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Abstract—In this paper we will develop a sequential life test 

approach applied to a modified low alloy-high strength steel part used 

in highway overpasses in Brazil.We will consider two possible 

underlying sampling distributions: the Normal and theInverse 

Weibull models. The minimum life will be considered equal to zero. 

We will use the two underlying models to analyze a fatigue life test 

situation, comparing the results obtained from both.Since a major 

chemical component of this low alloy-high strength steel part has 

been changed, there is little information available about the possible 

values that the parameters of the corresponding Normal and Inverse 

Weibull underlying sampling distributions could have. To estimate 

the shape and the scale parameters of these two sampling models we 

will use a maximum likelihood approach for censored failure data. 

We will also develop a truncation mechanism for the Inverse Weibull 

and Normal models. We will provide rules to truncate a sequential 

life testing situation making one of the two possible decisions at the 

moment of truncation; that is, accept or reject the null hypothesis H0. 

An example will develop the proposed truncated sequential life 

testing approach for the Inverse Weibull and Normal models. 

 

Keywords—Sequential Life Testing, Normal and Inverse Weibull 

Models, Maximum Likelihood Approach, Truncation Mechanism 

I. INTRODUCTION 

HE two-parameter Inverse Weibull distribution has a shape 

parameter β, which specifies the shape of the distribution, 

and a scale parameter θ, which represents the characteristic 

life of the distribution. Both parameters are positive.The 

Normal distribution has been widely used as a failure model. It 

has two parameters: a shape parameter σ and a scale 

parameterµ. The Inverse Weibull density function f(t)is given 

by.  
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Here, trepresentsthe time to failure of a component or part. 

The Normal density functionf(x) is given by: 
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x is the time to failure of a component or part. The 

hypothesis testing situations was given by [1] and[2]: 

 

a) In the Inverse Weibull Case: 

1.  For the scale parameter θ: H0: θ ≥ θ0;   H1: θ < θ0 

The probability of accepting the null hypothesis H0 will be 

set at (1-α) if θ = θ0. Now, if θ = θ1 where θ1 <θ0, then the 

probability of accepting H0 will be set at a low level γ. H1 

represents the alternative hypothesis. 

2.  For the shape parameter β: H0: β ≥ β0;   H1: β<β0 

The probability of accepting H0will be set again at (1-α)in the 

case of β = β0. Now, if β = β1, where β1<β0, then the 

probability of accepting H0 will also be set at a low level γ. 

 

b) In the Normal Case: 

1.  For the scale parameter µ: H0: µ ≥ µ0;    H1: µ<µ0 

The probability of accepting H0 will be set at (1-α)when we 

haveµ = µ0. Now, if µ = µ1, where µ1<µ0, then the probability 

of accepting H0 will be set at a low level γ. 

2.  For the shape parameter σ: H0: σ ≥ σ0;   H1: σ<σ0 

The probability of accepting H0 will beset at (1-α) in the 

case of σ = σ0. Now, if σ = σ1 where σ1<σ0, then the 

probability of accepting H0 will also be set at a low level γ. 

II. METHODOLOGY 

The development of a sequential test uses the likelihood 

ratio (LR) given by the following relationship proposed by [1]: 

 

LR = L1;n/L0;n 

 

The sequential probability ratio (SPR) will be given by:  

 

SPR = L1;n/L0;n 

 

Based on the paper from [3], for the Inverse Weibull case 

the (SPR) will be:  
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In the Normal case, we will have: 
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The continue region will become A< SPR < B, where: 

 

A = γ /(1-α) and also B = (1-γ)/α. 

 

We will accept the null hypothesis H0 if SPR ≥ B and we 

will rejectH0if SPR ≤≤≤≤  A.  

Now, if A < SPR< B, we will take one more observation. 

