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A new approach to the approximate solutions of
Hamilton-Jacobi equations
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Abstract— We propose a new approach on how to obtain the
approximate solutions of Hamilton-Jacobi (HJ) equations. The process
of the approximation consists of two steps. The first step is to
transform the standard HJ equations into the virtual time based HJ
equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The
second step is to construct the approximate solutions of the HJ
equations through a computationally iterative procedure based on the
VT-HJ equations. It should be noted that the approximate feedback
solutions evolve by themselves as the virtual-time goes by. Finally, we
demonstrate the effectiveness of our approximation approach by
means of simulations with linear and nonlinear control problems.
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I. INTRODUCTION

OR optimal feedback controller design of nonlinear systems,

we generally meet Hamilton-Jacobi (HJ) equations to be
dealt with. Once a solution of HJ equations is obtained, it is
relatively easy to construct a feedback controller for the optimal
control problem. It means that HJ equations play a key role in
the design process of optimal control problems. However, it is
well known that in the case of nonlinear optimal control
problems HJ equations are almost impossible to be solved
analytically. Therefore, a great deal of research on approximate
solutions of HJ equations has been reported so far. For example,
there are the Taylor expansion approach [1], the successive
Galerkin approach [2], [3], the viscosity solution approach, the
genetic programming approach [4], the Neural Network
approach [5], and others.

In this paper, we propose a new approach for obtaining the
approximate solutions of HJ equations, by introducing a new
type of HJ equations coming from the idea of ‘virtual time’. The
major advantage of our approach with HJ equations using the
virtual time is that it is computationally simple and there is no
need to search for implicit functions contained in the HJ
equation as done in [2], [3].

The outline of the paper is organized as follows. In Section 2,
the problem formulation for optimal control problems is given.
In Section 3, we introduce the idea of the virtual time for HJ
equations, and propose the VT-HJ equations using the virtual

J. Imae is with Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka
599-8531, JAPAN (e-mail: jimae@me.osakafu-u.ac.jp).

K. Shinagawa is with OMRON Corporation (e-mail: kenjiro_shinagawa@
omron.co.jp).

T. Kobayashi is with Osaka Prefecture University (e-mail: kobayasi@
me.osakafu-u.ac.jp).

G. Zhai is with Shibaura Institute of Technology (e-mail:
zhai@shibaura-it.ac.jp).

time, and describe how to obtain the solutions of VT-HIJ
equations. Note that the solutions of VT-HJ equations evolve as
time goes by. In Section 4, several simulation examples with
linear and nonlinear optimal control problems are shown to
illustrate the effectiveness of the proposed approach.

II. PROBLEM FORMULATION
In this section, we formulate the optimal control problems,
and give a brief description on the standard HJ equations.
A. Optimal control problem

Consider the nonlinear time-invariant systems described by
ordinary differential equations that are affine in control.

x=fx)+gxu, f(0)=0, g(0)=0 (1)
Here, xe R", ueR™, f:R"—>R", g:R"—>R"™,
and f, g are sufficiently smooth.

Then, the optimal control problem is formulated as follows.
Given the prescribed performance index

J = 1x)+u" Ru dt )

find a control function that satisfies the system equation (1) and
minimizes the performance index (2). Here the state penalty
function /(x) is sufficiently smooth and positive-definite, the

mXm

control penalty matrix Re€ R is positive-definite, and ()"

means the transpose of vectors and matrices.
B. HJ equation

We design a feedback controller u(x) for the above-

mentioned optimal control problem. Under the assumption of
differentiability on solutions, the standard theory of optimal
control tells us that the design problem is reduced to finding a

solution ¥~ of the following HJ equation

* * « T
av 19V 14
— R +/=0 3
ox J 4 ox s ox )
with the initial state condition
V' (0)=0. 4)

By using the solution V'~ , we can construct the optimal
feedback controller as follows.

1 '
“y=_Lp1, 79V 5
u (x) 2 g . (%)
Here, V" /9x is defined as
v’ _|ay oy v’ ©
ox | ox, ox, ox,
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Remark 2.1

When the solutions of HJ equations are not differentiable, the
appropriate theory should be adopted, i.e. the viscosity solution
approach, the generalized Jacobian approach, and others. This
is a subject of the further research.

