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Abstract—This paper deals with a periodic-review substitutable 

inventory system for a finite and an infinite number of periods. Here 
an upward substitution structure, a substitution of a more costly item 
by a less costly one, is assumed, with two products. At the beginning 
of each period, a stochastic demand comes for the first item only, 
which is quality-wise better and hence costlier. Whenever an arriving 
demand finds zero inventory of this product, a fraction of unsatisfied 
customers goes for its substitutable second item. An optimal ordering 
policy has been derived for each period. The results are illustrated 
with numerical examples. A sensitivity analysis has been done to 
examine how sensitive the optimal solution and the maximum profit 
are to the values of the discount factor, when there is a large number 
of periods. 
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upward substitution. 
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I. INTRODUCTION 
N  this paper we present a multi-period inventory model  
where two products of different qualities are considered. 
The products are priced separately.  They are two qualities 

of the same type of goods so that substitution is possible. Here 
an upward substitution is assumed, that is, the lower-quality, 
cheaper product substitutes the higher quality, costlier 
product. The basic purpose of any inventory policy is to 
control production or distribution in such a way that the 
supply is matched to demand to the greatest possible extent in 
order to maximize the expected profit. In most of the practical 
situations, the demand is not deterministic, and hence a 
decision about an optimal order quantity (production quantity, 
in case of production inventory model) is very much required. 
For expensive products, a huge cost may incur due to an 
excess stock. An inventory manager must maintain a balance 
between having too much stock (and thereby incurring cost 
due to excess stock) and an insufficient stock (and thereby 
incurring lost sales and goodwill costs). To protect business 
from these situations, the manager may wish to carry some 
cheaper, lower quality product as well to prevent the entire 
loss, in case of stock-out of the costlier item. This paper  
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discusses such a model where there are two products, one of 
which is better in quality and costlier than the other. A random 
demand arrives for the better product (product 1) only. 
Though it is more expensive, the demanding customers prefer 
to buy it, as they consider it to be worth the price. The 
substitute can only fulfill the basic need for the item, in case 
the better one is unavailable. A fraction of unsatisfied 
customers leaves without buying anything, when they do not 
find their first choice product, and the remaining proportion of 
unmet demand goes for buying the substitute (product 2). The 
profit levels are also assumed to be different for the two 
products. The costlier item is more profitable than its 
substitute. The model is solved here for a number of planning 
periods. 
    It has been found in literature that much works have been 
done on substitution of commodities, but mostly they have 
been on full substitution or downward substitution. A one-way 
product substitution in downward direction has been assumed 
in a production inventory model in Duenyas and Tsai [1] 
where customers who require a given product are satisfied by 
a higher quality product at the same price. Bassok et al. [2] 
formulated an optimal policy analyzing the one-way 
substitution model for the manufacturers and discussed the 
effects of substitution and the significant gain that can be 
achieved when substitution is considered. A downward 
substitution has been discussed in the context of semi-
conductor chips in Hsu and Bassok[3], where a faster  
processor can be substituted for a slower processor, in the 
context of memory chips in Leachman [4], where a higher 
capacity (4 MB) chip can be used to satisfy demands for lower 
capacity memory chip (2 MB), and in the context of steel 
industry where Wagner and Whitin [5] considered that the 
steel beams of greater strength can substitute for beams of 
lesser strength. Our model considers an upward substitution in 
contrast to those models. 
    We observe a two-way substitution in blood inventory 
models. Civelek et al. [6] in their model, included upward and 
downward substitution, in which old blood platelets could be 
given to new blood platelet demand in upward substitution, 
and vice versa in downward substitution. According to the 
industry example in Haijema et al. [7] from a Dutch blood 
bank, upward substitution is very common in practice. An 
upward substitution occurs in many real-world decision 
problems. A better quality product is more desirable than a 
lesser quality one for luxury items, fashion goods, some 
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electronic and microelectronic goods, or some electrical 
components where reliability is the most important criterion, 
automotive paints and many more. The automotive industries 
need the alkyd resin-based paint, a high-premium paint that is 
used for painting ships, railway coaches etc., but if it is 
unavailable, they might opt for a second grade paint, which 
has less shelf life. If a professional photographer wishes to 
buy the best camera, or accessories, he will probably have to 
buy a lower-quality one in case of stock-out, in spite of the 
fact that he will not be happy to do so. Stuer et al. [8] 
discussed the substitutable grid resources where they 
introduced `slow' and `fast' CPUs where the model was 
coupled with potentially strong shifts in demand. The 
substitutability of electrical components (batteries, resistors, 
transistors etc.) and microelectronics in the Canadian Forces 
Supply System (CFSS) was studied in Ng and Lam [9]. The 
importance of substitutability between foreign and domestic 
farm and non-farm commodities was discussed in Sumner and 
Alston[10]  in the context of the demand for US tobacco in 
cigarette manufacturing, treating the demand for US farm 
goods as a derived demand by the processing industries. 
Pasternack and Drezner [11] developed a model in which they 
assumed that both the items can be used as substitute for each 
other, and substitution will occur with probability one. In this 
paper, the probability of substitution is assumed to be less 
than one, which means that there is also a non-zero chance of 
not buying the substitute, even when the product 1 is 
unavailable. They discussed a single-period model only. 
Parlar and Goyal [12], Mukherjee and Roychowdhury [13] 
also modeled a two substitutable product problem in which a 
single-period was considered. This paper discusses the 
optimal ordering policy for a multi-period model with a finite 
and an infinite number of periods. For determining the optimal 
stocking levels of the two products in each period we 
maximize the expected profit function. 

