
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3906

Abstract—One of the most growing areas in the embedded

community is multimedia devices. Multimedia devices incorporate a

number of complicated functions for their operation, like motion

estimation. A multitude of different implementations have been

proposed to reduce motion estimation complexity, such as spiral

search. We have studied the implementations of spiral search and

identified areas of improvement. We propose a modified spiral search

algorithm, with lower computational complexity compared to the

original spiral search. We have implemented our algorithm on an

embedded ARM based architecture, with custom memory hierarchy.

The resulting system yields energy consumption reduction up to 64%

and performance increase up to 77%, with a small penalty of 2.3 dB,

in average, of video quality compared with the original spiral search

algorithm.

Keywords—Spiral Search, Motion Estimation, Embedded

Systems, Low Power.

I. INTRODUCTION

ULTIMEDIA applications, such as teleconferencing, video

broadcasting and video streaming, have become

increasingly common nowadays. The most critical factor is the

increasing need for wireless systems or portable multimedia

applications. The portability of a device is heavily bound by its

energy consumption, since energy consumption affects the

battery service life and weight, packaging costs, as well as the

circuit reliability [1]. All video applications are dominated by

data transfers and therefore, they feature high requirements on

memory size and performance, while at the same time require

great amounts of energy for the data transfers from and to off-

chip memory. Energy dissipation must be lowered

significantly, in order to implement these applications in

embedded devices. This can be reduced using algorithmic

modifications and transformations, together with a suitably

designed custom memory hierarchy [2].

On the other hand, some of the most popular video

conference applications are based H.26L [3] protocol. H.26L

is a high-performance video coding standard for video

transmission into a low bit rate channel. Also, involve

Nikolaos Kroupis is PhD student in Department of Electrical and

Computer Engineering (ECE), Democritus University of Thrace (DUTH),

Xanthi, Greece (phone: +30 2541079959, e-mail: nkroup@ee.duth.gr).

Minas Dasygenis has received PhD from ECE of DUTH in 2005 (e-mail:

mdasyg@ee.duth.gr).

Dimitrios Soudris, Assocciate Professor in Department ECE of DUTH

(phone: +30 2541079557, fax: +30 25410 79545, e-mail:

dsoudris@ee.duth.gr).

Antonios Thanailakis, Professor in DUTH (phone: +30 2541079541, fax:

+30 25410 79545, e-mail: thanail@ee.duth.gr).

computationally intensive parts of Motion Estimation (ME)

kernels and require many off-chip memory accesses [4]. It has

been reported that the ME algorithms are responsible for up to

60% of the total power consumption [5] of an application

because they require huge number of off-chip memory

accesses. For this reason, the performance and energy

consumption optimization of multimedia algorithms has been

the subject of extensive research [6], [7], [8], [9], [10].

Researchers commonly tackle the problem of the ME power

consumption either by proposing new ME algorithms [6], [7],

specially designed for low power requirements, or use

transformations optimization techniques on existing algorithms

[8], [9], [11] in order to reduce the execution time and the

energy consumption. Kuhn et al in a detailed survey of ME

kernels [10], pinpointed the high complexity of the different

ME kernels under consideration and studied it together with

the visual quality of the video stream. Motion estimation can

be performed by various methods. One of them is Full Search

(FS) which is a computationally-expensive algorithm, but

guarantees finding the blocks that yield the minimum cost

value. Due to the high computational complexity, alternative

search methods are desirable. ME algorithms with lower

computational complexity are the Hierarchical Search (HS)

[12], the 3-Step Logarithmic Search (3SLOG) [13], the

Parallel Hierarchical One-Dimensional Search (PHODS) [13]

and the Spiral Search (SS) [6]. For the implementation of the

above algorithms in an embedded system, a number of

algorithmic optimization techniques have to be employed. The

critical point, in which system optimization research has

focused, is the reduction of the number of accesses to off-chip

data memory. The conclusion is that ME applications have

high computation requirements that cannot be met in current

multimedia terminals.

