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A New Algorithm for Determining the Leading
Coefficient of in the Parabolic Equation

Shiping Zhou and Minggen Cui

Abstract—This paper investigates the inverse problem of determin-
ing the unknown time-dependent leading coefficient in the parabolic
equation using the usual conditions of the direct problem and an ad-
ditional condition. An algorithm is developed for solving numerically
the inverse problem using the technique of space decomposition in a
reproducing kernel space. The leading coefficients can be solved by a
lower triangular linear system. Numerical experiments are presented
to show the efficiency of the proposed methods.

Keywords—parabolic equations, coefficient inverse problem, re-
producing kernel.

I. INTRODUCTION

IN this paper, we consider the numerical solution of the

inverse problem of determining the leading coefficient a(t)
satisfying the equation

u′
t = a(t)u′′

x + f(x, t) (x, t) ∈ [ 0, 1 ] × [ 0, T ], (1)

the initial condition

u(x, 0) = h(x) x ∈ [ 0, 1 ], (2)

the boundary conditions

u(0, t) = 0 u′
x(1, t) = 0 t ∈ [ 0, T ], (3)

and the additional condition

u′
x(0, t) = g(t) t ∈ [ 0, T ]. (4)

Coefficient inverse problems arise in many applied areas.

Unlike direct problems where the state of an object under

investigation is unknown, for inverse problems, in addition

to the state, certain so-called causal characteristics, includ-

ing boundary conditions, initial conditions, coefficients of

equations, and geometric characteristics of domains, are also

unknown. In investigating inverse coefficient problems of

parabolic equations, much attention is given to problems with

unknown leading coefficient, which can also depend on one or

two variables [1][2]. Conditions for existence and uniqueness

of a solution were established in [3] in the case when the

unknown coefficients are functions of the space variables.

Conditions for existence and uniqueness of a solution to the

inverse problem were established in [4] for a one-dimensional

heat equation with unknown time-dependent leading coeffi-

cients. In [5] and [6] the authors investigate the problem
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of simultaneous determination of the time-dependent leading,

lower coefficients, and the free term in a one-dimensional

parabolic equation and establish existence of a solution over

some time interval.

Many algorithms have been proposed for numerically solv-

ing inverse problems, such as GPST method[7][8], regularized

nonlinear least squares and iterative methods[9][10] and con-

vexification algorithm[11][12], etc.. However, such methods

are extremely time-consuming and of some assumptions and

restrictions about known conditions. In this paper, we present

a new algorithm for determining the time-dependent leading

coefficient in a parabolic equation. In order to solve the

coefficient inverse problem, we define several reproducing

kernel spaces, in which the general form of the solution u(x, t)
is given. The identification of the time-dependent leading

coefficient a(t) is solved by a lower triangular linear system.

Some numerical examples are studied to demonstrate the

accuracy of the present method.

II. REPRODUCING KERNEL SPACES

In this section we define several reproducing kernel spaces

based on smoothness requirements on the solution function

u(x,t) and the given boundary value condition.

The inner product space W1[ 0, T ] is defined as

W1[ 0, T ] = {u(x)|u is absolutely continuous function,

u′ ∈ L2[ 0, T ])}.
endowed with the inner product

< u(x), v(x) >W1= u(0)v(0) +
∫ 1

0

u′(x)v′(x) dx,

and with the norm ‖u‖W1 =
√

(u, u)W1 .
It is proved that W1[ 0, T ] is a reproducing kernel space

[14], that is, for every u(ξ) ∈ W1[ 0, T ], and every fixed

t ∈ [ 0, T ], there exists Pt(s) ∈ W1[ 0, T ] such that

< u(t), Pt(s) >W1= u(t).

where

Pt(s) =

{
1 + s, s ≤ t,

1 + t, s > t.
(5)

Pt(s) is called the reproducing kernel of W1[ 0, T ]. The

following are some reproducing kernel spaces are described

similar to W1[ 0, T ].

