wu [18] and Chen & Hsueh [19], 
respectively. After performing the approaches in Puri & 
Ralescu [15], Gil & Lrpez-Diaz [3], Körner [13], Liu & Liu 
[9] and the proposed ( )CCE X , the obtained expected values 
are showed in Table II. As described in Section II, all the 
approaches, excluding Puri & Ralescu [10], [11], results in the 
same expected value. However, the proposed approach is 
more efficiently in computational process. 
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TABLE I 
THREE DATASETS OF FUZZY RANDOM OBSERVATIONS 

No. Dataset-1 Dataset-2 Dataset-3 
1 (3.5, 4.0, 4.5) (111, 162, 194) (19, 30, 39) 
2 (5.0, 5.5, 6.0) (88, 120, 160) (7, 20, 30) 
3 (6.5, 7.5, 8.5) (161, 222, 288) (14, 25, 37) 
4 (6.0, 6.5, 7.0) (83, 131, 194) (33, 45, 55) 
5 (8.0, 8.5, 9.0) (51, 67, 83) (26, 38, 46) 
6 (7.0, 8.0, 9.0) (124, 169, 213) (32, 43, 52) 
7 (10.0, 10.5, 11.0) (62, 81, 102) (23, 40, 51) 
8 (9.0, 9.5, 10.0) (138, 192, 241) (27, 38, 50) 
9 

 

(82, 116, 159) (25, 37, 49) 
10 (41, 55, 71) (49, 60, 72) 
11 (168, 252, 367) (49, 59, 68) 
12 (178, 232, 346) (43, 54, 62) 
13 (111, 144, 198) (47, 61, 64) 
14 (78, 103, 148) (24, 34, 42) 
15 (167, 212, 267) (29, 38, 47) 
16 

  

(48, 64, 73) 
17 (43, 56, 63) 
18 (52, 63, 72) 
19 (50, 66, 71) 
20 (37, 49, 58) 
21 (45, 55, 67) 
22 (56, 67, 81) 
23 (43, 53, 62) 
24 (45, 54, 64) 
25 (57, 70, 77) 
26 (59, 68, 78) 
27 (55, 65, 74) 
28 (70, 75, 89) 
29 (74, 84, 91) 
30 (68, 80, 86) 

 
TABLE II 

EXPECTED VALUES OBTAINED BY DIFFERENT APPROACHES 
Approach Dataset-1 Dataset-2 Dataset-3 

( )
PR

E X  (6.88,7.50,8.13) (109.53,150.53,202.07) (41.63,53.03,62.33)

( )
GL

E X  7.50 153.17 52.51 

( )
Kr

LRXE  7.50 153.17 52.51 

( )
LL

E X  7.50 153.17 52.51 

( )
CC

E X  7.50 153.17 52.51 

IV. CONCLUSION 
Considering the nature of fuzziness and randomness in 

FRVs, this study proposed the numeric expected value of 
FRVs based on the distance metric. The two parts of the 
expected value, m and (1 / 4) (1 / 4)l r− ⋅ + ⋅ , can be 
considered as the measures for randomness and fuzziness, 
respectively. Through the derivative processes in this study, 
the expressions of the expected value, presented by Gil & 
Lrpez-Diaz’s approach, Körner’s approach, Liu & Liu’s 
approach and our proposed approach, have the same value, 
although different concepts of metric are adopted, when 
triangular membership functions are adopted. However, the 
development of the proposed approach is intuitive, and has the 

advantage of computational efficiency, if the membership 
functions are not triangular type. 
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