II. ASSUMPTIONS AND NOTATION  

An N-period (N < ∞) inventory model is considered here 
with two substitutable commodities. In each period, the 
demand comes only for product 1. If it is out of stock, only 
then a fraction of unsatisfied customers goes for its substitute, 
the product 2. The results derived here hold under the 
following set of assumptions and notation: 
    1. The demand Xj at period j,  j =1,2,..., N, is a continuous 
random variable, and  X1, X2, ... , XN  are i.i.d. with common  

c.d.f. F( ). 

    2. No backlogging of demand is allowed. 
    3. There is no lead time. 
    4. Substitution is only performed in a period if there is a 
stock-out of product 1. 

    5. α is the probability (proportion) of unsatisfied customers 
buying product 2, the substitute, when product 1 is out of 
stock. 0< α <1. .1 αα −=  
    6. Ci is the unit cost of product i, i = 1, 2, C1 > C2. 
    7. S  is the shortage (lost sales) cost per unit short.  
    8. Pi is selling price per unit of product i, i = 1, 2, P1 > P2. 
The substitute is sold at its own price, in the event of product 
2 substituting product 1. 
    9. Profit per unit of product 1 is more than the profit per 
unit of product 2, i.e., (P1 – C1) > (P2– C2).  

III. OPTIMAL ORDERING POLICY 
    Let ),( 21 qqnΔ be the expected profit from an optimal 
procedure in a process when n periods remain (n = 0, 1, 2, ... , 
N), where iq be the number of units of item i (i =1, 2) in stock 
before ordering more units. Let iτ , i = 1, 2, be the order 
quantities for product  i  required to bring the stock level of 
the product i  to )( iiq τ+ .  First, we establish a recursion 
relation for ),( 21 qqnΔ , and then prove the concavity of the 
expected profit function, which helps determine the optimal 
stock-heights for the last period first and finally for each of 
the periods. 
    The following recursion relation holds in relation to 

),( 21 qqnΔ , where X denotes the random demand. 
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    Let  0),( 210 =Δ qq , for all q1, q2 > 0. For n = 1, equation 
(1) reduces to 
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 Now we prove that the expected profit function ),( 211 ττφ is a 
concave function of  21,ττ . 

    Write 22
*
211

*
1 , ττ +=+= qqqq  and .

*
2*

1
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negative and the determinant of the Hessian matrix Δ of 
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  which is positive. Hence Δ is negative definite and the 
concavity of ),( 211 ττφ  is established, vide Roberts and 
Varberg [14]. 

    Because of the concavity of ),( 211 ττφ , 
1

211 ),(
τ

ττφ
∂

∂ = 0 and   

2

211 ),(
τ

ττφ
∂

∂ = 0 provide the optimal values of the order 

quantities, τ1 and τ2 , which maximize the expected profit. 
Thus we can write the following: Given qi, the stock of 
product i, at the beginning of the last period, the order-
quantities of product i, is given by 
 

),0,max( iiNq τ= i = 1, 2, 
 
                        or,  ),0,max( *

iiiN qqq −=  i = 1, 2, 
 
 
 where *

iq , i = 1, 2, can be obtained by solving the following 
equations: 
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IV. MAIN RESULT  
Now the question may arise as to how the values of the 

optimal stock-heights ),( *
2

*
1 qq  would change, if the initial 

stock levels ),( 21 qq change. If ),( 21 qq change, the optimal 
values of ),( 21 ττ will obviously change. From the following 
theorem it is evident that there will be no change in the values 
of optimal stock-heights ),( *

2
*
1 qq whatever the values of the 

initial stock levels ),( 21 qq be. Accordingly we can determine 
the optimal order quantities as a difference between optimal 
stock-height and the initial stock of the period under 
consideration. 
 