W2[ 0, T ] = {u(t)|u′ are an absolutely continuous function,

u′′ ∈ L2[ 0, T ]}.
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It’s inner product and norm are defined as

< u(t), v(t) >W2=
1∑

i=0

u(i)(a)v(i)(a) +
∫ 1

0

u′′(t)v′′(t)dt,

‖u‖W2 =
√

(u, u)W2 .

W3[ 0, 1 ] = {u(x)|u′′ are absolutely continuous function,

u′′′ ∈ L2[ 0, 1 ], u(0) = u′(1) = 0}.
endowed with the inner product

< u(x), v(x) >W3=
2∑

i=0

u(0)v(0) +
∫ 1

0

u(3)(x)v(3)(x) dx,

and with the norm ‖u‖W3 =
√

< u, u >W3 .

W 0
3 [ 0, 1 ] = {u(x)|u ∈ W3[ 0, 1 ],

∫ 1

0

u(x) = 0}.

In [15], the author gives the general method of solving

reproducing kernels. We can use the method described in the

book to prove that W2[ 0, T ] and W3[ 0, 1 ] are reproducing

spaces and solve their reproducing kernels R
{2}
t (s) and

R
{3}
t (η) , respectively.

R
{2}
t (s) =

{
1 − t3

6 + 1
2st(2 + t) t ≤ s,

1 − s3

6 + 1
2st(2 + s) t > s, .

(6)

R{3}
x (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xy
7 (y + xy) − xy

14 (3x + 3y + x2 + y2) + x4y
56

−x3y2

28 + x2y2

112 + x2y3

21 − x3y3

84 + x3y3

336 (x + y)
−xy4

42 − x4y4

1344 + y5

120 , y ≤ x,
xy
7 (x + xy) − xy

14 (3x + 3y + x2 + y2) + xy4

56

−x2y3

28 + y2y2

112 + x3y2

21 − x3y3

84 + x3y3

336 (x + y)
−x4y

42 − x4y4

1344 + x5

120 , y > x.
(7)

W 0
3 [ 0, 1 ] is a subspace of W 0

3 [ 0, 1 ], and we also can solve

prove that it is a reproducing kernel space and solve for its

reproducing kernel. We denoted it by R0{3}x (y).
Now we consider a reproducing kernel space W (D) based

on the region D = [ 0, 1 ] × [ 0, T ]

W (D) = W3[ 0, 1 ] ⊗ W2[ 0, T ].

In terms of W (D) and its inner product, we have the following

fact, see [13].

W (D) = {u(x, t)|u(x, t) =
∑∞

i,j=1 cijpi(x)qj(t), cij ∈ l2,

i, j = 1, 2, . . . n, },
where pi(x) ∈ W3[ 0, 1 ], qj(t) ∈ W2[ 0, T ]. If

u(x, t) =
∞∑

i,j=1

cijpi(x)qj(t),

v(x, t) =
∞∑

i′,j′=1

ci′j′pi′(x)qj′(t),

where {pi(t)}∞i=1 is the complete normal orthogonal system

of W3[0, 1] and {qi(x)}∞i=1 is the complete normal orthogonal

system of W2[ 0, T ]. The inner product is defined as

< u(x, t), v(x, t) >W =
∞∑

i,j=1

∞∑
i′,j′=1

cijci′j′ .

For the inner product of two separable functions u(x, t) =
u1(x)u2(t), v(x, t) = v1(x)v2(t) ∈ W (D), it follows that [13]

<u(x, t), v(x, t)>W =<u1(x), v1(x)>W3<u2(t), v2(t)>W2 .

W (D) is a reproducing kernel space with the reproducing

kernel[13]

Kx,t(ξ, η) = Rx(ξ)Qt(η). (8)

For every u(x, t) ∈ W(D), the following is obvious

< u(ξ, η), Rx,t(ξ, η) >W = u(x, t).

For the reproducing kernels of W2[ 0, T ], W3[ 0, 1 ] and

W2(D), obviously we have the following properties:

R{2}
η (t) = R

{2}
t (η), R{3}

ξ (x) = R{3}
x (ξ), Rξ,η(x, t) = Rx,t(ξ, η).

