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A New Brazilian Friction-ResistantLow Alloy
High Strength Steel — A Life Testing Approach

D. I. De Souza, G. P. Azevedo, R.Rocha

Abstract—In this paper we will develop a sequential life test
approach applied to a modified low alloy-high strength steel part used
in highway overpasses in Brazil. We will consider two possible
underlying sampling distributions: the Normal and thelnverse
Weibull models. The minimum life will be considered equal to zero.
We will use the two underlying models to analyze a fatigue life test
situation, comparing the results obtained from both.Since a major
chemical component of this low alloy-high strength steel part has
been changed, there is little information available about the possible
values that the parameters of the corresponding Normal and Inverse
Weibull underlying sampling distributions could have. To estimate
the shape and the scale parameters of these two sampling models we
will use a maximum likelihood approach for censored failure data.
We will also develop a truncation mechanism for the Inverse Weibull
and Normal models. We will provide rules to truncate a sequential
life testing situation making one of the two possible decisions at the
moment of truncation; that is, accept or reject the null hypothesis H,
An example will develop the proposed truncated sequential life
testing approach for the Inverse Weibull and Normal models.

Keywords—Sequential Life Testing, Normal and Inverse Weibull
Models, Maximum Likelihood Approach, Truncation Mechanism

1. INTRODUCTION

THE two-parameter Inverse Weibull distribution has a shape

parameter 3, which specifies the shape of the distribution,
and a scale parameter 0, which represents the characteristic
life of the distribution. Both parameters are positive.The
Normal distribution has been widely used as a failure model. It
has two parameters: a shape parameter ¢ and a scale
parameterp. The Inverse Weibull density function f(#)is given
by.

sy p
f(t)=ﬁ[§] exp —(?j L e0 ()

Here, frepresentsthe time to failure of a component or part.
The Normal density functionf(x) is given by:
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x is the time to failure of a component or part. The
hypothesis testing situations was given by [1] and[2]:

a) In the Inverse Weibull Case:

1. For the scale parameter 6: Hy: 6 >6,;, H;: 6 < 6,

The probability of accepting the null hypothesis H, will be
set at (I-a) if @ = ). Now, if 8 = 6, where 6, <), then the
probability of accepting H, will be set at a low level y. H,
represents the alternative hypothesis.

2. For the shape parameter S: Hy: = S, H;: f<f)

The probability of accepting Hywill be set again at (/-¢)in the
case of = ). Now, if = f; where [,;</), then the
probability of accepting H,, will also be set at a low level y.

b) In the Normal Case:

1. For the scale parameter p: Hp: pt> g, Hp: pu<py

The probability of accepting H, will be set at (1-a)when we
havey = py. Now, if p = p;, where 1<, then the probability
of accepting H, will be set at a low level .

2.  For the shape parameter o: Hy: 0> oy, H;: o<oy

The probability of accepting H, will beset at (/-¢) in the
case of o = oy. Now, if o = o; where 0;<0), then the
probability of accepting H, will also be set at a low level y.

[I. METHODOLOGY

The development of a sequential test uses the likelihood
ratio (LR) given by the following relationship proposed by [1]:

LR = L],'n/L();n
The sequential probability ratio (SPR) will be given by:
SPR =Lj.n/Lo:n

Based on the paper from [3], for the Inverse Weibull case
the (SPR) will be:
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In the Normal case, we will have:

- n n 2 2
X;— U X;—

SPR={—0J exp —12[’ ’] —[l 0}
7, 2120 9, %

The continue region will become A< SPR < B, where:

A= y/(l-a) and also B = (I-))/c.

We will accept the null hypothesis H, if SPR > B and we
will rejectHyif SPR < A.