    Theorem 1.  For an N-period inventory problem defined in 
the earlier sections, given inq , the initial stock level of product 
i when n periods remain, i =1,2, the optimal order-quantities 
are given by 

,2,1,,...,2,1],0),max[( * ==− iNnqq inin  
 

    where ,...0 *
,

*
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*
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1 NiNiii qqqq ≤≤≤≤≤ − and *

inq  is the 

optimal stock-height of product i, when n periods remain, i = 
1, 2. 
    Proof.  Following the line of De Groot [15] the theorem is 
proved. 
    Let us write 
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    For each ),( 21 qq , let ,2,1),( == iqiini ττ be a value of iτ  
for which the supremum in equation (4) is attained. Suppose, 
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    We proceed until )(0 ioinii qkq τ−  becomes negative,  
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    The supremum in equation (5) is attained when =′iτ  

),( 0iin qτ by definition. 
    Hence ).()( 00 iiiini qqq −−= ττ      
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    Here the supremum is attained when ),( iini qττ =′ i.e., when 

).()( 00 iiiini qqq −−= ττ Hence *)( iniini qqq =+τ  holds also 

for this interval of .iq  Thus the result *)( iniini qqq =+τ  is 
established for all initial values of iq  satisfying 

≤≤− iioini qqq )(0 τ .2,1,*
0 =iqi  

    Next we consider the initial values iq  in the interval 
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    The supremum in equation (6) is attained  when 
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larger the number of remaining periods, the larger is the stock 
which is likely to be sold out in subsequent periods. Hence we 
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    Here we illustrate the method for obtaining the optimal 
stock-heights, as well as the optimal order quantities, for both 
the products for a two-period model, i.e., for N = 2. First we 
determine the optimal stock-heights ),( *

2
*
1 qq  of the two items 

for the last period (second period, here). As shown in 
equations (2) and (3), the optimal values ),( *

2
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1 qq  of ),( 21 qq  

can be obtained from: 
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    Hence at the beginning of second period, if initial stock of 
product i be ,2iq we have to order ]0),max[( *

2
*

ii qq −  units of 
product i, i =1, 2 , by Theorem 1. 
    Now, for the first period, let us denote the optimal stock-
height of product i by .2,1, =iQi  Next we determine 1Q  and 

2Q  as follows: 

    We may write  ,iii qQ τ+= i = 1, 2  and .2
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Then 
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simultaneously  give the optimal solution for ),( 21 QQ . Hence 
the equations giving optimal solutions are: 
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    Solving equations (7) and (8) we get the optimal solution 
for Q1 and Q2, the optimal stock-heights for the first period. 
 
The following numerical example illustrates the method: 
     
Example 1: Suppose that the demand distribution is uniform 
with a minimum of 100 and a maximum of 300. Let C1 = 5, C2 
= 2, P1 = 8, P2 =3 and  S = 1. If the probability that a customer 
will purchase the substitute when item 1 is out of stock is 0.5,  
i.e., α = 0.5, then using equations (2) and (3) we get the 
optimal stock-heights for the two products for the second 

period, and from equations (7) and (8) we get the optimal 
stock-heights for the first period. 
    The optimal stock-heights for the two products are, 
respectively, 295 and 35 for the first period, and 186 and 7 for 
the second period (all quantities are in appropriate units). 