It should be observed that any function u(x, t) ∈ W (D)
automatically satisfies the boundary conditions of (3).

III. THE COEFFICIENT INVERSE PROBLEM IN

REPRODUCING KERNEL SPACES

In this section, we discuss the inverse problem of parabolic

equation (1-4) in the reproducing kernel space W (D). The

inverse problem (1-4) can be reduced to solving the operator

equation

(Lu)(t) = F (t) (9)

with the initial condition

u(x, 0) = h(x) h(x) ∈ W3[ 0, 1 ] (10)

and additional condition

u′
x(0, t) = g(t) g(t) ∈ W2[ 0, T ], (11)

where u(x, t) ∈ W (D), F (t) ∈ W1[ 0, T ], and L : W (D) →
W1[ 0, T ] is defined as follows:

(Lu)(t) =
∫ 1

0

u′
t(x, t) dx (12)

and

F (t) = −a(t)g(t) +
∫ 1

0

f(x, t) dx. (13)

It is readily to prove that L is a bounded operator from W (D)
to W1[ 0, T ]. It is worth noting that the boundary condition

have been put into the reproducing space W (D)
In order to express all solutions of the operation equation

(9), we discompose the space W (D). For a fixed dense set

{si}∞i=1 of time interval [ 0, T ], let

ϕi(t) = R
{1}
t (si).

So from the property of R
{1}
t (η), for every u(t) ∈ W1[ 0, T ],

it follows that

<u(t), ϕi(t)>W1= u(si) i = 1, 2, . . . (14)
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Let L∗ denote the conjugate operator of L, and we introduce

the following notation

ψi(x, t) = (L∗ϕi)(x, t) i = 1, 2, . . .

Lemma III.1. ψi(x, t) can be expressed in the form

ψi(x, t) =
∂R

{2}
t (η)
∂η

∣∣∣
η=si

∫ 1

0

R{3}
x (ξ) dξ i = 1, 2, . . . (15)

and

<ψi(x, t), ψj(x, t)>W = C1
∂2R

{2}
t (η)

∂t∂η

∣∣∣η=sj
t=si

, (16)

where

C1 =
∫ 1

0

dx

∫ 1

0

R{3}
x (ξ) dξ. (17)

Proof: Since L is bounded, It is nature to expect L∗

is bounded. By the properties of the reproducing kernels

R
{1}
t (η), R

{3}
x (ξ), R

{2}
t (η), and Rx,t(ξ, η), we have

ψi(x, t) = <(ψi(ξ, η), Rx,t(ξ, η)>W

= <(L∗ϕi)(ξ, η), R{3}
x (ξ)R{2}

t (η)>W

= <ϕi(·), L
(
R{3}

x (ξ)R{2}
t (η)

)
(·)>W1

= L
(
R{3}

x (ξ)R{2}
t (η)

)
(si)

=
∂R

{2}
t (η)
∂η

∣∣∣
η=si

∫ 1

0

R{3}
x (ξ)dξ

and

<ψi(x, t), ψj(x, t)>W

=<(L∗ϕi)(x, t),
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

∫ 1

0

R{3}
x (ξ) dξ>W

=<ϕi(·),
(

L

[
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

∫ 1

0

R{3}
x (ξ) dξ

])
(·)>W1

= L

(
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

∫ 1

0

R{3}
x (ξ) dξ

)
(si)

=
∂2R

{2}
t (η)

∂t∂η

∣∣∣
η=sj
t=si

∫ 1

0

dx

∫ 1

0

R{3}
x (ξ) dξ

= C1
∂2R

{2}
t (η)

∂t∂η

∣∣∣
η=sj
t=si

.