Now, if A < SPR< B, we will take one more observation.
Then, after some mathematical manipulation, we will have:

a) In the Inverse Weibull case:

B B
01 6!
nin ﬂ] x4 —Zn[(l_y)}< W<nin 'Bl x4
gﬂ() ﬁ() a 9'80 ﬁ()
0 0
+ 1,{(1 _“)} 3)
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b) In the Normal case:

nin [Z—‘j] - zn[@} N<nln [Z_fjJ + ln{(l ; “)} )

e V2 (e
Nzéz[l ﬂ]] _(1 /‘0] ©)
h o o

III. EXPECTED SAMPLE SIZE OF A SEQUENTIAL LIFE TESTING

According to [4], an approximate expression for the
expected sample size E(n) of a sequential life testing will be
given by:

*

EW
E(”): E(M’j) @)
_flee,.,)
o f(t’ﬂo:/go) ®

E(W,f ); P(9, p)In(A)+[1- P9, p)] 1n(B) (9

For the two-parameter Inverse Weibull sampling
distribution, we will have:
b0
E(w)=ln Txﬁ_ +(ﬁ0 —ﬁI)E[ln(t)]
0,° "o

B
{g[;n(Ui)e_Ui x(1,20r4):|}; U= (?jﬁ an

To find the E/In(t)] some numerical integration procedure
(Simpson’s 1/3 rule in this work) will have to be used. The
solution of each component of (10) can be found in [3].

For the Normal sampling distribution, we will have:

E(W)=ll’l(60 )— ln(a] )+ﬁ x

2_2(2 2)_2( 2 2) 2 22 2] (12)
|:(0'0 o‘]ja +u L L +,u[z70 poo

When the decisions about the quantities 6, 6, £, [, «
yand P(6, f) are made, and after the E(w) is calculated, the
sequential test is totally defined.

IV. THE MAXIMUM LIKELIHOOD APPROACH
a) In the Inverse Weibull case:
The likelihood functionZ(f; @)for the shape and scale
parameters of an Inverse Weibull sampling distribution for
censored Type II data (failure censored) will be given by:
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The log likelihood function /n [L(f; 6)] will be given by:

M\

In[L(B ;0)|=In(k!)+r In(B)+r B in(0)— (B +1)

In(t;)-
i=1
B B
gy %
i=1 t i
To find the values of @ and S that maximizes the log

likelihood function, we take the 8 andf derivatives and make
them equal to zero. Then, we will have:

B B
aL rﬁ _poP- 12( ] —(n—r)ﬂeﬁ"[ti] -0 (15)

o i\

g p i=1 i=1 Z li
B
% o) _
(n-r) [Z] ln(;] =0 (16)
From (15) we obtain
0V VAL
r Z[J +(n—r)(j (17)
i—I\fi Iy

Notice that, when g = I, (17) reduces to the maximum

likelihood estimator for the inverse exponential distribution.
Using (17) for @ in (16) and applying some algebra, (16)
reduces to:

Equation (18) must be solved iteratively.
b) In the Normal case:

The likelihood function L(u, o) for the shape and scale
parameters of a Normal sampling distribution for censored
Type II data (failure censored) will be given by:

n-r
;x>0

Lluio) K {ﬁ]f(xi)] - F(s,)]

P, )

exp

\/2_71'0 202

and with

with fx )=

The log likelihood function /n/L(u; ¢)] will be given by:

m[L(u ;o)) =In(k) +r h{\/;_ﬁ] +r ln[éj

) )

In ]—jirw
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To find the values of x4 and ¢ that maximizes the log
likelihood function, we take the u and o derivatives and make
them equal to zero. Then, we will have:

dL 1 &
R X, —u)—
1 0‘2 E}( ! )
2
n_r) (x) _'u) xr _'u)
x exp|—
o+2r 0'2 202
5 =0 (19
o (e-n)
1- J exp| — dr
o0 2 202
L r 1< 2
W
2 2
(n-r) (x, _/‘) (x, _l‘)
x exp|— -1
02 2 202 02
5 =0 (20)
o (t-u)
1- I exp| — dr
S0 O 2r 202
Dividing (19) by (20), we get:
l r
L3, -n)
do _ i " b, -4) -0 (21)

d B 2
TR
0" =] 02

Equation (21) must be solved iteratively.

V.EXAMPLE

A low alloy-high strength steel product will be life tested.
Since a major chemical component of this low alloy-high
strength steel part has been changed, there is little information
available about the possible values that the parameters of the
corresponding Normal and Inverse Weibull underlying
sampling distributions could have. To estimate the shape and
the scale parameters of these two sampling models we will use
a maximum likelihood approach for censored failure data.
Some preliminarily life testing was performed in order to
determine an estimated value for the parameters of the two
sampling distributions. In this preliminary approach, a set of
15 items was life tested, with the testing being truncated at the
moment of occurrence of the ninth failure. Table 1 shows the
failures time data (cycles) from the preliminary life testing.