V. OPTIMAL ORDERING POLICY FOR AN INFINITE 
NUMBER OF PERIODS  

In this section we discuss a sequential procedure for 
determining the optimal order quantities for each period which 
will maximize the total expected profit when the number of 
periods is infinite. Here a discount factor β is introduced [De 
Groot [15], pp. 408-410] to bring the costs or profit to their 
present values. 
    The model is such that at the beginning of each period we 
order that much units which bring the stock-levels of the two 
products to ).,( 21 qq  To obtain the optimal stock-heights, we 
write the total expected profit with the initial stock levels 

),( 21 qq  as 
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    Let   Γ ),( 21 qq = expected profit at the first period -- the 
discounted cost of bringing the stock levels of the two 
products back up to 21,qq  units at the beginning of the next 
period, 
    and  Σ ),( 21 qq = total expected profit when the initial stock 
levels of the two products are ,, 21 qq respectively. 
    Thus 
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    Let ),( 21 qqΔ = total expected profit, when initial stock-
levels are (0,0) and to order ),( 21 qq units of the two products 
to bring the stock levels up to the required heights. 
    Thus 
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    In order to develop the optimal ordering policy, we first 
prove that the function ),,( 21 qqΔ  as stated in equation (10), is 
a concave function of ).,( 21 qq  
    Considering equations (9), (10) and (11), we find the 
following: 
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 which is negative. 
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is also negative. 
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    The determinant of the Hessian matrix of ),( 21 qqΔ is given 
by 
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which is positive. 
 
    Thus the Hessian matrix of ),( 21 qqΔ is negative definite 
which proves its concavity. 
    Because of the concavity of ),,( 21 qqΔ  the optimal values 
of 21 , qq , that maximize the total expected profit Δ, can be 
determined from 
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    Hence *

1q and *
2q , the respective optimal values of 1q  and 

2q , can be obtained from 
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and  following the similar line of proof of Theorem 1 we have 
the following theorem: 
    Theorem 2. In the infinite-period inventory model defined 
in this section, if iq  is the stock-level of item i before 
ordering for further units at any period, then one should order 

)0,max( *
ii qq −  units of item i, i = 1,2, in order to maximize 

the total expected profit. 
    Remark: In this problem, if the discount factor is zero  
(i.e., β = 0), then it reduces to a one-period problem. The 
expressions for *

1q and *
2q , in equations (12) and (13), become 

the same as that is obtained in the previous section. 
    If 1→β , then 1)( 1 →qF  and 1)( →αqF , and therefore 

the optimal values, *
1q and *

αq , become very large. 
    The following numerical example studies the sensitivity of 
the optimal order quantities as β approaches 1. 
    Example 2: Let the demand (X) at any period follow 
exponential law with parameter λ with 
 

F(t) = 1-exp(-λt), t > 0, λ > 0. 
 
    Let the cost parameters be C1 = 5, C2 = 2, P1 = 8, P2  = 3, S = 
1. Let  α  = 0.5. 
    Suppose, the demand-distribution is exponential with mean 
demand 100, i.e., λ = 0.01. Then using equations (12), (13) 
and (14), the optimal stock-heights for the two items and the 
maximum expected profit can be obtained. Table 1 below 
displays the optimal stock-heights *

1q and *
2q  of products 1 

and 2, respectively, and the maximum Δ( ,*
1q *

2q ), 
corresponding to different values of the discount factor β: 
 

TABLE I 
OPTIMAL  STOCK-HEIGHTS *

1q , *
2q  AND MAXIMUM EXPECTED PROFIT 

Δ( ,*
1q *

2q ) FOR  DIFFERENT VALUES OF β 

β  *
1q  *

2q  Δ( ,*
1q *

2q ) 

0.00 55.96 6.68 6.83 
0.10 60.61 7.05 16.14 

0.20 66.14 7.48 29.35 
0.50 91.63 9.12 123.64 
0.70 125.28 10.68 357.88 
0.90 214.01 12.89 1904.22 
0.95 277.26 13.60 4586.55 
0.97 325.81 13.90 8343.15 
0.99 433.07 14.22 27806.13 

All values are in appropriate units. 

VI. CONCLUSION AND DISCUSSION 
In the present paper a multi-period inventory model has 

been developed for two substitutable products, the main 
features of which are as follows: 
    Here an upward substitution is considered. The demand 
comes only for the first item, and the second item acts as a 
substitute of the first one. Both are not substitutable for each 