III. VT-HJ EQUATION AND ALGORITHM

We introduce the virtual time based HJ equation, which plays
a key role in the proposed approach.
Definition( VT-HJ equation)

Consider the optimal control problem with system equation
(1) and the performance index (2). Then, we define the VT-HIJ
equation as

oW ow . 1ow ., row’
—=—f-————gR g — +
0T  Ox 4 ox ox

and denote the solution of (7) by W (x,7), where W (x,7):

! )

R"X R+ R is continuous and sufficiently smooth with
w(0,7)=0 .
Convergence
We give some comments on the relationship between
W(x,7) and V' (x).
system with an infinite horizon, the HJ equation associated with
it is given in the expression of (3), while the VT-HJ equation is
given in the expression of (7). A large difference between these
two equations seems to exist, because the VT-HJ equation (7)
includes the time-derivative term while the HJ equation (3)
doses not. However, the equations (3) and (7) can be expected
to be identical to each other, if the limit function
oW (x,7)
T T ®
ot
exists uniformly in x and the value of the limit function is zero.
Here, we give a brief discussion on the possibility that

When it comes to the time-invariant

lim

W(x,7) converges to V*(x) as 7 — oo in Banach space.
Setting W (x,7) by W (x,7) = W(x,7) - V*(x), we rewrite the
VT-HJ equation (7) into the following.

oW _ AW +V7)
ot ox

1907 +V7) o+’
- Tl 2
4 ox ox

/
(7)
+1

Focusing on this equation(7’) instead of (7), we investigate the
possibility that the zero solution of (7°) is asymptotically stable
in Banach space. For this reason, we introduce a Lyapunov
function candidate U (¥ (e,7)) as follows,

U(W(O,T)) = ”I Wz(x,f)dx,dxz cedx,,

and apply the Lyapunov stability theorem of abstract nonlinear
dynamical systems in Banach space [7]. Under the assumption
that for each 7 there isa J(z) > 0 such as

ess. sup {W(x,r)x ﬁ(x, %—Wj} <-6(1)
X X

whenever W(x,f) #0,

we can expect to obtain the convergence property. Here, H
represents the right hand side of (7°).

However, it should be noted that the above-mentioned
assumption might be not suitable for practical applications.
Moreover, even with such an assumption, the rigorous proof of
the convergence property in Banach space is considered to be
extremely difficult. Therefore, we demonstrate the usefulness of
the VT-HJ based approach, not from a theoretical point of view,
but from a computational point of view. We propose a new
approach for obtaining the computational solutions of HJ
equations through the VT-HJ equations. We will provide some
simulations to illustrate the convergence property of our
proposed approach.

Basic Algorithm
Step 1. Select an appropriate initial function W (x,0) .

Step 2. Solve the VT-HJ equation (7), using the virtual time.
oW (x,7)
T

Step 3. If the absolute value of is sufficiently

T=T*
small uniformly in x, determine W (x,7") as the

approximate solution of HJ equation (3). If not, return to
Step 2.

Remark 3.1

The VT-HJ equations can be solved through the existing
differential equation solvers, such as the Euler method, the
Runge-Kutta method, and so on. For example, the case with the
Euler method is described as follows. First, we determine the
integration step A7, and then calculate the one-step forward
solution using the following relation.

W(x,7+Ar):W(x,r)+%—WAT O]
T

Remark 3.2
Note that the calculation process is beyond the standard usage

of Euler method in the sense that the function W (x,7) evolves
as the virtual time passes by. In other words, the calculation
processes of the Euler method and the Runge-Kutta method are
done in terms of functions.

IV. SIMULATION

Three design examples are given to illustrate the
effectiveness of the proposed approach in a comparison with
other existing methods. We choose the LQ problem in the first

example, so as to show that H(x,aa—Wj is updated in a

24

. . oW .
quadratic expression, where H (x,a—] represents the right
X

hand side of the VT-HJ equation (7). The resultant controller is
expected to converge to the solution LQ theory implies. The
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second example is given for the case of nonlinear optimal
control problems. In this case, the number of the terms in the
series expansion for W (x,7) dramatically increases as 7 — oo,
so that the calculation process with the Euler method can not be
carried out because of the blast in the number of series terms.
One way to avoid such blast is to delete the higher-order terms
by means of the Taylor series expansion method. With this
method, we can obtain a local nonlinear feedback controller.
For a semi-global nonlinear feedback controller, we take the
third example. See [8] for more details.

A. Example (LQ problem)

For the case of LQ problems, we describe how to solve the
optimal LQ problems, based on Basic Algorithm. In this case,
the algorithm (say, Algorithm 1) turns out to be identical to the
standard method of numerically obtaining the solution of the
Riccati differential equation.

Algorithm 1

Step 1. Select an appropriate integration step A7 .

Step 2. Set W(x,7)=0 at 7=0.

Step 3. Calculate H, by
H,= H[x,@) .

X

Step 4. Calculate W (x,7 + A7) by the Euler method.
W(x,t+A7)=W(x,7)+ H AT

Step 5. Set 7 =7+ A7, and go to Step 2.

We now consider the state equation and performance index as

follows.
100 1 1
x= x+ u
0 1 01

szomxTx+uTu dt

(10

an
It is easy to obtain the analytical solution of the associated HJ
equation.

