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A neighborhood condition for fractional
k-deleted graphs

Sizhong Zhou, Hongxia Liu

Abstract—Let k ≥ 3 be an integer, and let G be a graph of order
n with n ≥ 9k + 3 − 4

√

2(k − 1)2 + 2. Then a spanning subgraph
F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A
fractional k-factor is a way of assigning weights to the edges of a
graph G (with all weights between 0 and 1) such that for each vertex
the sum of the weights of the edges incident with that vertex is k.
A graph G is a fractional k-deleted graph if there exists a fractional
k-factor after deleting any edge of G. In this paper, it is proved that
G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and
|NG(x) ∪ NG(y)| ≥ 1

2
(n + k − 2) for each pair of nonadjacent

vertices x, y of G.

Keywords—graph, minimum degree, neighborhood union, frac-
tional k-factor, fractional k-deleted graph.

I. INTRODUCTION

IN this paper, we consider only finite undirected graphs
without loops or multiple edges. Let G be a graph. We

use V (G) and E(G) to denote its vertex set and edge set,
respectively. For x ∈ V (G), we denote by dG(x) the degree
of x in G and by NG(x) the set of vertices adjacent to x
in G, and NG[x] for NG(x) ∪ {x}. For any S ⊆ V (G),
NG(S) = ∪x∈SNG(x) and we denote by G[S] the subgraph
of G induced by S, and G− S = G[V (G) \ S]. We say that
S is independent if NG(S) ∩ S = ∅. Let S and T be disjoint
subsets of V (G). We use eG(S, T ) to denote the number of
edges joining S and T in G. The minimum vertex degree of
G is denoted by δ(G).

Let k be a positive integer. Then a spanning subgraph F of
G is called a k-factor if dF (x) = k for each x ∈ V (G). If
k = 1, then a k-factor is simply called a 1-factor. A fractional
k-factor is a way of assigning weights to the edges of a graph
G (with all weights between 0 and 1) such that for each vertex
the sum of the weights of the edges incident with that vertex is
k. If k = 1, then a fractional k-factor is a fractional 1-factor.
A graph G is a fractional k-deleted graph if there exists a
fractional k-factor after deleting any edge of G. If k = 1, then
a fractional k-deleted graph is a fractional 1-deleted graph.
Some other terminologies and notations can be found in [1,2].

Many authors have studied graph factors [3-8]. Many au-
thors have investigated fractional k-factors [9–12] and frac-
tional k-deleted graphs [13,14]. The following results on k-
factors, fractional k-factors and fractional k-deleted graphs are
known.
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Theorem 1[15] Let k be an integer such that k ≥ 2, and let
G be a connected graph of order n such that n ≥ 9k − 1 −
4
√

2(k − 1)2 + 2, kn is even, and the minimum degree is at
least k. If G satisfies |NG(x) ∪ NG(y)| ≥ 1

2 (n + k − 2) for
each pair of nonadjacent vertices x, y ∈ V (G), then G has a
k-factor.

Theorem 2[11] Let k be an integer such that k ≥ 2, and
let G be a connected graph of order n such that n ≥ 9k −
1− 4

√

2(k − 1)2 + 2, and the minimum degree δ(G) ≥ k. If
|NG(x)∪NG(y)| ≥ 1

2 (n+k−2) for each pair of nonadjacent
vertices x, y ∈ V (G), then G has a fractional k-factor.

Theorem 3[16] Let k ≥ 2 be an integer. Let G be a con-
nected graph of order n with n ≥ 13k+1−4

√

2(k − 1)2 + 2,
δ(G) ≥ k + 2. If |NG(x) ∪NG(y)| ≥ 1

2 (n+ k − 2) for each
pair of nonadjacent vertices x, y of G, then G is a fractional
k-deleted graph.

The purpose of this paper is to weaken the conditions on
the order, minimum degree and connectivity of G in Theorem
3. The main result is the following theorem.

Theorem 4 Let k ≥ 3 be an integer. Let G be a graph of
order n with n ≥ 9k + 3 − 4

√

2(k − 1)2 + 2, δ(G) ≥ k + 1.
If

|NG(x) ∪NG(y)| ≥ 1
2
(n+ k − 2)

for each pair of nonadjacent vertices x, y of G, then G is a
fractional k-deleted graph.