Cheung et al [6] introduced a novel fast block-matching

algorithm named “normalized partial distortion search”. This

algorithm reduces computations by using a halfway-stop

technique in the calculation of block distortion value. In order

to increase the probability of early rejection of impossible

candidate motion vectors, the algorithm normalizes the

accumulated partial distortion and the current minimum

distortion before comparison. Even if they proposed

interesting optimizations in Full Search (FS) algorithm, the

computational complexity is still very high compared to the

Spiral Search algorithm.

A fast ME search method, based on Spiral Search algorithm

was introduced by Zahariadis et al [14]. They proposed a three

step algorithm, which follows a spiral path searching outwards

A Modified Spiral Search Algorithm and its

Embedded System Architecture Design

Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, and Antonios Thanailakis

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3907

for candidate locations that satisfy the matching criterion. The

efficiency of this algorithm arose from two facts: i) the

reduction in the number of candidate locations achieved by

leaving out selected zones of pixels and ii) the reduction in the

number of computations since they skip some candidate

locations. It is a fast motion estimation algorithm, but reduces

the signal-to-noise ratio up to 3dB and uses the mean square

error criterion. Thus, it has more computational complexity

than Sum of Absolute Difference (SAD) but it gives a better

result in output video quality. However, there is no hardware

implementation taking into account performance and energy

design issues.

Furthermore, in [7] researchers proposed power

consumption models for the H.263 video coding, using

different ME kernels. The models were developed by

executing the H.263 encoder on a Pentium III PC. However,

they have not designed any architecture nor optimized the

system for the given applications.

In previous research works [8], [9] we had introduced data

memory hierarchy optimization techniques for motion

estimation algorithms, using global loop and data-reuse

transformations for three different embedded processor

architecture models. Even though we had managed to reduce

energy consumption up to 10-60%, the algorithms had high

computational complexity to execute on portable devices. In

this research work we confront the computational complexity

and energy consumption together. We propose a novel version

of Spiral Search (SS), in which we make algorithmic

optimizations to it, and design a low power memory hierarchy

(achieving a 77% reduction in complexity and 64% reduction

in energy consumption).

The objective of the proposed work is the study, the

optimization and the implementation of SS algorithm. The

original SS has a criterion which interrupts the search if it

exceeds a certain threshold. Even though SS is a less intensive

computationally algorithm than FS, it still has a high

computational complexity, making it difficult to implement it

in embedded devices. We address this problem by presenting a

new modified form of the SS algorithm, which improves both

execution time and energy consumption. The modified

algorithm performs the search in a fashion similar to the SS

algorithm, but uses a step search larger than one pixel

comparing to the original SS. This results in omitting the

comparisons of roughly half the number of the blocks, thus

decreasing the computational complexity of the modified

algorithm.

In addition, we achieve further energy and performance

gains by designing a memory hierarchy that decreases the

number of off-chip memory data transfers to a minimum. The

proposed memory hierarchy is the outcome of the exploration

of all possible structures of hierarchy for the algorithm, and

determining the optimal one in terms of execution time and

energy consumption. The algorithmic modifications involve,

however, a reduction in the video quality, which remains in the

level of tolerance, as proven by experimental results (Peak

Signal to Noise Ratio, PSNR measurements). Finally, the

optimized version of the proposed Modified SS algorithm

quadruples the performance and reduces the energy

consumption by 64%, compared with the original SS

algorithm.

II. SPIRAL SEARCH MOTION ESTIMATION ALGORITHM AND

MODIFIED ALGORITHM

In a sequence of frames, the current frame is computed from

a previous frame known as reference frame. The current frame

is divided into blocks, typically 16×16 pixels in size. Each

block is compared to a block in the reference frame and the

best matching block is selected. The search is conducted over

a predetermined search area. A vector denoting the

displacement of the block in the reference frame with respect

to the block in the current frame is computed. This vector is

known as “motion vector”. Motion estimation algorithms

compute the motion vectors by minimizing a cost function,

referred to as distance criterion. The most widely used distance

criterion is the Sum of Absolute Differences (SAD) [1]. The

SAD criterion of the block located at (m,n) position of a frame

is calculated using Equation 1, with If and If-1 being the pixel’s

luminance of the current and previous frames, respectively.