other. In case of zero inventory of the first item, there is a 
non-zero, non-unity probability that an unsatisfied customer 
will go for the substitute. The substitute, on one hand, is less 
expensive, but on the other hand, cannot satisfy the customer 
fully. It cannot fulfill anything beyond the basic need of the 
item; quality-wise, feature-wise, the first item is much more 
superior, which drives the customers demanding for it. In the 
present work, a multi-period model has been solved in which 
the optimal stock-heights have been determined for each 
period. The model has been developed for a finite number of 
periods, and for an infinite number of periods as well, where a 
discount factor has been considered to bring the total expected 
profit to the present value. Numerical examples have been 
provided to illustrate the results. A sensitivity analysis has 
been done to examine how the optimal order quantities change 
with the change in the value of the discount factor β. It has 
been observed that the optimal stock-heights become large, 
when the discount factor gets large. The optimal stock-height 
of item 1 is more sensitive to β-value compared to the optimal 
stock-height of item 2. When β approaches 1, i.e., when future 
sales are not discounted seriously, the optimal stock level for 
item 1 becomes very large, and the rate of change is faster as 
it gets closer to 1.Then practically we would suffer no great 
loss by having a stock which may remain in inventory for a 
long period of  time. In case β is zero, the infinite-period 
model reduces to a one-period model. In this paper the 
demand has not been considered to be time-dependent. The 
problem can be revisited for time-dependent demand. We can 
allow partially or fully backlogging of demand, which can 
compensate the loss of opportunity cost or the shortage cost to 
some extent. A random lead time can also be assumed to be 
present in the model. The model can also be examined when 
the items we are dealing with are decaying. 
 

REFERENCES   
[1] I. Duenyas and C.Y. Tsai, Optimal Control of a Manufacturing System 

with Random Product Yield and Downward Substitutability, IEE-
Transactions,  Vol. 32, No. 9, pp. 785-795, 2000.            

[2] Y. Bassok, R. Anupindi and R. Akella, Single-period Multi-product 
Inventory Models with Substitution, Operations Research, Vol. 47, No. 
4, pp. 632-642, 1999 (DOI: 10.1287/opre.47.4.632). 

[3] A. Hsu and Y. Bassok, Random Yield and Random Demand in a 
Production System with Downward Substitution, Operations Research, 
Vol. 47, No. 2, pp. 277-290, 1999. 

[4] R. Leachman, Preliminary Design and Development of a Corporate-level 
Production System for the Semiconductor Industry, Working Paper ORC 
86-11, Operations Research Center, University of California, Berkeley, 
CA, 1987. 

[5] H. Wagner and T.W. Whitin, Dynamic Version of the Economic Lot 
Size Model, Management Science, Vol. 5, pp. 89-96, 1958. 

[6] I. Civelek, A.Scheller-Wolf and I. Karaesmen, Blood Inventory 
Management with Protection Levels and Substitution, INFORMS 
MSOM 2009 Conference Proceedings, June 29-30, 2009, MIT, 
Cambridge, MA, 2009. 

[7] R. Haijema, J. van der Wal and N.M. van Dijk, Blood Platelet 
Production: A Multi-type Perishable Inventory Problem, Research 
Memorandum, FEE, University of Amsterdam, 2005. 

[8] G. Stuer, K.Vanmechelen and J. Broeckhove, A Commodity Market 
Algorithm for Pricing Substitutable Grid Resources, Future Generation 
Computer Systems, Vol. 23, No. 5, pp. 688-701, 2007. 

[9] K.Y. K. Ng and M.N. Lam, Standardisation of Substitutable Electrical 
Item, The Journal of the Operational Research Society, Vol. 49, No. 9, 
pp. 992-997, 1998. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

663

 

 

[10] D.A. Sumner and J.M. Alston, Substitutability for Farm Commodities: 
The Demand for US Tobacco in Cigarette Manufacturing, American 
Journal of Agricultural Economics, Vol. 69, No. 2, pp. 258-265, 1987. 

[11] B. A. Pasternack and Z. Drezner, Optimal Inventory Policies for 
Substitutable Commodities with Stochastic Demand, Naval Research 
Logistics, Vol. 38, No. 2, pp. 221-240, 2006. 

[12] M. Parlar and S.K. Goyal, Optimal Ordering Decisions for Two 
Substitutable Products with Stochastic Demands, Opsearch, Vol. 21, No. 
1, pp. 1-15, 1984. 

[13] S.P. Mukherjee  and S. Roychowdhury, A Random Demand Inventory 
Model for Substitutable Commodities, IAPQR Transactions, Vol. 15, 
No. 2, pp. 55-67, 1990. 

[14] A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, 
New York and London, 1973. 

[15] M.H. De Groot, Optimal Statistical Decisions, McGraw-Hill Inc., USA, 
1970. 
 
 

 