II. THE PROOF OF THEOREM 4

The following result is essential to the proof of our main
theorem.

Lemma 2.1[17] A graph G is a fractional k-deleted graph
if and only if for any S ⊆ V (G) and T = {x : x ∈ V (G) \
S, dG−S(x) ≤ k}

δG(S, T ) = k|S| + dG−S(T ) − k|T | ≥ ε(S, T ),

where dG−S(T ) =
∑

x∈T dG−S(x) and ε(S, T ) is defined as
follows,

ε(S, T ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2, if T is not independent,
1, if T is independent, and

eG(T, V (G) \ (S ∪ T )) ≥ 1,
0, otherwise.

Proof of Theorem 4. Let G be a graph satisfying the hy-
pothesis of Theorem 4, we prove the theorem by contradiction.
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Suppose that G is not a fractional k-deleted graph. Then by
Lemma 2.1, there exists a subset S of V (G) such that

δG(S, T ) = k|S| + dG−S(T ) − k|T | ≤ ε(S, T ) − 1, (1)

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ k}. Firstly, we
prove the following claims.

Claim 1. S 	= ∅.
Proof. Note that ε(S, T ) ≤ |T |. If S = ∅, then by (1) we

have

ε(S, T ) − 1 ≥ δG(S, T ) = k|S| + dG−S(T ) − k|T |
= dG(T ) − k|T | ≥ (δ(G) − k)|T |
≥ |T | ≥ ε(S, T ).

It is a contradiction. This completes the proof of Claim 1.
Claim 2. |T | ≥ k + 1.
Proof. Assume that |T | ≤ k. Then from (1) and |S| +

dG−S(x) − k ≥ dG(x) − k ≥ δ(G) − k ≥ 1, we get

ε(S, T ) − 1 ≥ δG(S, T ) = k|S| + dG−S(T ) − k|T |
≥ |T ||S| + dG−S(T ) − k|T |
=

∑

x∈T

(|S| + dG−S(x) − k)

≥ |T | ≥ ε(S, T ).

That is a contradiction. This completes the proof of Claim 2.
Claim 3. |T | ≥ |S| + 1.
Proof. Let |T | ≤ |S|. Then by (1), we obtain

ε(S, T ) − 1 ≥ k|S| + dG−S(T ) − k|T | ≥ dG−S(T ). (2)

On the other hand, according to the definition of ε(S, T ),
we have

dG−S(T ) ≥ ε(S, T ),

which contradicts (2). The proof of Claim 3 is complete.
Claim 4. |S| ≤ n−1

2 .
Proof. In terms of Claim 3 and |S| + |T | ≤ n, we have

n ≥ |S| + |T | ≥ 2|S| + 1,

that is,

|S| ≤ n− 1
2

.

The proof of Claim 4 is complete.
In terms of Claim 2, T 	= ∅. Now we define

h1 = min{dG−S(x) : x ∈ T}
and choose x1 ∈ T such that dG−S(x1) = h1. Clearly, we
have 0 ≤ h1 ≤ k. In the following, we consider two cases.

Case 1. T = NT [x1].
Using Claim 2, T = NT [x1] and 0 ≤ h1 ≤ k, we obtain

k ≥ h1 = dG−S(x1) ≥ |T | − 1 ≥ k,

which implies
h1 = k. (3)

In terms of (3) and Claim 1, we get

δG(S, T ) = k|S| + dG−S(T ) − k|T |
≥ k|S| + h1|T | − k|T | = k|S|
≥ k > 2 ≥ ε(S, T ).

That contradicts (1).
Case 2. T \NT [x1] 	= ∅.
Define

h2 = min{dG−S(x) : x ∈ T \NT [x1]}.
We choose x2 ∈ T \ NT [x1] such that dG−S(x2) = h2.
Obviously, 0 ≤ h1 ≤ h2 ≤ k and x1x2 /∈ E(G). According
to the hypothesis of Theorem 4, we have

n+ k − 2
2

≤ |NG(x1) ∪NG(x2)|
≤ dG−S(x1) + dG−S(x2) + |S|
= h1 + h2 + |S|,

which implies

|S| ≥ n+ k − 2
2

− h1 − h2. (4)

