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Abstract—Process planning and production scheduling play 

important roles in manufacturing systems. In this paper a multi-
objective mixed integer linear programming model is presented for 
the integrated planning and scheduling of multi-product. The aim is 
to find a set of high-quality trade-off solutions. This is a 
combinatorial optimization problem with substantially large solution 
space, suggesting that it is highly difficult to find the best solutions 
with the exact search method. To account for it, a PSO-based 
algorithm is proposed by fully utilizing the capability of the 
exploration search and fast convergence. To fit the continuous PSO 
in the discrete modeled problem, a solution representation is used in 
the algorithm. The numerical experiments have been performed to 
demonstrate the effectiveness of the proposed algorithm. 

Keywords—Integrated process planning and scheduling, multi 
objective, MILP, Particle swarm optimization 

I.INTRODUCTION 
job shop manufacturing environment is characterized by 
the make-to-order operation and customers’ demand is 

more and more unpredictable. New manufacturing systems 
planning are required to deal with this environment, one which 
facilitates flexibility, reduces design cycle time, reduces time 
to market for new products and reduces order turnaround time 
for existing products [1].Process planning and scheduling play 
important roles in manufacturing systems. They are usually 
complementary activities.  Process planning, an essential 
component for linking design and downstream manufacturing 
processes, provides a detailed operational guidance for 
scheduling [2]. One of the core activities in process planning 
is to decide which manufacturing resources to select and in 
which sequence to use, mainly based on the objective of 
achieving the correct quality, the minimal manufacturing cost 
and ensuring good manufacturability. Scheduling determines 
the most appropriate moment to execute each operation for the 
realized production orders, taking into account the due date of 
these orders, minimum makespan, balanced resource 
utilization, minimum transition time and etc., to obtain high 
productivity in the workshop [3]-[4]. 
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A process plan is usually determined before the actual 
scheduling, regardless the scheduling objectives and with the 
assumption that all the resources are available. However, if a 
process plan is prepared offline without consideration of the 
actual shop floor status, due to changes or constraints in the 
manufacturing environment, it may become unfeasible and 
heavily unbalanced resource assignments.By integrating these 
functions, more flexible and effective schedules can be 
produced. Increasing production feasibility and optimality is 
the merit of integrated process planning and scheduling (IPPS) 
by combining both the process planning and scheduling 
problems [5].Due to industry’s interest in improving the 
overall competitiveness in the global market place and 
reducing costs, the integration of process planning and 
scheduling has received increasing attention in recent 
years.Generally, the traditional job shop scheduling literature 
assumed that there is a single feasible process plan for each 
job [6]. This implies that no flexibility in the process plan is 
considered. Traditionally, these two functions are 
accomplished in two different stages. Production scheduling 
will get its input from the complete process planning. This 
results in conflicting objectives and the inability to 
communicate the dynamic changes in the shop floor [7]. 
Meanwhile, since the process planning is in advance of the 
scheduling, the schedule generated by these process plans may 
suffer from the lower resource utilization and poor on-time 
delivery performance. Therefore, to maintain the feasibility 
and optimum of the schedule, it is inevitable to revise the 
existing plans for some jobs.The most recent works related to 
the IPPS optimization can be generally classified into two 
categories: the enumerative approach and the simultaneous 
approach [3]. In the enumerative approach [2]-[8]-[9], 
multiple alternative process plans for each part are first 
generated. A schedule can be determined by iteratively 
selecting a suitable process plan from alternative plans of each 
part to replace the current plan until a satisfactory performance 
is achieved. The simultaneous approach [10]-[11] is based on 
the idea of finding a solution from the combined solution 
space of process planning and scheduling.Reference [12] 
addressed the simultaneous planning and scheduling of single-
stage multi-product continuous plants with parallel lines. 

