
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2166

 

 

 
Abstract—Assertion-Based software testing has been shown to 

be a promising tool for generating test cases that reveal program 
faults. Because the number of assertions may be very large for 
industry-size programs, one of the main concerns to the applicability 
of assertion-based testing is the amount of search time required to 
explore a large number of assertions. This paper presents a new 
approach for assertions exploration during the process of Assertion-
Based software testing. Our initial exterminations with the proposed 
approach show that the performance of Assertion-Based testing may 
be improved, therefore, making this approach more efficient when 
applied on programs with large number of assertions. 

 
Keywords—Software testing, assertion-based testing, program 

assertions.  

I. INTRODUCTION 

ESEARCH has shown that software testing is a very labor 
intensive and tedious task [12]. There are two main 

approaches to software testing: Black-box and White-box. 
Test generators that support black-box testing create test cases 
by using a set of rules and procedures; the most popular 
methods include equivalence class partitioning, boundary 
value analysis, cause-effect graphing. White-box testing is 
supported by coverage analyzers that assess the coverage of 
test cases with respect to executed statements, branches, paths, 
etc. There are different types of automated test data generators 
for white-box testing. Random test data generators select 
random inputs for the test data from some distribution, e.g., 
[10]. Path-oriented test data generators select a program 
path(s) to the selected statement and then generate input data 
to traverse that path, e.g., [1], [3], [16], [19], [20]. Goal-
oriented test data generators select inputs to execute the 
selected goal (i.e. statement) irrespective of the path taken, 
e.g., [4], [6], [21]). Intelligent test data generators employ 
genetic and evolutionary algorithms in the process of 
generating test data, e.g., [2], [9], [15], [18], [22]. Assertions 
have been recognized as a powerful tool for automatic run-
time detection of software errors during debugging, testing, 
and maintenance [7], [8], [14], [17], [23]. An assertion 
specifies a constraint that applies to some state of a 
computation. When an assertion evaluates to false during 
program execution, there exists an incorrect state in the 
program. Moreover, assertions have proved to be very 
effective in testing and debugging cycle [11]. For example, 

 
Ali M. Alakeel is an associate professor of computer science in the Faculty 

of Computers and Information Technology, University of Tabuk, P.O.Box 
741, Tabuk 71491, Saudi Arabia (e-mail: alakeel@ut.edu.sa). 

during black-box and white-box testing assertions are 
evaluated for each program execution [6]. Information about 
assertion violations is used to localize and fix bugs [11]-[24], 
and can increase program’s testability [13], [14]. 

Utilizing assertions for the purpose of test data generation 
was proposed in [6]. In that research, an automated test data 
generation method based on the violation of assertions was 
presented. The main objective of this method is to find an 
input on which an assertion is violated. If such an input is 
found then there is a fault in the program. This type of 
assertion-based testing is a promising approach as most 
programming languages nowadays support automatic 
assertions generation. Examples of automatically generated 
assertions are boundary checks, division by zero, null 
pointers, variable overflow/underflow, etc.  

Because the number of assertions may be very large for 
industry-size programs, one of the main concerns to the 
applicability of assertion-based testing is the amount of search 
time required to explore a large number of assertions. This 
paper presents a new approach for assertion exploration 
during the process of Assertion-Based software testing. Our 
initial exterminations with the proposed approach show that 
the performance of Assertion-Based testing may be improved, 
therefore, making this approach more efficient when applied 
on programs with large number of assertions.  

The rest of this paper is organized as follows. Section II 
provides an overview of Assertion-Based software testing. 
Section III presents our proposed approach for processing 
large number of assertions during Assertion-Based testing. In 
Section IV, we discuss our conclusions and future research. 

II. ASSERTION-BASED SOFTWARE TESTING 

The goal of Assertion-Based software testing [6] is to 
identify program input on which an assertion(s) is violated. 
This method is a goal-oriented [4], [5], [21] and is based on 
the actual program execution. This method reduces the 
problem of test data generation to the problem of finding input 
data to execute a target program’s statement s. In this method, 
each assertion is eventually represented by a set of program’s 
statements (nodes). The execution of any of these nodes 
causes the violation of this assertion. In order to generate 
input data to execute a target statement s (node), this method 
uses the chaining approach [21]. Given a target program 
statement s, the chaining approach starts by executing the 
program for an arbitrary input. When the target statement s is 
not executed on this input, a fitness function [4], [5], [21] is 
associated with this statement and function minimization 

Ali M. Alakeel 

A New Approach for Assertions Processing during 
Assertion-Based Software Testing 

R



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2167

 

 

search algorithms are used to find automatically input to 
execute s. If the search process can’t find program input to 
execute s, this method identifies program’s statements that 
have to be executed prior to reaching the target statement s. In 
this way this approach builds a chain of goals that have to be 
satisfied before the execution to the target statement s. More 
details of the chaining approach can be found in [21]. 