Let {ψi(x, t)}∞i=1 denote an orthonormal system that

derives from Gram-Schmidt orthonormalization process of

{ψi(x, t)}∞i=1. Therefore we can express ψi(x, t) in the fol-

lowing form:

ψi(x, t) =
i∑

k=1

βikψk(x, t) i = 1, 2, . . . , (18)

where βik are coefficients of orthonomalization. Let

S = span
({ψi(x, t)}∞i=1

)
= {u(x, t)|u(x, t)

=
∑∞

i=1 ciψi(x, t), ci ∈ l2},
and S⊥ denote the orthcomplement space of S in W (D), so

W (D) = S ⊕ S⊥.

Lemma III.2.

S⊥ = Null(L)

where Null(L) denotes the null space of L.

Proof: For every u(x, t) ∈ S⊥, we find

(Lu)(si) =<(Lu)(t), ϕi(t)>W1=<u(x, t), ψi(x, t)>W = 0
i = 1, 2, . . . .

Since {si}∞i=1 is dense in the time interval [ 0, T ], then it

means that

(Lu)(t) = 0

for arbitrary t ∈ [ 0, T ]. That proved u(x, t) ∈ Null(L).
On the other hand, if u(x, t) ∈ Null(L), that is, it satisfy

(Lu)(t) = 0, we can conclude that

<u(x, t), ψi(x, t)>W = ((Lu)(si)) = 0.

Thus u(x, t) ∈ S⊥.

Let

ρi(x, t) = R0{3}x (xi)R
{2}
t (ti).

Since R0{3}x (xi) and R
{2}
t (ti) are the reproducing kernel of

W 0
3 [ 0, 1 ], W2[ 0, T ], respectively, ρi(x, t) is the kernel of S⊥

Lemma III.3. {ψi(x, t)}∞i=1 is a complete system of S, and
{ρi(x, t)}∞i=1 is a complete system of S⊥.

Proof: According to the definition of S, The first part of

Lemma can be proved. As to the second part, if u(x, t) ∈ S⊥

and <u(x, t), ρi(x, t)>= 0 holds, then

u(x, t) =
∞∑

k,l=1

cklpk(x)ql(t),

where {pk(x)}∞k=1 is the complete normal orthogonal system

of W 0
3 [ 0, 1 ] and {ql(t)}∞l=1 is the complete normal orthogonal

2

ρi(x, t), we have

<
∑∞

k,l=1 cklpk(x)ql(t), ρi(x, t)>W

=
∑∞

k,l=1 ckl <pk(x), R{3}
x (xi)>W3<ql(t), R

{2}
t (ti)>W2 = 0.

So

u(xi, tj) =
∞∑

k,l=1

cklpk(xi)ql(tj) = 0

Since {(xi, ti)}∞i is dense in the domain of D, we can

conclude that u(x, t) = 0.

The orthonormal system {ρi(x, t)}∞i=1 can be derived

from the Gram-Schmidt orthonormalization process of

{ρi(x, t)}∞i=1, We can infer that {ρi(x, t)}∞i=1 also constitutes

a complete system of S⊥.

Lemma III.4.

<
∂ψi(0, t)

∂x
,
∂ψj(0, t)

∂x
>W2 =

C2
2

C1
<ψi(x, t), ψj(x, t)>W (19)

and

<
∂ψi(0, t)

∂x
,

∂ψj(0, t)
∂x

>W2=

{
0 i 	= j
C2

2
C1

i = j,
(20)

system of W [ 0, T ]. By (??),(??) and the definitions of
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where C1 is defined in (17) and

C2 =
∫ 1

0

∂R
{3}
x (ξ)
∂x

|x=0 dξ. (21)

Proof: Note that

<
∂R

{2}
t (η)
∂η

∣∣∣
η=si

,
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

>W2

= <
∂R

{2}
t (η1)
∂η1

∣∣∣
η1=si

,
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

>W2

=
∂

∂η1
<R

{2}
t (η1),

∂R
{2}
t (η)
∂η

∣∣∣
η=sj

>W2

∣∣∣
η1=si

=
∂2R

{2}
η1 (η)

∂η1∂η

∣∣∣
η=sj
η1=si

=
∂2R

{2}
t (η)

∂t∂η

∣∣∣
η=sj
t=si

(22)

and

<
∂ψi(0, t)

∂x
,
∂ψj(0, t)

∂x
>W2

= C2
2 <

∂R
{2}
t (η)
∂η

∣∣∣
η=si

,
∂R

{2}
t (η)
∂η

∣∣∣
η=sj

>W2

= C2
2

∂2R
{2}
t (η)

∂t∂η

∣∣∣
η=sj
t=si

. (23)

From (16), (22) and (23) we can conclude (19). Further (20) is

a nature result of (19) and the orthonormality of {ψi(x, t)}∞i=1.