Based on the process planning optimization, optimal 
scheduling is generated in the whole plan solution space in 
terms of available machines and precedence constraints [13]. 
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Scheduling system has a large number of feasible process 
plans, so optimality of scheduling not only depends on the 
manufacturing resources but depends on the result of the 
process plans [14]. Therefore, process planning and 
scheduling are tightly interwoven with each other. Integrating 
the process planning and scheduling is necessary to achieve a 
global optimum in manufacturing, increase the flexibility and 
responsiveness of the systems.To address the above two 
optimization problems, some optimization approaches based 
on modern heuristics or evolutionary algorithms, have been 
developed in the last two decades and significant 
improvements have been achieved. Such as the genetic 
algorithm (GA) (for operation sequencing problem [15]; for 
IPPS problem [6]-[11], simulated annealing (SA) algorithm 
(for operation sequencing problem [16]; for IPPS problem [3], 
Tabu search algorithm (for operation sequencing problem 
[17], for IPPS problem [10]) and agent-based approach for 
IPPS problem [18]. However, these two optimization 
processes are well known as complicated decision problems 
for the multiple parts with complex structures and features. 
The major difficulties include: (1)both operation sequencing 
and IPPS problems are NP-hard combinatorial optimization 
problems .The search space of IPPS problem is usually very 
large because of involving multiple parts’ scheduling while 
many previous developed methods could not find optimized 
solutions effectively and efficiently. (2) In sequencing 
operations and constraints of manufacturing resource 
utilization there are usually a number of precedence 
constraints, which make the search more difficult. (3) The 
objectives in the process planning and scheduling are in 
conflict with respect to each other, which are both important to 
production.Therefore, it is necessary to develop efficient 
models for the operation sequencing and the IPPS 
optimization problems therefore the optimization algorithms 
need to be more agile and efficient to solve practical 
cases.Motivated by this, we proposed a multi-objective 
optimization approach to perform the explorative search in 
such a large solution space. In this work we considered a 
MILP (Mix integer linear programming) scheduling model 
thus a slot-based Multi-Objective Multi-Product that readily 
accounts for sequence dependent transition times and set-up 
times, which set-up times and the machine change over times 
between operations is included in the transition time for each 
operation.The paper is organized as follows. Section 2 and 3 
provide a summary of the process planning problems and job 
shop scheduling problem, respectively. In section 4, we 
present the problem statement. This is followed by the 
formulation of the multi objective MILP model proposed for 
the integrated process planning and scheduling. Section 5 
introduces some basic concepts in the multi-objective 
optimization. Section 6 presents a PSO-based approach for 
resolving the integrated process planning and scheduling. 
Section 7 shows a numerical experiment to validate the 
performance of the proposed algorithm. Finally, the paper 
concludes in section 8. 

II.PROCESS PLANNING PROBLEM 
To conduct process planning, parts are represented by 

manufacturing features. Each feature can be manufactured by 
one or more machining operations (n operations in total for the 
part). Each operation can be executed by several alternative 
plans if different machines, cutting tools or set-up plans are 
chosen for this operation [19]-[20]. A set-up is usually defined 
as a group of operations that are machined on a specified 
machine with the same fixture.A process plan for a part 
consists of all the operations needed to machine the part and 
their relevant machines, cutting tools, TADs (Tools Approach 
Direction), and operation sequences. A good process plan of a 
part is built up based on two elements: (1) the optimized 
selection of the machine, cutting tool and TAD for each 
operation; and (2) the optimized sequence of the operations of 
the part. 

III.JOB SHOP SCHEDULING PROBLEM 
A general scheduling problem can be stated as: n jobs {J1, 

J2...Jn}, job means a single part (or batch) or item, has to be 
processed through m machines {M1, M2... Mm}. The required 
Nomenclature has been defined (TABLE I). The processing of 
a job Jj on a machine Mi is called operation, Oij. For each 
operation, there is an associated processing time tij. In 
addition there may be a ready time (or release date) rj 
associated with each job and/or a due date by which time Jj 
should be completed. In general job shop scheduling, every 
job may have a different routing through machines. A problem 
of n jobs and m machines has an infinite number of feasible 
solutions since idle times between operations can vary. These 
number of feasible solutions increase exponentially along each 
parameter (such as number of machines and number of jobs). 
Due to the complex combinatorial problem, the theory and 
techniques of scheduling have received a lot of attention from 
OR practitioners, management scientists, production and 
operations research workers and mathematician [21].In the 
process planning and scheduling, different criteria are used to 
address specific practical cases. For instance, from the process 
planning perspective, the lowest manufacturing cost is usually 
a desired target, while the scheduling usually needs to look for 
the most balanced utilization of machines, the minimum 
number of tardy jobs, the shortest makespan and etc. To meet 
the various requirements in practical situations, further 
improvement is required on the optimization algorithm to 
make it more adaptive to accommodate diverse objectives for 
users to choose from them. 