TABLEI
FAILURES TIME DATA (CYCLES)
2,251,930 2,780,470 2,934,330
3,154,093 3,322,329 3,568,961
3,781,710 4,023,048 4,517,904

Using the maximum likelihood estimator approach for the
scale and shape parameters of the Inverse Weibull and Normal
sampling distributions for censored Type II data (failure
censored) we obtain the following values for these parameters:

For the Normal case:
w=3,370,530.556 cycles; o= 709,115.7862 cycles

For the Inverse Weibull case:
60 = 2,940,733 cycles; [=4.807

We will use these two underlying sampling models to life
testing the low-alloy high strength steel product under
analysis, comparing the results obtained from both models.

Initially, using the Normal sampling model, we elect the
null hypothesis parameters to bes, = 3,400,000 cycles; oy =
710,000 cycles; with a = 0.05 and y = 0.10 and choose the
value of 3,000,000 cycles for the alternative scale parameter 1
and the value of 650,000 cycles for the alternative shape
parameter o;. Then, using(5) and (6), we will have:

| 710000 (1=0.10)] _ nx0.0883 — 2.8904
650,000 0.05

nin 710,000 + In w =nx0.0883+2.2513
650,000 0.10

n o 2 o 2
N L $o|(5=3000000Y (x; =3400000\° )
2 650,000 710,000

i=]

The procedure is defined by the following rules:

1.IfN 2nx0.0883 + 2.2513, we will accept H.

2.If N £ nx0.0883 —2.8904, we will reject H,,.

3. If n x 0.0883—- 2.8904 < N < n x0.0883 + 2.2513, we
will take one more item.

Now using the Inverse Weibull sampling model, we elect
the null hypothesis parameters to be equal to 6, = 2,950,000
cycles; 3y = 4.8; and choose the value of 2,600,000 cycles for
the alternative scale parameter §; and the value of 4.0 for the
alternative shape parameter f;. It was decided that the value of
a was 0.05 and y was 0.10. Then, using (3) and (4), we will
have:

40 B
. 40 (2600000) J_ ln{(1 0.10)}=

(2,950,000)*8 4.8 0.05

—nx12.6053 — 2.8904
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Then, we get:
—nx12.6053 — 2.8904< W <—nx12.6053 +2.2513
The procedure is defined by the following rules:

1. If W>-nx12.6053 +2.2513, we will accept H).

2.If W <nx12.6053 — 2.8904, we will reject H).

3. If —-nx12.6053 — 2.8904< W <—nx12.6053 +2.2513, we
will take one more observation.

After a sequential test graph has been developed for this
life-testing situation, a random sample is taken, item by item.
After the analysis of the failure number five, the Inverse
Weibull model made possible to make the decision to accept
the null hypothesis H,.The failure times obtained in this life
testing(cycles to failure) were the following: 3,282,070,
2,038,658, 3,842,361, 4,441,792, 1,840,0065.

Table 2 shows the results of this test for thelnverse Weibull
model case.

TABLEII
SEQUENTIAL TEST RESULTS (CYCLES) FOR THE INVERSE WEIBULL MODEL

Unit Lower Upper Value
Number Limit Limit of N

1 —15.4957; -10.3541; —12.2087

2 -28.1011; —22.9594; -27.0778

3 —40.7064; —35.5648; —39.2786

4 —53.3118; —-48.1701; —51.5467

5 —65.9171; —60.7755; —68.7379

In the Normal model case, even after the observation of
fifteen times to failure, it was not possible to make the
decision to accept or reject the null hypothesis H,,

All the fifteen failure times obtained in this life
testing(cycles to failure) were the following: 3,282,070;
2,038,658, 3,842,361; 4,441,792, 1,840,065; 4,388,466,
3,467,202, 2,807,120; 3,749,865, 2,985,436; 1,693,218;
2,432,809; 3,008,410; 2,246,590, 4,018,243.

Table III shows the results of this test for the Normal model
case.