IV. IMPLEMENTATION OF THE NUMERICAL PROCEDURE

In this section the solution u(x, t) of (9) is expressed in

the form of series and a numerical procedure for solving the

time-depedent leading coefficient a(t) is discussed.

Theorem IV.1. The solution u(x, t) of (9) can be expressed
in the following form

u(x, t)

=
∞∑

i=1

i∑
k=1

βik

(
−a(sk)g(sk) +

∫ 1

0

f(ξ, sk)dξ

)
ψi(x, t)

+

∞∑
i=1

αiρi(x, t), (24)

where g(t) and f(x, t) are given by (1-4), ρi(x, t) and βik

are defined in Section 3, and a(sk) and αi are to be solved
for according to the initial and additional conditions.

Proof: From the definition of ψi(x, t) and ρi(x, t), we

have

u(x, t)

=
∞∑

i=1

<u, ψi >W ψi(x, t) +
∞∑

i=1

αiρi(x, t)

=
∞∑

i=1

i∑
k=1

βik <u, ψk >W ψi(x, t) +
∞∑

i=1

αiρi(x, t)

=
∞∑

i=1

i∑
k=1

βik <Lu, ϕk >W ψi(x, t) +
∞∑

i=1

αiρi(x, t),

where αi are unknown coefficients. According to (9) and (14),

we then get

u(x, t) =
∞∑

i=1

i∑
k=1

βikF (sk)ψi(x, t) +
∞∑

i=1

αiρi(x, t). (25)

From (13) and (25) we can obtain (24).
In terms of unknowns αi, we can get them by applying the

initial condition (2). From (13), (15), and (18), (25) can be
written in the following form as

u(x, t)

=

∫ 1

0

R{3}
x (ξ) dξ

∞∑
i=1

(
i∑

k=1

βikF (sk)

)(
i∑

k=1

βik
∂R

{2}
t (η)

∂η

∣∣∣
η=sk

)

+

∞∑
i=1

αiρi(x, t).

For convenience, we denote
∫ 1

0
R

{3}
x (ξ) dξ by M(x)

and
∑∞

i=1

(∑i
k=1 βikF (sk)

) (∑i
k=1 βik

∂R
{2}
t (η)
∂η

∣∣
η=sk

)
by

N(t), thus

u(x, t) = M(x)N(t) +
∞∑

i=1

αiρi(x, t). (26)

Setting t = 0 in (26), and applying the initial condition (1.2)

gives us

h(x) = M(x)N(0) +
∞∑

i=1

αiρi(x, 0). (27)

Integrating both sides of (27) and Noticing the fact that

ρi(x, 0) ∈ W 0
3 [ 0, 1 ], that is,

∫ 1

0
ρi(x) = 0. Further we have∫ 1

0
ρi(x) = 0. So

N(0) =
∫ 1

0

M(x) dx

/ ∫ 1

0

h(x) dx

We denote N(0) by a constant C3, so

∞∑
i=1

αiρi(x, 0) = h(x) − C3M(x). (28)

Taking xk ∈ [ 0, T ], k = 1, 2, ..., we get the infinite linear

system about αi:

∞∑
i=1

αiρi(xk, 0) = h(xk) − C3M(xk).