IV.INTEGRATED PROCESS PLANNING AND SCHEDULING 
 

A slot-based MILP scheduling model is proposed that 
readily accounts for sequence dependent transition times and 
transition costs. 

The problem is then to determine: 
1. The products to be produced in each machine and in each 

time slot. 
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2. The sequence and detailed timing of production as well 
as the length of production times in each machine  

The objective is to minimize transition times and total 
tardiness. 

This section describes the proposed slot-based MILP model 
for the simultaneous planning and scheduling of multi-
product.We postulate Nm asynchronous time slots for each 
machine m where Nm is the total number of products that can 
be processed by machine m (Fig. 1). by the model, 
Assignments of products to the slots are determined to define 
the sequence of  product  operations. Binary variable 
Wi,p,j,m,l  means the  p th process planning is applied to job i 
and the j th operation of this process planning needs to be 
processed on slot l of machine m . The length of each time slot 
is a variable to be determined by the model, and is equal to the 
summation of the assigned product’s processing time and the 
corresponding transition times (Fig. 2). Sequence dependent 
transitions are activated depending on the assignments of 
products to slots. 

A. Assignments and Model  
Equation(1) represents the condition that exactly one 

operation of all products must be assigned to each slot of each 
machine. 

According to (2) the processing time of operation j of 
product i in slot l of machine m is set to zero, if product i is not 
assigned to slot l of machine m. Constraint (2) also defines an 
upper bound, the length of each time period H, on the 
processing time. 

∑∑ =
i j

lmjpwi 1,,,,                                                                                    (1)            

w mjpilmjpi ,,,,,,, ∗Η≤θ                (2) 

 
TABLE I 

REQUIRED NOMENCLATURE 
Nomenclature description 

i,k        Products 

L Slot 

M Machine 

H Duration of the time period 

        Transition time from machine i to 
machine k 

Si,p,j,k,f,z,m,l     Operation j of product I of p th process 
plan assigned  to slot l of machine m is 
followed by product k  assigned to slot l 
+ 1 of machine 

Wi,p,j,m,l p th process planning is applied to job i 
and the j th operation of this process 
planning needs to be processed on slot l 
of machine 

Өi,p,j,m the processing time of operation j of 
product i in slot l of machine m 

ETm,l the end time of slot l of machine m   

STm,l the start time of slot l of machine m  

STi,p,j the starting time  of operation j of job i of 
process plan p 

Ci the completion time of the job i. 
 

di the due date of the job i. 
 

Cp objective functions  to minimize the 
transition times 

Tar objective functions  to minimize the totol 
tardiness 

 

1. Transition Times  
In order to take into account sequence-dependent 

transitions, we introduce the transition time variable Si,k,m,l: 
 

 
1 if operation j of product I of p th 

process plan assigned to slot l of 
machine m is followed by product 
k  

Si,p,j,k,f,z,m,l                                                
                                                                                                    
                                   0            otherwise                                      
                                                                          
 

SWW mLmlkimIkilmzfkjpilmzfklmjpi ∀∈∀≠∈≠∀
⇔

+
Λ ,),(,,,,,,,1,,,,,,,,

         (3) 

The proposition in (3) links these transition time variables 
(Si,p,j,k,f,z,m,l  ) with the assignment variables (Wi,p,j,m,l). That is, 
Si,p,j,k,f,z,m,l should become 1 if and only if operation j of product 
i of p th process plan assigned to slot l of machine m is 
followed by product k assigned to slot  l + 1 of machine m.                          