TABLE III
SEQUENTIAL TEST RESULTS (CYCLES) FOR THE NORMAL MODEL
Unit Lower Upper Value
Number Limit Limit of N
1 -2.8021; 2.3396; 0.0804
2 —2.7138; 2.4279; —0.664
3 -2.6255; 2.5162; -0.018
4 -2.5372; 2.6044; 1.3651
5 —2.4489; 2.6928; 0.5437
6 —2.3606; 2.7810; 1.8561
7 —2.2723; 2.8693; 2.1099
8 —2.1840; 2.9576; 1.8053
9 —2.0957, 3.0459; 2.3493
10 -2.0074; 3.1342, 2.1791
11 -1.9191; 3.2225; 1.3106
12 -1.8309; 3.3108; 0.7635
13 —1.7426; 3.3991 0.6115
14 —1.6543; 3.4874 -0.036
15 -1.5660 3.5757 0.8116

Now, for the Normal model case, using (7) to (12), we can
calculate the expected sample size E(n) of this sequential life
testing under analysis. So, with o= oy =710,000 cycles; o; =
650,000 cycles;, 1 = py = 3,400,000 cycles; 1; = 3,000,000
cycles; a = 0.05; y=0.10; and electing P(6,f) to be 0.01, we
will have:

1
E(w)= ln(ao )—ln((f] ) + ﬁ x

2 2(2 2) ( 2 2) 22 22
o -6 llo° + _2ul w6 —u 67 | +uc” —u‘o
Ko 1) "o 707 170 "o

E(w) = 0.088292607 + 2.3476134x 10~ %4 x
(9.8443056% 1023 -5.1544 x 1023 +4.5369 x 10%% -
4.8841 x 10%%)

E(w) = 0.0883 + 0.2856 = 0.3739

Then, we will have:

E(n) = PO,B)InA+[1-P0.B)linB _ 2.8390
E(w) 0.3739

E(n) = 7.593 =8 items

Therefore, we could make a decision about accepting or
rejecting the null hypothesis H, after the analysis of
observation number 8.
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VI A PROCEDURE FOR EARLY TRUNCATION

According to [1], when the truncation point is reached, a
line partitioning the sequential graph can be drawn as shown
in Fig. 1 below.

TRUNCATION
—y T POINT
vl 3F //
: -
L 2F s \'. \ __________
e
lé T /X/ --------- \\. o
0 --:"I"'; PR N B | PR T B | 1\/1
S 1¥ 3 4 5 6 7 8 9 10 11 12 13 14 15
KRS
o)
Fl 2} /
REJECT Ho
1.1 | Reveoho |
| NUMBER OF ITEMS TESTED |

Fig. 1 A truncation procedure for the sequential testing Normal case

This line is drawn through the origin of the graph parallel to
the accept and reject lines. The decision to accept or reject Hy
simply depends on which side of the line the final outcome
lies. Obviously this procedure changes the levels of « and yof
the original test; however, the change is slight if the truncation
point is not too small (less than four observations). As we can
see in Fig. 1, the null hypothesis H, should be accepted since
the final observation in the Normal model case (observation
number 8) lies on the side of the line related to the acceptance
OfH().

VII CONCLUSIONS

The major advantage of a sequential life testing approach in
relation to the fixed size approach is to keep the samples size
small, with a resulting savings in cost. It happens that even
with the use of a sequential life testing approach, sometimes
the number of items necessary to reach a decision about
accepting or rejecting a null hypothesis could be quite large
[5]. Thus, the test must be truncated after a fixed time or
number of observations. To estimate the shape and the scale
parameters of the two sampling models Inverted Weibull and
Normal we applied a maximum likelihood approach for
censored failure data. We also developed a truncation
mechanism for the Inverse Weibull and Normal models. We
provided rules to truncate a sequential life testing situation
making one of the two possible decisions at the moment of
truncation; that is, accept or reject the null hypothesis H,

The sequential life testing approach developed in this paper
shows that thelnverse Weibull model could -effectively
represent the low alloy-high strength steel product being life-
tested in the above example. In this Inverse Weibull model
case, we were able to make a decision about accepting the null
hypothesis H, after the analysis of observation number five. In

the Normal model case, even after the observation of fifteen
failure times, it was not possible to make the decision to
accept or reject the null hypothesis H,. So, the test needed to
be truncated after a fixed number of observations (eight in this
case). This fact shows the advantage of such a truncation
mechanism to be wused in a sequential life test
approach.Therefore, the Inverted Weibull model has a better
response in analyzing the modified low alloy-high strength
steel part used in highway overpasses in Brazil.
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