The motion vector (MVx, MVy) is given for the block located at

(x,y), which yields the minimum SAD criterion value.

),(min),(

),(),(),(

),(

1 1

1

dydxSADMVMV

dyndxmInmIdydxSAD

dydxyx

Bx

xm

By

yn

ff

=

++−= ∑ ∑
−+

=

−+

=

− (1)

A. Spiral Search Motion Estimation Algorithm

The SS algorithm compares a block of the previous frame

with blocks of the current frame inside the search area. The

search area is centered at the same coordinates as the previous

frame block. The searching process on the search space moves

outward spirally (Fig. 1), which means that it moves in circles

with increasing radius. Fig. 2 shows the pseudo-code of SS

algorithm. The first two external loop indices divide the

frames into B×B size blocks. The l-indexed loop refers to the

spiral which we are located, while the k-indexed loop

describes the location of the block within the spiral. The

distance criterion SAD is computed from all pixels of the B×B

block. If the value of the SAD criterion is higher than the value

of the previous best matching block, there is a break in the m-

indexed loop execution (stop criterion), because a better match

cannot be found in this block.

 Even though the SS algorithm compares all the blocks in

the search space area like the FS algorithm, SS differs in the

stop criterion. The computational complexity of the SS

algorithm (CCSS) is calculated by Equation 2, where Ncomp and

CCblock are the number of the block comparisons and the

computational complexity yield by a single block comparison,

respectively.

blockcompSS CCNCC ⋅= (2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3908

Fig. 1 MSS uses less comparison blocks compared with SS, using

steps with distance one, two or three pixels

/* Selecting block of the frame */
for(x=0;x<N/B;x++)
 for(y=0;y<M/B;y++)
 {
 /* Spiral index */
 for(l=1; l<= MAX_Spiral_index)
 /* Block index into the Spiral */
 for (k=1; k<=MAX_Number_Block_in_Spiral)
 {
 for(m=0;m<B;m++)
 for(n=0;n<B;n++) /* For all pixel of the block */
 {
 SAD criterion calculation
 if(SAD > SAD_previous) break; /* SS only */
 }
 step++;

 Calculate next k and l
 }
 }

/* Additional commands in MSS */
if(SAD > Vth1) step++;
if(SAD > Vth2) step++;

Fig. 2 The pseudo-code of SS algorithm, the MSS algorithm has

additionally the command in the box

B. Modified Spiral Search Motion Estimation Algorithm

During the study of the motion estimation in the SS

algorithm, we observed an interesting characteristic. The SAD

criterion value decreases approaching to the block with the

best match to the previous frame. Furthermore, it was set to

zero or was too small when the suitable block was found.

Therefore, we considered that we could achieve a reduction in

the algorithm’s processing time if we decreased the number of

blocks for which the SAD value was calculated in each spiral.

Specifically, we found out during the observations that for

these two frames, as we moved away from the best match

block, the SAD value becomes higher (>450). On the other

hand, there is no large difference of SAD values between two

blocks located one pixel away from each other. For example,

the maximal difference is 1×16×256=4096 (1 pixel step

multiplied by the 16 pixels of the one dimension and 256 of

the highest possible luminance difference) in the worst case. In

practice, we measured the difference to vary between 100 and

500.