Theorem IV.2. The coefficients a(sk) can be solved for by
the following lower triangular system of equations

C2
C1

∑j
k=1 βjk

(
−a(sk)g(sk) − ∫ 1

0
f(ξ, sk) dξ

)
=<g(t), ∂ψj(0,t)

∂x >W2 − < ∂ρi(0,t)
∂x ,

∂ψj(0,t)

∂x >W2

j = 1, 2, . . . ,

(29)

where g(t), h(x) and f(x, t) are given by (1-4), C1, C2 are
given by (17) and (21), and

C3 =
∫ 1

0

∂R
{3}
x (ξ)
∂x

dξ
∣∣∣
x=0

. (30)
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Proof: Differentiating with respect to x in (24) and

applying the additional specification (4), we have

g(t)

=
∞∑

i=1

i∑
k=1

βik

(
−a(sk)g(sk) +

∫ 1

0

f(ξ, sk) dξ

)
∂ψi(0, t)

∂x

+
∞∑

i=1

αi
∂ρi(0, t)

∂x
. (31)

Making inner product with
∂ψj(0,t)

∂x on both sides of (31) and

applying Lemma III.4, the lower triangular system of equation

has been built.

V. NUMERICAL EXAMPLES

experiments using the numerical procedure described above.

The following is a parabolic equation with initial, boundary,

and additional conditions.

⎧⎪⎪⎨
⎪⎪⎩

u′
t = a(t)u′′

x + f(x, t)
u(x, 0) = h(x)
u(0, t) = 0 u′

x(1, t) = 0
u′

x(0, t) = g(t) (x, t) ∈ [ 0, 1 ] × [ 0, T ],

where h(x) = (x2 − 2x), g(t) = −2e−t, and f(x, t) =
e−t(20t + x2 − 2x). The true coefficient a(t) = 10t, and the

true solution of the parabolic equation u(x, t) = (x2−2x)e−t.

Results of determination of the leading coefficient a(t) illus-

trated in Tables 1 and 2 are obtained by truncating the two

series in (24). The second example have been done to control

the sensitivity of method to errors. Artificial errors 10−4 were

introduced into the right end and conditional condition. As

seen from table 2 that the error almost never affects the results

of the method. The method of solving the problem was tried

on different tests and the results we observed indicate that

the method is stable and gives excellent approximation to the

solution.

t true
solution

approximate
solution

absolute
error

relative er-
ror

0.1 1 1.0137048 0.0137048 0.0135195
0.2 2 2.0074319 0.0074319 0.0037022
0.3 3 2.9998994 0.0001006 0.00003354
0.4 4 3.9912472 0.0087528 0.00219299
0.5 5 4.9826268 0.0173732 0.00348675
0.6 6 5.9743981 0.0256019 0.00428527
0.7 7 6.9668120 0.0331881 0.00476374
0.8 8 7.9588223 0.0411777 0.00517385
0.9 9 8.9499818 0.0500182 0.00558863
1 10 9.9402011 0.0597989 0.00601586

t true
solution

approximate
solution

absolute
error

relative
error

0.1 1 1.0136403 0.0136403 0.0134568
0.2 2 2.0072072 0.0072072 0.0035907
0.3 3 2.9995021 0.0004979 0.0001660
0.4 4 3.9906627 0.0093373 0.0023398
0.5 5 4.9818380 0.0181620 0.0036456
0.6 6 5.9733852 0.0266148 0.0044556
0.7 7 6.9655522 0.0344478 0.0049455
0.8 8 7.9572898 0.0427102 0.0053674
0.9 9 8.9481470 0.0518530 0.0057948
1 10 9.93802995 0.0619701 0.0062356

VI. CONCLUSIONS

In this paper, we consider solving one-dimensional inverse

parabolic problem. We presented a stable numerical algorithm

for identifying the time-dependent leading coefficient in a

parabolic equation. Numerical results show that the proposed

method is effective. It will be very interesting to expand our

work to higher dimensional cases.
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TABLE II: THE ERROR OF COEFFICIENT a(t)

TABLE I: THE ERROR OF COEFFICIENT a(t)

In this section, we present some results of numerical

(−4)
(with artificial 10 to the right end and g(t))
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