By (4) and Claim 4, we obtain

n− 1
2

≥ n+ k − 2
2

− h1 − h2,

that is,

h1 + h2 ≥ k − 1
2

. (5)

In terms of (5), k ≥ 3, 0 ≤ h1 ≤ h2 ≤ k and the integrity of
h2, we get

h2 ≥ 1. (6)

Claim 5. 0 ≤ h1 ≤ k − 1.
Proof. If h1 = k, then by (1) and Claim 1 we get

ε(S, T ) − 1 ≥ δG(S, T ) = k|S| + dG−S(T ) − k|T |
≥ k|S| + h1|T | − k|T | = k|S| ≥ k

> 2 ≥ ε(S, T ),

which is a contradiction. This completes the proof of Claim
5.

Note that

|NT [x1]| ≤ dG−S(x1) + 1 = h1 + 1. (7)

From (4), (7), 0 ≤ h1 ≤ h2 ≤ k and |S| + |T | ≤ n, we
have

δG(S, T ) = k|S| + dG−S(T ) − k|T |
≥ k|S| + h1|NT [x1]| + h2(|T | − |NT [x1]|)

−k|T |
= k|S| − (h2 − h1)|NT [x1]| − (k − h2)|T |
≥ k|S| − (h2 − h1)(h1 + 1)

−(k − h2)(n− |S|)
= (2k − h2)|S| − (h2 − h1)(h1 + 1)

−(k − h2)n

≥ (2k − h2)(
n+ k − 2

2
− h1 − h2)

−(h2 − h1)(h1 + 1) − (k − h2)n,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

17

that is,

δG(S, T ) ≥ (2k − h2)(
n+ k − 2

2
− h1 − h2)

−(h2 − h1)(h1 + 1) − (k − h2)n. (8)

Let F (h1, h2) = (2k − h2)(n+k−2
2 − h1 − h2) − (h2 −

h1)(h1 + 1) − (k − h2)n. Then by Claim 5, we have

F ′
h1

(h1, h2) = −(2k − h2) + (h1 + 1) − (h2 − h1)
= 2h1 − 2k + 1 ≤ 2(k − 1) − 2k + 1
= −1 < 0.

Combining this with h1 ≤ h2, we obtain

F (h1, h2) ≥ F (h2, h2). (9)

Using (8) and (9), we get

δG(S, T ) ≥ (2k− h2)(
n+ k − 2

2
− 2h2)− (k− h2)n. (10)

According to (1), (10) and ε(S, T ) ≤ 2, we get

1 ≥ ε(S, T ) − 1 ≥ δG(S, T )

≥ (2k − h2)(
n+ k − 2

2
− 2h2) − (k − h2)n

=
1
2
(4h2

2 + (n− 9k + 2)h2 + 2k2 − 4k),

which implies

4h2
2 + (n− 9k + 2)h2 + 2k2 − 4k − 2 ≤ 0. (11)

Claim 6. For k ≥ 3, we have
√

(k−1)2+1
2 − 1 > 1

2 .
Proof. Since k ≥ 3, we have

(k − 1)2 + 1
2

≥ 5
2
>

9
4
,

that is,
√

(k − 1)2 + 1
2

>
3
2
.

Thus, we obtain
√

(k − 1)2 + 1
2

− 1 >
1
2
.

The proof of Claim 6 is complete.
According to (6), (11), n ≥ 9k + 3 − 4

√

2(k − 1)2 + 2,
k ≥ 3 and Claim 6, we obtain

0 ≥ 4h2
2 + (n− 9k + 2)h2 + 2k2 − 4k − 2

≥ 4h2
2 + (−4

√

2(k − 1)2 + 2 + 5)h2 + 2k2 − 4k − 2

≥ 4h2
2 − 8

√

(k − 1)2 + 1
2

h2 + 2(k − 1)2 + 2 + 5h2 − 6

= 4(

√

(k − 1)2 + 1
2

− h2)2 + 5h2 − 6

≥ 4(

√

(k − 1)2 + 1
2

− 1)2 − 1

> 4(
1
2
)2 − 1 ≥ 0,

which is a contradiction.
From all the cases above, we deduce the contradictions.

Hence, G is a fractional k-deleted graph. This completes the
proof of Theorem 4.
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