V' = x; —2x,%x, + (\/54- 2)x22
= x} —2x,x, +3.732x]
Keeping this solution in mind, we apply Algorithm 1 to the

optimal LQ problem using the Runge-Kutta method, instead of
the Euler method. Given A7 =0.1, W(x,7) numerically

(12)

converges to
W(x,7")=1.000x{ —2.000x,x, +3.732x;

uniformly in x. This function is obtained at 7" =6, which is
almost equal to the analytical solution (12).

B. Example 2 (Local controller)
Here is Algorithm 2, combined with the Taylor series expansion
method.
Algorithm 2
Step 1. Select an appropriate integration step A7 .

Step 2. Set W(x,7)=0 at 7=0.
Step 3. Calculate H, by
"= H(x’ E)W(x,z')j
0x

Step 4. Form the Taylor series expansion of H . about the

origin, and delete the higher-order terms of the series
expansion.
Step 5. Calculate W (x,7+ A7) via the Euler method.

W(x,7+A7) =W (x,7)+ H, AT
Step 6. Set 7 =7+ A7, and go to Step 2.

For a comparison with the results of [6], we consider the
following nonlinear optimal control problem.

s 0
X= i+ X +| |
-Xx, 1

J=.|'0w%(x12 +x§ +u2)dt

(13)

(14)

A local nonlinear controller V,,,,,. is given in [6] as follows.

ylor

V

1
aylor = X+ XX, +Ex§ —1.593x]

15)
—2x7x, —0.889x,x5 —0.148x;

Keeping the solution (15) in mind, we apply Algorithm 2 to the
nonlinear optimal control problem using the Runge-Kutta
method. Given A7 =0.1, W(x,7) numerically converges to

W(x,7")=1.000x7 +1.000x,x, +0.500x7 —1.593x;
—2.000x7x, —0.889x,x7 —0.148x3
(16)

uniformly in x. The function (16) is obtained at 7 =8 , which
is equal to the solution (15).

C. Example 3 (Semi-global controller)

It should be noticed that the controller (16) is a local one and
does work only in a local region. In this section, we restrict

ourselves to a prescribed compact set Q < R”, not to a local set.
Then, it is important to note that we have the same kind of the
blast problem as seen in Example 2, and also important to note
that we can not use the Taylor series expansion because we are
focusing on a semi-global controller in the prescribed compact
set € . In order to avoid such a blast problem, we apply another
approximation scheme, such as the Galerkin approximation
method or least square method. By means of these
approximation schemes, we could construct the semi-global
controller without any blast problem, based on the solution of
VT-HIJ equations. Details are given in the following algorithm.
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Algorithm 3
Step 1. Select an appropriate integration step A7, and
determine a compact set € and a set of basis functions
N
®= {¢z }i:1 .
Step 2. Select an appropriate initial function W (x,7) at 7=0.

Step 3. Based on the set of the basis functions @ , approximate
the following function

W(x,7)+ H(x,M)AT
ox

over the region of Q, denoted by W (x,7+A7).
Step 4. Set 7=7+ A7, and go to Step 2.

In a comparison with the successive Galerkin approximation in
[3], we deal with the following nonlinear optimal control

problem.
3 0
i=| T TR (17)
X+ X, 1
J=[7xp+xy+u’ dt (18)

A semi-global controller 1w, is given in [3], over the region
of Q=[—-1,1]x[-1, 1], with the set of the basis functions being

2 2 4 .3
{x,xx, X5, X,x0%,, - x3,x0 x5 )

UG = 0.1643x, —2.5822x, —0.9661x;
+1.3757x{ x, —0.8441x,x; +0.3010x;
+0.4071x) —0.7337x;' x, +0.6204x; x5

—0.3463x, x; +0.0995x,x5 —0.0574x;

(19)
Keeping this solution in mind, we apply Algorithm 3 to the
optimal control problem using the Runge-Kutta method, instead
of the Euler method. Given A7 =0.05, W (x,7) numerically
converges, resulting in

U =0.1643x, —2.5822x, - 0.9661x;

+1.3757x7x, — 0.8441x,x7 +0.3010x3
+0.4071x) —0.7337x; x, +0.6204x; x5

—0.3463x] x5 +0.0995x, x5 —0.0574x;
(20)
This function (20) is obtained at 7 =10 , which is equal to the
solution (19). Eventually, the semi-global controller is obtained.

V.CONCLUSION

We proposed a new approach for obtaining the approximate
solutions of HJ equations. The approximation process consists
of two steps. Firstly, introducing a concept of virtual-time, we
transformed the HJ equations into the VT-HJ equations.
Secondly, we numerically solved the VT-HJ equations by
means of existing differential equation solvers.

We demonstrated the effectiveness of our approximation

approach through numerical simulations with linear and
nonlinear control problems.
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