Mathematically, another way of enforcing the same 
condition in (3) is to use the following set of propositions: 

∑
∈

=
)( ,,,,,,,,,,,

mIk
S W lmjpilmzfkjpi            (5)                       

2. Timing Relation  
In (6), the end time of slot l of machine m is equal to the 

start time of slot l plus the corresponding transition times plus 
the processing time of the product assigned to slot. 

According to (7), the end time of each slot must be equal to 
the start time of the consecutive slot and Eq. (8) represents the 
route constraint. Let STi,p,j denote the starting time  of 
operation j of job i of process plan p. 

∑∑∑
∈

+
∈∈

+=
)(

,,,,,,,,,,,*
)(

,
)(

,,
mIi

lmjpilmzfkjpi
mIk

ki
mIi

lmlm SSTET θτ  

(6) 
STET lmlm 1,, +

=                 (7) 

θ mjpijpijpi STST ,,,,,)1,(, +≥
+

             (8) 

 
Fig. 1 All of the possible slots on the each mashine 
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Fig. 2 Assign operation j of product i to slot l 

3. Multi-Objective Functions 
The objective is to determine a process plans/schedule 

solution, the process plans for all the involved jobs and a 
schedule, to achievement a good performance of the 
predefined criteria regarding process planning and scheduling 
functions. 

From the economic point of view, the process planning 
takes the minimum manufacturing cost as the objective 
function. 

One of the objective functions is to minimize the transition 
times (9) 

 

SC lmzfkjpi
i k m l

ki
p

,,,,,,,*,∑∑∑∑= τ           (9) 

 
Another objective function define in terms of minimize the 

total tardiness that Ci be the completion time of the job i and di 
denote the due date of the job i.  

)0(maxmin ,∑ −=
n

i
ii dcTar         (10) 

 

V.MULTI-OBJECTIVE OPTIMIZATION DEFINITION 
A multi-objective optimization (MOO) problem has a 

number of conflicting objectives: 
Minimize    (f1(x), f2(x)… f3(x))          (11)                                                                                       

Subject to    X S 
The goal in an evolutionary multi-objective optimization is 

to find a finite number of Pareto-optimal solutions, instead of 
a single optimum, to the above problem. Some commonly 
used concepts in the MOO are also introduced. 

• Solution comparison: For any two solutions a and b: a 
dominates b, if 

}{ kib
i

a
i ff ,...,2,1)()( ∈∀≤               (12) 

}{ kja
i

b
i ff ,...,2,1)()( ∈∃≤                                                (13)                                    

And a is incomparable with b, if 
&)()( b

i
a

i ff ≤ )()( a
i

b
i ff ≤  }{ ki ,...,2,1∈∀        (14) 

 
• Pareto optimal solution: a solution a* is called the Pareto 

optimal solution if no solution in the decision space X can 
dominate a*. Pareto optimal set, it is formed by all the Pareto 
optimal solutions. 

 

VI.MODIFIED-PARTICLE SWARM OPTIMIZATION 
ALGORITHM 

PSO simulates a social behavior such as bird flocking to a 
promising position for certain objectives in a multidimensional 
space. Like evolutionary algorithm, PSO conducts search 
using a population (called swarm) of individuals (called 
particles) that are updated from iteration to iteration. Each 
particle represents a candidate position (solution) to the 
problem at hand, resembling the chromosome of GA. the 
status of a particle is characterized by its position and velocity 
[22]. 

Every particle in the swarm moves according to its position 
and the best particle’s position in the virtual search space, just 
like a bird flying in the sky. Assume that xi is the position of 
particle I, Pbest is the best position found by each particle so 
far. Each particle has its own best position. Gbest is the best 
position found by the swarm so far. Vi is the velocity of 
particle i .A particle’s movement is based on: 

)()(2)(()1 211 XGrandCXPrandCWVV ibestibestiI −+−+=
+

                       (15) 
VXX Iii 11 +

+=
+

                (16) 
                                      

rand1 () and rand2 () are random number between 0 and 1. 
C1 is a positive constant, called as coefficient of self 
recognition component; C2 is a positive constant, called as 
coefficient of the social component. The coefficient W is 
Inertia weight, which increases with inertia decreasing. 
Constant Vmax means the largest value of each particle speed 
and V it is limited to [-Vmax , Vmax ]. Constant Xmax means the 
largest movement distance, and each particles position is 
limited to [-Xmax , Xmax].  