Then, after some mathematical manipulation, we will have: 

 

a) In the Inverse Weibull case: 
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b) In the Normal case: 
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III. EXPECTED SAMPLE SIZE OF A SEQUENTIAL LIFE TESTING 

According to [4], an approximate expression for the 

expected sample size E(n) of a sequential life testing will be 

given by: 
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For the two-parameter Inverse Weibull sampling 

distribution, we will have: 
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To find the E[ln(t)] some numerical integration procedure 

(Simpson’s 1/3 rule in this work) will have to be used. The 

solution of each component of (10) can be found in [3]. 

For the Normal sampling distribution, we will have: 
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When the decisions about the quantities θ0, θ1, β0, β1, α, 

γand P(θ, β) are made, and after the E(w) is calculated, the 

sequential test is totally defined. 

IV. THE MAXIMUM LIKELIHOOD APPROACH 

a) In the Inverse Weibull case: 

The likelihood functionL(β; θ)for the shape and scale 

parameters of an Inverse Weibull sampling distribution for 

censored Type II data (failure censored) will be given by: 
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The log likelihood function ln [L(β; θ)] will be given by: 
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To find the values of θ and β that maximizes the log 

likelihood function, we take the θ andβ derivatives and make 

them equal to zero. Then, we will have: 

 

θd

dL
=

θ

βr
– ∑

=

−







r

1i

β

i

1β

t

1
θβ – ( )

β

r

1β

t

1
θβrn 








− − =0 (15) 

 

βd

Ld
 =

β

r
 + ( )θlnr – ( )∑

=

r

1i
itln – ∑

=







r

1i

β

it

θ









it

θ
ln – 

( )rn −
β

rt

θ

















rt

θ
ln  = 0   (16) 

From (15) we obtain: 
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Notice that, when β = 1, (17) reduces to the maximum 

likelihood estimator for the inverse exponential distribution. 

Using (17) for θ in (16) and applying some algebra, (16) 

reduces to: 
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Equation (18) must be solved iteratively. 

 

b) In the Normal case: 

 

The likelihood function L(µ; σ) for the shape and scale 

parameters of a Normal sampling distribution for censored 

Type II data (failure censored) will be given by: 

 

( )σ;µL  = k! ( )











∏
=

r

1i
ixf ( )[ ]

rn

rxF1
−

− ; x> 0 

 

With ( )
r

xf  = 
σπ2

1 ( )















−

2σ2

µx
exp

2

r  and with 

 

( )
r

xF =
( )

τd
σ2

µτ
exp

π2σ

1
r

2
x

2∫ ∞−















−

− ; τ≥ 0, we have: 

 

( )σ;µL =k!

r

π2

1













 r

σ

1








× ( )




























−− ∑

=

r

1i
2

2

i
µx

σ2

1
exp  

( )
rn

x

2
r

2

τd
σ2

µτ
exp

π2σ

1
1

−

∞−































−

−− ∫  

 

The log likelihood function ln[L(µ; σ)] will be given by: 
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To find the values of µ and σ that maximizes the log 

likelihood function, we take the µ and σ derivatives and make 

them equal to zero. Then, we will have: 
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Dividing (19) by (20), we get: 
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Equation (21) must be solved iteratively. 

V. EXAMPLE 

A low alloy-high strength steel product will be life tested. 

Since a major chemical component of this low alloy-high 

strength steel part has been changed, there is little information 

available about the possible values that the parameters of the 

corresponding Normal and Inverse Weibull underlying 

sampling distributions could have. To estimate the shape and 

the scale parameters of these two sampling models we will use 

a maximum likelihood approach for censored failure data. 

Some preliminarily life testing was performed in order to 

determine an estimated value for the parameters of the two 

sampling distributions. In this preliminary approach, a set of 

15 items was life tested, with the testing being truncated at the 

moment of occurrence of the ninth failure. Table 1 shows the 

failures time data (cycles) from the preliminary life testing. 