We can explain this as follows: the luminance value of a

pixel differs a little from its neighbor’s pixels. In addition, the

SAD value for the nearby blocks is small, such that if the SAD

of (x, y) block is high (higher than a threshold VTH1), then also

the SAD value of (x+1, y) will be high and could not be the

best matching block. Thus, we skip the calculation for this

block and we compare the (x+2, y) block, yielding a step equal

to 2. Similarly, if the SAD of (x, y) block is much higher

(higher than a threshold VTH2) we skip the next two blocks and

we compare the (x+3, y) block. Such, pixel steps are defined

according to the current value of the SAD criterion.

Summarizing, we compute the pixel step by using two

thresholds VTH1 and VTH2 (VTH1<VTH2), as follows:

• if SAD<VTH1, we have a step equal to 1 pixel

• if VTH1<SAD<VTH2, we have a step equal to 2 pixels

• if SAD>VTH2, we have a step equal to 3 pixels

The pseudo-code of the MSS algorithm is similar to the SS

algorithm and has additionally the new check conditions, for

the two thresholds values, after the calculation of SAD

criterion (Fig. 2). Using higher threshold values, the video

quality will deteriorate but the complexity will be lower. This

is clearly a trade-off for the designer between the video quality

and performance. We should also notice that for low bit-rate

applications the video quality is not the most important factor.

The performance and the energy consumption (which are both

related with the complexity of the algorithm) are the most

important, especially in mobile multimedia terminals. The

proposed MSS allows to the designer to have a pool of

solutions for his/her Motion Estimation (ME) application.

Equation 3 calculates the computational complexity of the

MSS algorithm. More specifically, the sum gives the total

number of the 2-pixels steps, and the gives the total number of

the 3-pixels steps. An overhead (Overheadstep) inside the block

comparison has been added, in order to scale the step (1, 2 or 3

pixels) according to the SAD criterion value.

() ()
stepblockcompMSS OverheadCCstepsstepsNCC +⋅⋅−−= ∑∑)3()2(2 (3)

Finally, the block comparison reduction using both the 2-

pixels step and the 3-pixels step gives smaller computational

complexity compared with the SS algorithm.

III. OPTIMIZATION TRANSFORMATIONS

In multimedia applications the energy consumption related

to memory transfers is the dominant factor in total energy cost

[11]. This motivated us to find an efficient method to reduce it.

For this purpose, we created an application specific data

memory hierarchy which exploits the temporal locality of the

data, by reusing them. If there is a sufficient reuse of the data,

it can be advantageous to copy the data that are used

frequently to a smaller memory, such that for the following

usages a data element can be read from the smaller memory

instead of the larger memory. The smaller memories require

less energy per access and as a result they decrease the total

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3909

energy consumption. However, we must first determine the

specific data sets, which are heavily re-used in a short period

of time and therefore, are appropriate to be placed in a

separate memory. Consequently, we performed an exhaustive

data reuse exploration of the application’s data over time. In

order to explore the memory hierarchy, algorithmic

optimizations are required.

We optimized the SS and MSS algorithm using algorithmic

transformations for energy consumption and performance,

according to the methodologies [8], [9] and [11], for typical

input video sequences benchmark QCIF (176×144). One type

of optimizations applied is the global loop transformations

such as loop merging and tiling, which are used to increase the

regularity of the loop structure of the application. We also

applied data reuse transformations in order to reduce the

number of off-chip data memory transfers. In particular, SS

algorithm has two data arrays (current_frame and

previous_frame), which account for most of the data accesses.

Using profiling, we found that the two array signals of

176×144 pixel size have the highest number of data accesses

[15]. These blocks carry two subsequent frames of the video

sequence and are used in some processing loops, resulting in

many different copy candidate implementations.

Using a data reuse detection technique [16], [17] we found

out that in the SS algorithm, three arrays are possible copy

candidates: (i) prev_line of size 176×48, (ii) RW of size 48×48

and (iii) CB of size 16×16. Of course different sizes of video

sequences result in different prev_line size. Though, the size

of RW and CB remain the same, because these copy candidates

depend on block size only. The purpose of the three arrays is

to copy part of the data from the off-chip memory of current

and previous frames. Thus, a lot of different memory

hierarchies can be designed combining these arrays. For this

reason, an exhaustive exploration between the multitudes of

different memory hierarchy implementations is required.