 
A traditional PSO algorithm can be applied to optimize the 

IPPS in the following steps (): 
1. Set the size of a swarm, the number of particles and the 

max number of iterations. 
2. Initialize all the particles in the method introduced in 

Sections2and3. Decode every particle (solution) to get the 
schedule of the particle and then calculate the corresponding 
criteria of particle.  

3. Set the local best particle and the global best particle with 
the best fitness. 

4. Iterate the following steps until the max number of 
iterations is reached. 

 4.1. For each particle in the swarm, update Particle’s 
velocity and position values. 

4.2. Decode the particle into a solution in terms of new 
position values and calculate the fitness of the particle. Update 
the local best particle and the global best particle if a lower 
fitness is achieved. 

5. Decode global best particle to get the optimized solution. 
However, the traditional PSO algorithm introduced above is 

still not effective in resolving the operation sequencing 
problem. To enhance the ability of the traditional PSO 
algorithm to find the global optimum, new operations, 
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including mutation and shift, have been developed and 
incorporated in a modified PSO algorithm.  

Some modification details are depicted below: 
Mutation: In this strategy, a process plan is first randomly 

selected in …. And an alternative process plan is then 
randomly chosen to replace the current process plan. 

Shift: This operator is used to exchange the positions and 
velocities of two operations in a particle so as to change their 
relative positions in the particle. 

During the optimization process, if the iteration number of 
obtaining the same best fitness is more than 10, then the 
mutation and shift operations are applied to the best particle to 
try to escape from the local optima. 

 To apply the PSO algorithm to the process planning 
optimization problem, two issues have to be handled first: the 
encoding and decoding scheme How to map a position vector 
to process planning’s index or job’ index is the key design in 
optimizing integrated model of process planning and 
scheduling with PSO. The encoding and decoding scheme can 
transform a position in the virtual space into the JSP solution 
space or reverse. 

The process encoding uses a direct sequence [23]. Assume 
that n is the number of all jobs, a process particle is n 
dimension vector and every dimension weight corresponds to 
a job. Ni{1, …, ni} is a set of feasible process planning for job 
i. Every dimension weight of process particle is selected form 
Ni randomly. The corresponding value of the i th dimensional 
weight denotes job i select the i th process planning. For 
example, a process particle is [2,1,1,1,2,2,3,3,3]` the 
corresponding value of the second dimensional weight is ‘1’, 
that means job 2 will choose the first process plan from 
multiple process plans. The process particles’ decoding is just 
like the descriptions in the section above. 

Scheduling encoding uses an indirect style. A scheduling Q 
particle is dimension vector; Q is the total number of all 
operations for all jobs. 

In the sequence of scheduling particle, the TABLE II 
represents operation index. Different figure indicates different 
jobs. The same figure will appear in different position, and the 
position in sequence denotes the operation. 

For examples, a scheduling particle is 
[5,6,1,5,4,6,1,2,4,3,2,4,8,1,3,1,2 ,5,7,1,2,8,7,9,5] ` the 4th 
figure means the second operation for job 5. 

Scheduling particles decoding is relatively complex than 
process particle decoding. First, decode the weight of the 
particles to process sequence of jobs. Then insert the current 
operation according the process sequence’s order to the 
operation permutation in turn. Each machine has its operation 
permutation. When a new operation will be inserted, we can 
determine the earliest completion time of the new operation 
and the machine on which the new operation could be 
realized. Calculate its starting and completion time. When the 
machine on which the new operation will be processed is idle 
during new operation’s starting and completion time, insert the 
new operation into the operation permutation based on the 
same machine. Repeat the inserting procedure until all 
operations have been arranged. In the end, find the maximum 

completion time for each job. The maximum completion time 
for all jobs is defined as makespan. 