 

 

TABLE I 

FAILURES TIME DATA (CYCLES) 

2,251,930 2,780,470 2,934,330 

3,154,093 3,322,329 3,568,961 

3,781,710 4,023,048 4,517,904 

 

Using the maximum likelihood estimator approach for the 

scale and shape parameters of the Inverse Weibull and Normal 

sampling distributions for censored Type II data (failure 

censored) we obtain the following values for these parameters: 

 

For the Normal case: 

µ = 3,370,530.556 cycles;   σ = 709,115.7862 cycles 

 

For the Inverse Weibull case: 

θ = 2,940,733 cycles;   β = 4.807 

 

We will use these two underlying sampling models to life 

testing the low-alloy high strength steel product under 

analysis, comparing the results obtained from both models. 

Initially, using the Normal sampling model, we elect the 

null hypothesis parameters to beµ0 = 3,400,000 cycles; σ0 = 

710,000 cycles; with α = 0.05 and γ = 0.10 and choose the 

value of 3,000,000 cycles for the alternative scale parameter µ1 

and the value of 650,000 cycles for the alternative shape 

parameter σ1. Then, using(5) and (6), we will have: 
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 (22) 

 

The procedure is defined by the following rules: 

1. If N ≥n× 0.0883 + 2.2513, we will accept H0. 

2. If N ≤≤≤≤ n× 0.0883 − 2.8904, we will reject H0. 

3. If n × 0.0883− 2.8904 < N < n ×0.0883 + 2.2513, we 

will take one more item. 

Now using the Inverse Weibull sampling model, we elect 

the null hypothesis parameters to be equal to θ0 = 2,950,000 

cycles;β0 = 4.8; and choose the value of 2,600,000 cycles for 

the alternative scale parameter θ1 and the value of 4.0 for the 

alternative shape parameter β1. It was decided that the value of 

α was 0.05 and γ was 0.10. Then, using (3) and (4), we will 

have: 
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Then, we get: 

 

–n×12.6053 – 2.8904< W <–n×12.6053 +2.2513 

 

The procedure is defined by the following rules: 

 

1. If W≥–n×12.6053 +2.2513, we will accept H0. 

2. If W ≤–n×12.6053 – 2.8904, we will reject H0. 

3. If –n×12.6053 – 2.8904< W <–n×12.6053 +2.2513, we 

will take one more observation. 

 

After a sequential test graph has been developed for this 

life-testing situation, a random sample is taken, item by item. 

After the analysis of the failure number five, the Inverse 

Weibull model made possible to make the decision to accept 

the null hypothesis H0.The failure times obtained in this life 

testing(cycles to failure) were the following: 3,282,070; 

2,038,658; 3,842,361; 4,441,792; 1,840,065. 

Table 2 shows the results of this test for theInverse Weibull 

model case.  

TABLE II 
SEQUENTIAL TEST RESULTS (CYCLES) FOR THE INVERSE WEIBULL MODEL 

Unit    Lower     Upper    Value 

Number   Limit      Limit    of N 
______________________________________________ 

1     –15.4957;    –10.3541;   –12.2087 

2      –28.1011;   –22.9594;   –27.0778 

3      –40.7064;   –35.5648;   –39.2786 

4      –53.3118;   –48.1701;   –51.5467 

5      –65.9171;   –60.7755;   –68.7379 
______________________________________________ 

 

In the Normal model case, even after the observation of 

fifteen times to failure, it was not possible to make the 

decision to accept or reject the null hypothesis H0. 

 

All the fifteen failure times obtained in this life 

testing(cycles to failure) were the following: 3,282,070; 

2,038,658; 3,842,361; 4,441,792; 1,840,065; 4,388,466; 

3,467,202; 2,807,120; 3,749,865; 2,985,436; 1,693,218; 

2,432,809; 3,008,410; 2,246,590; 4,018,243.  

Table III shows the results of this test for the Normal model 

case. 