Exploring all the possible different memory hierarchy

structures, based on the three block candidates, we discovered

17 different memory hierarchies. These hierarchies were

produced by all the different combinations of the three copy

candidates. Every data reuse transformation corresponds to a

different memory hierarchy, such that 17 transformations exist

(Fig. 3).

The number on top of every copy candidate (Fig. 3)

identifies the current data reuse transformation. The first

number corresponds to the transformation with data reuse from

the higher level, while the second number corresponds to the

transformation with data reuse between the higher level and

the same block. Our goal is to move accesses from off-chip

memory to on-chip layers. When the dominant part of the data

memory accesses are happening to the memory blocks of small

size, closer to the processor core, the energy consumption is

reduced and the performance is increased.

Current

Frame

(176x144)

1

2

3

cblock_line

(176x16)

Previous

Frame

(176x144)

prev_line (176x48)

RW

(48x48)
4,5

6,7

8,9cb
(16x16)

RW

(48x48)

10,11

12,13 14,15

16,17

On - Chip Memory - HierarchyOff - Chip Memory

cb
(16x16)

cb
(16x16)

cb
(16x16)

cb
(16x16)

cb
(16x16)

Fig. 3 An exploration is required to pinpoint the optimum memory

hierarchy. The numbers indicate different memory hierarchies

These blocks carry copies of off-chip data. Taking into

consideration the on-chip size specification, we have to

carefully select the on-chip arrays in order not to exceed it.

On-chip size specification depends on the selected processor.

We decided to use a low power embedded processor

ARM920T to implement the SS and MSS algorithms.

The ARM920T processor has a scratchpad memory of 16

Kbytes. We assigned the array signals prev_line, RW and CB

with sizes 8448 bytes, 2304 bytes and 256 bytes respectively

to the on-chip memory. The excessively large sizes of

current_frame and previous_frame did not allow these to be

mapped there. Taking into consideration the previous facts, we

propose an embedded system architecture with 64 KB off-chip

and 16 KB on-chip data memory (Fig. 4), to implement the SS

algorithm.

Fig. 4 The architecture of the embedded system is based on ARM

core with 16 KB on-chip memory

The proposed architecture is optimized for the 176×144

pixels QCIF video sequence. In order to use video sequences

with larger size, the RW and CB remain the same size, but the

prev_line will have different size. This means that the on-chip

memory depends on the frame size. The sizes of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3910

previous_frame and current_frame are direct related with the

size of input video sequence, too.

The system consists of an external data memory, instruction

memory and the processor unit. Applying the Data transfer and

Storage Exploration (DTSE) Methodology, the number of

memory accesses to the background memory current_frame

and previous_frame, is reduced. prev_line, RW and CB are

placed in on-chip memory, carrying copies of off-chip data.

Thus a significant number of memory accesses are shifted

from off-chip memory to on-chip memory.

Since the energy consumption per access to the external

(off-chip) memory is much higher compared with on-chip

accesses, the proposed system architecture has very low energy

consumption compared to the original architecture, as our

estimations reveal.

IV. EXPERIMENTAL RESULTS

To evaluate our MSS algorithm, we took measurements in

video quality and made estimations in terms of cycles and

energy consumption. The measurements reveal that the output

video quality of the MSS is similar to the SS algorithm.

Comparison measurements between SS and MSS algorithms

were also performed, in order to estimate the energy savings

and the performance increase in an ARM920T core

implementation. Finally, the new implementation of MSS

algorithm is suited to low power devices, because it achieves

higher energy savings compared to the original SS algorithm.