VII.NUMERICAL EXPERIMENT 
In our experiment, an imaginary data is used based on 

example that exhibited in [23], as a job shop that consists of 
10 jobs and 10 machines. Every job has multiple feasible 
process plans. The feasible process plans and other parameter 
settings are shown (TABLE II) And transition time matrix  
between each machine added to mentioned example (TABLE 
III), for simplification we considered transition time is only 
consist of setup times between pairwise machine in the 
sequence of the assigned operation to each machine. 

Note: in TABLE II the figures in the process plan column 
state the processing machine index. The figures in the 
Processing time column and the same row represent the 
processing time required for corresponsive operations. 

For simplification, the parameters of the PSO algorithm 
recommended in [22] are used in the PSO algorithm for 
experiments in this paper (Swarm Size are set as 5000, 
Iter_Num as 200). Learning factor C1 and C2 were set to2. 

In the final solution, the result of optimization as four non-
dominated solutions showed (TABLE IV) that has been 
reached by the algorithm.  As such, they are stored as non-
dominated solutions in order to make a comparison. This 
result is of crucial importance, since it would provide more 
useful choices for user to make a further decision. If we don’t 
integrate the process planning and scheduling to optimize, the 
optimization results will be not satisfied.  

One of the non dominated solutions of process planning  is 
[1,3,1,2,2,2,3,1,1,2], which means the first job will used the 
first process plan ,the second job will used the 3rd process 
plan and so on and the results of relative scheduling planning 
is[4,1,4,4,5,6,2,9,1,5,2,10,7,8,1,10,6,6,3,1,1,3,2,1,3,4,9,5,5,8,4
,9,3,5,5,2,7,10,5,1,9,7,8,1], which means with regards to 
process planning solution  and TABLE II, the first slot of 
machine 6 is operation 1 of job 4, the first slot of machine 9 is 
operation 1 of job 1, the first slot of machine 5 is operation 2 
of job 4, the first slot of machine 2 is operation 3 of job 4, the 
second slot of machine 2 is operation 1 of job 5 and so on. The 
total transition time and total tardiness time of this solution is 
57 and 18, respectively. These outcomes are very important, 
since it would give more applicable options for user to make 
an additional decision and considering the transition time and 
total tardiness as two objective of IPPS problem is expected to 
provide satisfactory results for manufacturing systems. 

One of the non dominated solutions of process planning  is 
[1,3,1,2,2,2,3,1,1,2], which means the first job will used the 
first process plan ,the second job will used the 3rd process 
plan and so on and the results of relative scheduling planning 
is[4,1,4,4,5,6,2,9,1,5,2,10,7,8,1,10,6,6,3,1,1,3,2,1,3,4,9,5,5,8,4
,9,3,5,5,2,7,10,5,1,9,7,8,1], which means with regards to 
process planning solution  and TABLE II, the first slot of 
machine 6 is operation 1 of job 4, the first slot of machine 9 is 
operation 1 of job 1, the first slot of machine 5 is operation 2 
of job 4, the first slot of machine 2 is operation 3 of job 4, the 
second slot of machine 2 is operation 1 of job 5 and so on. The 
total transition time and total tardiness time of this solution is 
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57 and 18, respectively. These outcomes are very important, 
since it would give more applicable options for user to make 
an additional decision and considering the transition time and 
total tardiness as two objective of IPPS problem is expected to 
provide satisfactory results for manufacturing systems. 
 

TABLE III   
TRANSITION TIME MATRIX 

 a b c d E F g h i j 
a 0 2 1 2 3 4 1 2 2 1 
b 2 0 2 3 2 2 3 2 2 2 

2 c 2 2 0 1 1 1 3 2 3 
d 2 3 1 0 2 2 1 2 1 1 

1 e 3 2 2 2 0 1 2 1 1 
f 3 2 2 2 2 0 1 1 2 1 

1 g 2 3 1 1 3 3 0 2 2 
h 2 3 1 1 1 2 1 0 1 2 

1 i 2 2 2 2 1 2 2 2 0 
j 1 1 3 3 3 4 1 2 1 0 
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE II 