 

 
Fig. 1 Sample program with assertions 

 
As presented in [6], two types of assertions are dealt with: 

Boolean-formula and Executable-code assertions. As 
demonstrated using Pascal programs, each assertions is 
written inside Pascal comment regions using the extended 
comment indicators: (*@ assertion @*) in order to be 
replaced by an actual code and inserted into the program 
during a preprocessing stage of the program under test. Fig. 1 
shows a sample Java method with assertions. This simple 
method computes the maximum and minimum element of a 
set of integers. An assertion may be described as a Boolean 
formula built from the logical expressions and from (and, or, 
not) operators. In our implementation we use Pascal language 
notation to describe logical expressions. There are two types 
of logical expressions: Boolean expression and relational 
expression. A Boolean expression involves Boolean variables 
and has the following form: A1 op A2, where A1 and A2 are 
Boolean variables or true/false constant, and op is one of {=, 

}. On the other hand, relational expression has the following 
form: A1 op A2, where A1 and A2 are arithmetic expressions, 
and op is one of {<, , >, , =, }. For example, (x < y) is a 
relational expression, and (f = false) is a Boolean expression.  

The following is a sample assertion: 
 

A: (*@ (x < y) and (f = false) @*). 
 
The preprocessor in our implementation translates assertion 

A into the following code: 
 
    if not ((x < y) and (f = false)) then  
    Report_Violation; 

 
where, Report_Violation, is a special procedure which is 
called to report assertion’s violation. 

III. THE PROPOSED NEW APPROACH FOR ASSERTION 

PROCESSING 

As presented in [6], each program assertion, A, may be 
replaced by a block of conditional statements as in Fig. 2. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The Corresponding code generated for an example assertion 
 
For our this presentation, let A = {A1, A2, …, An} be a set 

of assertions found in a program P. For each assertion A  A, 
a set of nodes N(A) = {n1, n2, …, nq} where q  1, is identified 
during a preprocessing stage of the program under test, where 
the execution of any node nk  N(A), 1≤k≤q, corresponds to 
the violation of assertion A. In other words, an assertion A is 
violated if and only if there exists a program input data x for 
which at least one node nk  N(A) is executed. Furthermore, 
with each node nk  N(A) we associate a sequence of nested-if 
conditions C(nk) =< c1, c2, …, cr> where r  1, which leads to 
node nk. For node nk to be executed, every condition cl  
C(nk), 1≤l ≤r, has to be satisfied.  

For example, Fig. 3 shows code statements generated to 
represent the following assertion A: 

 
(*@ ((xy) or (xz)) and ((z99) or (Full=False)) 
 and  (z0) @*), where, 

N(A) = { n1, n2, n3 }, 
C(n1) = < (x  y), (x  z) >,  
C(n2) = < (z  99), (Full  True) >, and  
C(n3) = < (z  0) >.  

program sample; 
var 
n: integer; 
a: array[1..10] of integer; 
i,max,min: integer; 
begin 
1 input(n,a); 
2 max:=a[1]; 
3 min:=a[1]; 
4 i:=2; 
5 while i  n do begin 
6,7  if min > a[i] then min:=a[i]; 
8  i:=i+1; 
 {Assertion A1 as a Boolean formula} 
  (*@  (i  1) and (i  10) @*)  
9,10  if max < a[i] then max:=a[i]; 
 end; 
 {Assertion A2 as executable code} 
 (*@ assertion:     
 var 
 j: integer; 
 begin 
  assert:=true;  
  j:=1; 
  while j  n do begin 
   if max < a[j] then assert:=false; 
   j:=j+1; 
  end; 
 end; 
 @*) 
 
11 writeln(min,max); 
end. 

IF  c11 THEN
 IF c12 THEN 
  …   
  IF c1r THEN n1; 
IF c21 THEN 
 IF c22 THEN 
  …   
  IF c2r THEN n2; 
… 
IF cz1 THEN 
 IF cz2 THEN 
  …   
  IF czr THEN nq; 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2168

 

 

In order for assertion A to be violated we have to find a 
program input x that will cause at least one of n1, n2, or n3 to 
be executed. 