A. SS and MSS Evaluation

We used an ARM processor core emulator, called

ARMulator [18] to take our measurements in terms of

executed cycles and memory accesses. This tool, which

features algorithm and basic system architecture simulation,

estimates the number of cycles, the number of instructions, and

the number of accesses to data memory. The simulation results

for the number of cycles for the SS and MSS algorithms, show

significant performance improvement (Fig. 5). As illustrated,

the SS and MSS implementations have a big difference in

execution times. It is obvious that the proposed algorithm

requires less than half the execution time compared with the

SS, for all transformations. Transformation No. 5 (pinpointed

by the dashed line in Fig. 3) requires fewer cycles to

implement: 69% of the original MSS cycles and merely 23%

of the original SS algorithm cycles.

The huge reduction of the number of execution cycles

(which improves the performance) of the MSS algorithm

enables the design of real-time hardware implementations. The

average number of (micro-)instructions required to implement

the MSS is 31% of the average number of transformations

required for the original algorithm (Fig. 6). The number of

executed commands is directly related to the energy

consumption of the instruction memory. With other words

reducing the number of executed instructions we are reducing

the instruction memory energy consumption.

The energy consumption of the Data and Instruction

Memory is estimated using the CACTI energy model [19]. Fig.

7, total energy consumption in both instruction memory and

data memory hierarchy, illustrates the energy benefits of our

algorithm. The best results in memory energy consumption are

given by transformation No 3. The data memory has very low

penalty in terms of energy consumption. The proposed

architecture, using the on-chip memory minimizes the off-chip

memory transfers, which are more power consuming compared

to the on-chip memory transfers. The total memory energy

consumption in the MSS algorithm is reduced by 50%

compared to the original SS algorithm.

Fig. 5 Our MSS has lower execution time than the original SS

Fig. 6 Our MSS has lower number of executed instructions, showing

a reduced complexity compared with original SS

Fig. 7 Our MSS has lower data and instruction energy consumption,

compared to the original SS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3911

B. Video Quality Measurements

The MSS algorithm has fewer block-matching comparisons,

resulting in lower computational complexity. This does not

yield always the best matching and does not always result in

optimal motion vectors. For this reason, the reconstructed

sequence may have lower video quality compared with the

sequence using the SS algorithm. Fig. 8 presents the PSNR of

different video sequences (benchmark) using different

threshold values; the first point of X-axis corresponds to the

original SS algorithm, while all the remaining values

correspond to different VTH1 values. The values of VTH2 are

related with VTH1 according to the relation 1.5×VTH1.

Measurements using the 200 frames video sequences of

“Akiyo”, “Coastguard”, “Container”, “Foreman”, “M_d”, and

“Silent” yield a PSNR of MSS similar with SS. For example,

for “Akiyo” sequence the SS algorithm gives PSNR 37.55 dB,

while the MSS gives PSNR 34.75 - 36.24 dB for variable

threshold values. Fig. 8 indicates that MSS algorithm gives

very good results in video quality for the remaining

benchmarks, compared with the original SS. As the thresholds

values increase the numbers of block comparisons increase,

which means that the computational complexity increases.

Thus, for higher threshold values the PSNR measurements of

MSS are very close with the SS algorithm.

25

27

29

31

33

35

37

39

41

SS 20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

Threshold Values

P
S
N

R
 (
d
B
)

Akiyo Coastguard Container Foreman M_d Silent

Fig. 8 The quality of different video sequences using

MSS algorithm (measured in PSNR), is similar with SS

algorithm.

In order to validate our estimations we examined a

representative set of video sequences (Table I). Table I

presents the PSNR measurements, for different established

video sequence benchmarks. Comparing the PSNR

measurements of the different ME algorithms, we conclude

that MSS algorithm has similar PSNR with PHODS and

3SLOG algorithms. The MSS PSNR results are 2.3 dB lower,

2.6 dB lower, 2.3 dB and 1 dB lower, than the original SS, HS,

3SLOG and PHODS respectively. Taking into consideration

that researchers from the video processing domain indicate as

acceptable the video quality of over 30 dB [20], we conclude

that using the Modified Spiral Search ME algorithm we have a

satisfactory video quality.