FEASIBLE PROCESS PLANS AND PROCESSING TIME 
jobs 

index 
Process 

id 
process plan processing 

time 
1 1 9-4-3-5-10-7-1-6 4-2-2-3-2-3-4-

3 

 2 10-1-2-4-8-7-3-
9-5-6 

3-2-2-2-3-2-3-
2-2-2 

 3 3-1-2-9-7-8-4-6-
5 

3-3-2-2-2-2-3-
3-3 

2 1 8-6-9-5-4 4-5-5-4-2 

 2 2-1-4-3-7 5-5-3-5-2 

 3 10-3-5-2 6-5-5-4 

3 1 3-4-7-8 5-5-4-4 

 2 9-6-5-4 6-4-4-4 

 3 1-2-10-9 3-5-5-5 

4 1 8-7-4-3-9 4-5-3-4-4 

 2 6-5-2-8-7 3-5-4-4-4 

 3 10-6-4-9 5-6-4-5 

5 1 3-2-7-8-6-9-10 3-3-2-3-2-3-3 

 2 2-10-9-7-5-4-6 4-2-3-3-3-2-2 

 3 1-9-7-4-5-6 4-3-3-3-2-4 

6 1 7-2-5 6-6-5 

2 6-9-10 6-5-6 

 3 4-7-8 5-6-6 

7 1 1-2-9 4-7-6 

 2 3-4-5 6-6-5 

 3 5-7-10 5-6-6 

8 1 8-10-2 5-6-6 

 2 5-7-9 4-7-6 

 3 10-6-3 5-6-6 

9 1 7-4-9-10 5-6-5-5 

 2 3-5-8-2 6-6-5-4 

3 1-3-5-7 5-5-6-5 

10 1 5-3-7 6-6-5 

 2 4-1-9 6-5-6 

 3 10-5-8 5-6-6 
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TABLE IV 

OPTIMAL PARETO SOLUTION 

Pareto 
optimal 

solutions 

process planning Scheduling planning F1 F2 

1 3,1,3,2,3,3,2,3,1,1 2,8,5,1,1,3,5,9,9,4,10,3,1,3,1,7,2,4,2,5,9,3,5, 

4,7,1,6,2,6,1,4,1,8,2,9,10,10,1,5,7,8,5,1,4,6 

62 0 

2 1,3,1,2,2,2,3,1,1,2 4,1,4,4,5,6,2,9,1,5,2,10,7,8,1,10,6,6,3,1,1,3, 

2,1,3,4,9,5,5,8,4,9,3,5,5,2,7,10,5,1,9,7,8,1 

57 18 

3 3,3,2,1,1,2,3,1,1,2 5,8,2,10,2,10,4,4,3,5,5,4,9,1,5,7,7,5,5,6,6,1, 

10,3,9,1,9,3,1,8,3,1,1,1,4,2,1,8,6,2,9,4,7,5,1 

61 16 

4 1,2,1,1,3,2,2,1,2,3 9,5,2,2,5,1,6,5,1,3,4,10,8,9,8,4,1,4,1,1,3,9,6, 

8,5,10,4,7,10,5,2,7,2,5,4,7,6,1,1,1,3,2,3,9 

55 24 

 

VIII.CONCLUSION 
In this research, the operation sequencing and the integrated 

process planning and scheduling problems have been 
modeled. We have presented a slot based multi objective 
MILP model. This model is effective to solve for large 
problems with long time horizons.   

 The crucial challenges include how to address different 
performance objectives to meet various practical requirements 
and how to develop a more effective and intelligent algorithm 
to identify good solutions in the vast search space of the 
integrated problem.  

Solutions to the operation sequencing and the IPPS 
problems are encoded into PSO particles to intelligently 
search for the best sequence of the operations through 
leveraging the optimization strategies of the PSO algorithm. 
To explore the search space more effectively, new operators 
mutation and shift have been developed and incorporated to 
produce a modified PSO algorithm with improved 
performance. However, there is still potential for further 
improvement in computation efficiency and optimality if 
introducing new operators and characteristics of other 
algorithms. 
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