TABLE III 

SEQUENTIAL TEST RESULTS (CYCLES) FOR THE NORMAL MODEL 

Unit    Lower     Upper    Value 

Number   Limit      Limit    of N 
______________________________________________ 

1     –2.8021;    2.3396;    0.0804 

2     –2.7138;    2.4279;    –0.664 

3     –2.6255;    2.5162;    –0.018 

4     –2.5372;    2.6044;    1.3651 

5     –2.4489;    2.6928;    0.5437 

6     –2.3606;    2.7810;    1.8561 

7     –2.2723;    2.8693;    2.1099 

8     –2.1840;    2.9576;    1.8053 

9     –2.0957;    3.0459;    2.3493 

10     –2.0074;    3.1342;    2.1791 

11     –1.9191;    3.2225;    1.3106 

12     –1.8309;    3.3108;    0.7635 

13     –1.7426;    3.3991    0.6115 

14     –1.6543;    3.4874    –0.036 

15     –1.5660    3.5757    0.8116 
_____________________________________________ 

 

Now, for the Normal model case, using (7) to (12), we can 

calculate the expected sample size E(n) of this sequential life 

testing under analysis. So, with σ = σ0 =710,000 cycles; σ1 = 

650,000 cycles; µ = µ0 = 3,400,000 cycles; µ1 = 3,000,000 

cycles; α = 0.05; γ = 0.10; and electing P(θ,β) to be 0.01, we 

will have: 
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( )wE  = 0.088292607 + 2.3476134 2410−×  ×  

(9.8443056 2310× –5.1544 2310× +4.5369 2410× – 

4.8841 2410× ) 

 

( )wE  = 0.0883 + 0.2856 = 0.3739 

 

Then, we will have: 

 

( )nE  = 
( ) ( )[ ]

( )wE

Blnβ,θP1Alnβ,θP −+
 = 

3739.0

8390.2
 

 

( )nE  = 7.593 ≅ 8 items 

 

Therefore, we could make a decision about accepting or 

rejecting the null hypothesis H0 after the analysis of 

observation number 8. 
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VI A PROCEDURE FOR EARLY TRUNCATION 

According to [1], when the truncation point is reached, a 

line partitioning the sequential graph can be drawn as shown 

in Fig. 1 below. 
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Fig. 1 A truncation procedure for the sequential testing Normal case 

 

This line is drawn through the origin of the graph parallel to 

the accept and reject lines. The decision to accept or reject H0 

simply depends on which side of the line the final outcome 

lies. Obviously this procedure changes the levels of α and γof 

the original test; however, the change is slight if the truncation 

point is not too small (less than four observations). As we can 

see in Fig. 1, the null hypothesis H0 should be accepted since 

the final observation in the Normal model case (observation 

number 8) lies on the side of the line related to the acceptance 

of H0.  

VII CONCLUSIONS 

The major advantage of a sequential life testing approach in 

relation to the fixed size approach is to keep the samples size 

small, with a resulting savings in cost. It happens that even 

with the use of a sequential life testing approach, sometimes 

the number of items necessary to reach a decision about 

accepting or rejecting a null hypothesis could be quite large 

[5]. Thus, the test must be truncated after a fixed time or 

number of observations. To estimate the shape and the scale 

parameters of the two sampling models Inverted Weibull and 

Normal we applied a maximum likelihood approach for 

censored failure data. We also developed a truncation 

mechanism for the Inverse Weibull and Normal models. We 

provided rules to truncate a sequential life testing situation 

making one of the two possible decisions at the moment of 

truncation; that is, accept or reject the null hypothesis H0. 

The sequential life testing approach developed in this paper 

shows that theInverse Weibull model could effectively 

represent the low alloy-high strength steel product being life-

tested in the above example. In this Inverse Weibull model 

case, we were able to make a decision about accepting the null 

hypothesis H0 after the analysis of observation number five. In 

the Normal model case, even after the observation of fifteen 

failure times, it was not possible to make the decision to 

accept or reject the null hypothesis H0. So, the test needed to 

be truncated after a fixed number of observations (eight in this 

case). This fact shows the advantage of such a truncation 

mechanism to be used in a sequential life test 

approach.Therefore, the Inverted Weibull model has a better 

response in analyzing the modified low alloy-high strength 

steel part used in highway overpasses in Brazil. 
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