TABLE I

PSNR MEASUREMENTS OF MSS SHOW THAT THE VIDEO QUALITY OF MSS IS

SIMILAR WITH OTHER POPULAR MOTION ESTIMATION ALGORITHMS

In order to evaluate the modified algorithm, we computed

the PSNR of the output video, together with the number of

cycles (Fig. 9) versus the threshold values. Fig. 9 shows that

the execution time (i.e. number of cycles) of the proposed

algorithm, implemented on an ARM processor core, is about

the half of the original algorithm, while, on the same time, the

PSNR level is similar. The quality can be further improved

using a higher threshold, incurring a small penalty in the

number of processing cycles.

 Concluding, the optimized MSS algorithm gives an overall

optimal result in terms of performance (up to 77% increase)

and energy consumption (up to 64% reduction), with some

penalty in image quality (about 2 dB video degradation in the

PSNR). Furthermore, MSS algorithm provides trade-offs to

the designer in terms of performance, energy consumption and

video quality.

1,0E+07

6,0E+07

1,1E+08

1,6E+08

SS 20
0

40
0

60
0

80
0
10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

Threshold values

#
 C

y
cl
es

33,0

33,5

34,0

34,5

35,0

35,5

36,0

36,5

37,0

37,5

38,0

P
S
N
R
 (
d
B
)

Cycles PSNR

 Fig. 9 Execution time vs. video quality comparison between SS and

MSS with variable threshold values

V. CONCLUSION

ME algorithms are crucial in the multimedia applications

domain. ME algorithms (e.g. spiral search) are the dominant

part in the system computational complexity and energy

consumption of video applications. We have presented a

promising Modified Spiral Search algorithm with lower

computational complexity. The MSS algorithm reduces the

number of block comparisons using two threshold values and

steps bigger than one, depending on the previous criterion

value of the block matching. The Modified Spiral Search

algorithm is an optimized form of SS, which increases

algorithm performance by a factor of four, with minimal

PSNR (dB) Akiyo Coastguard Container Foreman M_d Silent

MSS 31.28 23.66 30.50 30.22 39.07 29.70

SS & FS 36.17 27.68 31.74 31.77 39.63 31.55

HS 34.81 28.50 33.17 32.02 39.94 31.87

3SLOG 34.29 28.51 32.06 32.00 39.84 31.70

PHODS 31.07 27.93 31.30 30.52 39.55 30.27

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3912

degradation in video quality.

An exploration between the different memory hierarchies

has been carried out, in order to find the optimal one. An

embedded system architecture implementing the MSS and SS

algorithms, based on ARM920T processor, has been

presented.

REFERENCES

[1] D. Soudris, C. Piguet, C. Goutis, Designing CMOS Circuits for Low-

Power, Kluwer Academic Publisher Press, (2002)

[2] Christian Piguet, Low-Power Electronics Design, CRC Press, (2004)

[3] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra,

“Overview of the H.264 / AVCVideo Coding Standard”, in IEEE

Transaction on Circuits and Systems for Video Technology, Vol. 13,

Issue 7, pp. 560- 576 (2003)

[4] André Kaup and Hubert Mooshofer, “Performance and Complexity

Analysis of Rate Constrained Motion Estimation in MPEG-4”, Proc.

Multimedia Systems and Applications II, Boston, Mass., (1999) 20-22

September, SPIE Vol. 3845, pp. 202-211

[5] Karl Guttag, Robert J. Gove, and Jerry R. Van Aken, “A single-chip

multiprocessor for multimedia: The MVP”, IEEE Computer Graphics

and Applications, Vol. 12, No. 6, pp. 53–64 (1992)

[6] Chok-Kwan Cheung and Lai-Man Po, “Normalized Partial Distortion

Search Algorithm for Block Motion Estimation”, IEEE Transaction on

Circuits and Systems for Video Technology, Vol. 10, No. 3, pp. 417-

422 (2000)