 
 
 
 
 
 
 
 

Fig. 3 Code generated for an example assertion A 
 
During Assertion-Based testing [6], the exploration of 

assertions found in the program is conducted in a sequential 
manner one by one in an attempt to find an assertion’s 
violation. The problem with this sequential approach is that 
valuable search time may be wasted while trying to violate 
some assertions blindly. This problem is aggravated when the 
number of assertions is very large as expected to be the case 
when testing industry-size programs. In order to deal with this 
problem and to make Assertion-Based software testing [6] 
more efficient and effective in the presence of large number of 
assertions, we propose to process assertions found in the 
program as follows. 

The proposed approach analyzes results of previously 
processed assertions or nodes and then tries to employ this 
result while processing new assertions in the future. 
Depending on the result of the current exploration the 
proposed approach decides on how to move in the next step as 
follows. If a violation of the current assertion is reached then 
move to the next one sequentially. However, if a violation is 
not achieved in the allocated time, then this approach will 
perform an analysis process in order to decide which assertion 
to explore in the next step. This analysis process is based on 
finding data dependencies [21] among pairs of unprocessed 
assertions with the objective to project the results of 
assertion’s violation in the next step. Specifically, this analysis 
has two main goals. The first goal is to explore the possibility 
of violating more than one assertion based on the same input 
data x. The second goal is to perform data-dependency 
analysis [21] among assertions to identify assertion nodes that 
have the potential to be executed and give them a higher 
priority during test data generation. To reach the first goal, 
program’s execution is performed to the end every time the 
system succeeds in finding input data x to violate an assertion. 
This action is done in the hope that assertion nodes identical 
or related to the one which caused the violation of the 
currently explored assertion will also be executed based in the 
same input data. By doing so, this approach may be able to 
reduce the number of assertions to be explored which will 
consequently results in reducing the cost associated with 
assertion-based test data generation. Two nodes nk and np are 
related if the conditional sequence of np is contained in the 
conditional sequence of nk or vice versa.  

In order to satisfy the second goal, i.e., to identify nodes 

with high potential to be executed, data dependency analysis 
is conducted after every program execution in order to 
identify which assertion nodes should be given priority to be 
explored first in the next execution. Because this analysis is 
conducted after each assertion’ node nk was executed, the 
objective of this step is three fold. First, given a previously 
executed node nk, for every assertion H in the set R of yet to 
be explored assertions, identify every node np  N(H) for 
which the conditional sequence C(np) is identical or a 
subsequence of the conditional sequence C(nk) of node nk. 
Second, collect data-dependency analysis to check whether or 
not any of the variables used at C(np) has been modified 
between node nk and node np. Third, if the result of this 
analysis shows that all variables used at C(np) were not 
modified between node nk and node np, then node np is 
considered as a candidate to be executed first in the next 
iteration and is assigned a priority number to distinguish it 
from other nodes. Our priority system is very simple where a 
candidate node is simply moved to the head of the list of 
nodes to be explored. 

Our initial experimentation with the proposed approach 
shows the proposed algorithm may be able to save valuable 
search time, hence making Assertion-Based software testing 
more efficient and applicable on large software with large 
number of assertions. 

IV. CONCLUSION 

In this paper, we have presented a new approach for 
assertions processing during the process of Assertion-Based 
software testing. The main goal of the proposed approach is to 
make Assertion-Based testing more efficient in the presence 
of large number of assertions that may exist in large programs. 
This goal is achieved by saving valuable searching resources 
during the process of assertions exploration. Our initial 
experimentations with the proposed approach show that this 
approach may succeed in reducing the amount of search time 
required to explore an assertion, therefore, making Assertion-
Based software testing more effective and efficient when 
applied on larger programs. For our future research, we intend 
to perform a set of experiments in order to evaluate the 
performance of the proposed approach when applied on 
software with large number of assertions. 

REFERENCES  
[1] C. Ramamoorthy, S. Ho, W. Chen, “On the Automated Generation of 

Program Test Data,” IEEE Transactions on Software Engineering, vol. 2, 
No. 4, 1976, pp. 293-300. 

[2] B. Jones, H. Sthamer, D. Eyres, “Automatic Structural Testing Using 
Genetic Algorithms,” Software Eng. Journal, 11(5), 1996, pp.299-306.  

[3] B. Korel, “Automated Test Data Generation,” IEEE Transactions on 
Software Engineering, vol. 16, No. 8, 1990, pp. 870-879. 

[4] B. Korel, “Dynamic Method for Software Test Data Generation,” 
Journal of Software Testing, Verification, and Reliability, vol. 2, 1992, 
pp. 203-213. 