[7] Xiaoan Lu, Thierry Fernaine, Yao Wang, “Modeling Power

Consumption of a H.263 Video Encoder”, Proceedings of the

International Symposium on Circuits and Systems, ISCAS ‘04, (2004)

23-26 May, pp. 77- 80

[8] D. Soudris, N. Zervas, A. Argyriou, M. Dasygenis, K. Tatas, C. Goutis

and A. Thanailakis, “Data-reuse and parallel embedded architectures for

lowpower, real-time multimedia applications”, Proceedings of 10th Int.

Workshop PATMOS, Gottigen, Germany, (2000) September, pp. 243–

254

[9] M. Dasygenis, N. Kroupis, K. Tatas, A. Argyriou, D. Soudris and A.

Thanailakis, Power and Performance Exploration of Embedded Systems

Executing Multimedia Kernels, IEE Proc.-Comput. Digit. Tech., Issues

“Low-power system-on-chip”, Vol 149, No 4, pp.164-172, (2002)

[10] P. Kuhn, G. Diebel, S. Herrmann, A. Kaup, A. Keil, R. Mayer, H.

Mooshofer, W. Stechele, “Complexity and PSNR-Comparison of several

Fast Motion Estimation Algorithms for MPEG-4”, vol. SPIE 3460

Applications of Digital Image Processing XXI, San Diego, July, (1998)

[11] F. Catthoor, K. Danckaert, K. Kulkarni, E. Brockmeyer, P.G Kjeldsberg,

T. van Achteren and T. Omnes, Data Access and Storage Management

for Embedded Programmable Processors, Kluwer Academic

Publishers, Boston, (2002)

[12] Kwon Moon Nam, Joon-Seek Kim, Rae-Hong Park, Young Serk Shim,

“A fast hierarchical motion vector estimation algorithm using mean

pyramid”, IEEE Transactions on Circuits and Systems on Video

Technology, Vol.5, No.4, pp 344-351, (1995)

[13] Bhaskaran and K. Kostantinides, Image and Video Compression

Standards, Kluwer Academic Publishers, (1998)

[14] Th. Zahariadis, D. Kalivas, “A Spiral Search Algorithm For Fast

Estimation Of Block Motion Vectors”, Proceedings of the EUSIPCO

96, Eighth European Signal Processing Conference, Trieste, Italy,

(1996), September, pp 1079-82.

[15] Francky Catthoor, Frank Franssen, Sven Wuytack, Lode Nachtergaele,

and Hugo De Man, “Global communication and memory optimizing

transformations for low power signal processing systems”, Proceedings

IEEE/ACM Int. Workshop on Low Power Design, Napa Valley, CA,

Apr. (1994), pp. 203-208

[16] Ilya Issenin, Erik Brockmeyer, Miguel Miranda and Nikil Dutt, “Data

Reuse Analysis Technique for Software-Controlled Memory

Hierarchies“, Proc. of Design, Automation and Test in Europe, DATE

2004, CNIT La Defese, Paris, France, (2004), 16-20 February, Vol. 1,

pp. 202-207

[17] N. D. Zervas, K. Masselos, C.E. Goutis, “Data-reuse exploration for

low-power realization of multimedia applications on embedded cores”,

Proceedings of 9th International Workshop on Power and Timing

Modeling, Optimization and Simulation (PATMOS’99), (1999),

October, pp. 71-80

[18] ARM Software Development Toolkit, ARM L.T.D., Version 2.50, Nov

(1998)

[19] P. Shivakumar and N. Jouppi, CACTI 3.0: An Integrated Cache Timing,

Power, and Area Model, WRL Research Report 2001/2, Aug. (2001).

[20] Prashant J. Shenoy, Harrick M. Vin, “Efficient support for scan

operations in video servers”, International Multimedia Conference, San

Francisco, California, United States, (1995), pp. 131-140