[5] B. Korel, “TESTGEN – An Execution-Oriented Test Data Generation 
System,” Technical Report TR-SE-95-01, Dept. of Computer Science, 
Illinois Institute of Technology, 1995. 

IF (x  y) THEN 
        IF (x  z) THEN 
n1 Report_Violation; 
    IF (z  99) THEN  
       IF (Full  True) THEN 
n2 Report_Violation; 
     IF (z  0) THEN 
n3 Report Violation; 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:12, 2014

2169

 

 

[6] B. Korel, A. Al-Yami “Assertion-Oriented Automated Test Data 
Generation,” Proc. 18th Intern. Conference on Software Eng., Berlin, 
Germany, 1996, pp. 701-80. 

[7] B. Korel, , Q. Zhang, L. Tao, “Assertion-Based Validation of Modified 
Programs,” Proc. 2009 2nd Intern. Conference on Software Testing, 
Verification and Validation, Denver, USA, 2009, pp. 426-435. 

[8] Ali M. Alakeel, "Using Fuzzy Logic in Test Case Prioritization for 
Regression Testing Programs with Assertions," The Scientific World 
Journal, vol. 2014, Article ID 316014, 9 pages, 2014. 
doi:10.1155/2014/316014. 

[9] C. Michael, G. Mcgraw, M. Schatz., “Generating Software Test Data by 
Evolution,” IEEE Tran. on Software Engineering, 27(12), 2001, pp. 
1085-1110.  

[10] D. Bird, C. Munoz, “Automatic Generation of Random Self-Checking 
Test Cases,” IBM Systems Journal, vol. 22, No. 3, 1982, pp. 229-245. 

[11] D. Rosenblum, “Toward A Method of Programming With Assertions,” 
Proceedings of the International Conference on Software Engineering, 
1992, pp. 92-104. 

[12] G. Myers, “The Art of Software Testing,” John Wiley & Sons, New 
York, 1979. 

[13] Ali M. Alakeel, “A Testability Transformation Approach for Programs 
with Assertions,” Proceedings of the Sixth International Conference on 
Advances in System Testing and Validation Lifecycle, Nice, France, pp. 
9-13, October 2014. 

[14] Ali M. Alakeel, “Intelligent Assertions Placement Scheme for String 
Search Algorithms,” Proceedings of the Second International 
Conference on Intelligent Systems and Applications, Venice, Italy, pp. 
122-128, April 2013. 

[15] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary Test Environment for 
Automatic Structural Testing,” Information and Software Technology, 
43, 2001, pp. 841-854. 

[16] L. Clarke, “A System to Generate Test Data and Symbolically Execute 
Programs,” IEEE Transactions on Software Engineering, vol. 2, No. 3, 
1976, pp. 215-222. 

[17] Ali M. Alakeel, "Assertion-Based Software Testing Metrics Approach 
Based on Fuzzy Logic," Proceedings of the 22nd International 
Conference on Software Engineering and Data Engineering (SEDE–
2013), Los Angeles, California, USA, pp. 9-12, September 2013. 

[18] P. Mcminn, M. Holcombo, “The State Problem for Evolutionary 
Testing,” Proc. Genetic and Evolutionary Computation Conference, 
2003, pp. 2488-2498.  

[19] R. Boyer, B. Elspas, K. Levitt, ”SELECT - A Formal System for Testing 
and Debugging Programs By Symbolic Execution,“ SIGPLAN Notices, 
vol. 10, No. 6, 1975, pp. 234-245. 

[20] R. DeMillo, A. Offutt, “Constraint-Based Automatic Test Data 
Generation,” IEEE Transactions on Software Engineering, vol. 17, No. 
9, 1991, pp. 900-910.  

[21] R. Ferguson, B. Korel, “Chaining Approach for Automated Test Data 
Generation,” ACM Tran. on Software Eng. and Methodology, (5)1, 
1996, pp.63-68. 

[22] R. Pargas, M. Harrold, R. Peck, “Test Data Generation Using Genetic 
Algorithms,” Journal of Software Testing, Verification, and Reliability, 
9, 1999, pp. 263-282.  

[23] S. Yau, R. Cheung, “Design of Self-Checking Software,” Proceedings of 
the International Conference on Reliable Software, 1975, pp. 450-457. 

[24] N. Levenson, S. Cha, J Knight, T. Shimeall, “The Use of Self Checks 
and Voting in Software Error Detection: An empirical study,” IEEE 
Trans. on Software Eng., 16(4), 1990, pp. 432-443. 
 

 


