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Abstract—One of the most growing areas in the embedded 

community is multimedia devices. Multimedia devices incorporate a 

number of complicated functions for their operation, like motion 

estimation. A multitude of different implementations have been 

proposed to reduce motion estimation complexity, such as spiral 

search. We have studied the implementations of spiral search and 

identified areas of improvement. We propose a modified spiral search 

algorithm, with lower computational complexity compared to the 

original spiral search. We have implemented our algorithm on an 

embedded ARM based architecture, with custom memory hierarchy. 

The resulting system yields energy consumption reduction up to 64% 

and performance increase up to 77%, with a small penalty of 2.3 dB, 

in average, of video quality compared with the original spiral search 

algorithm. 

 

Keywords—Spiral Search, Motion Estimation, Embedded 

Systems, Low Power.  

I. INTRODUCTION 

ULTIMEDIA applications, such as teleconferencing, video 

broadcasting and video streaming, have become 

increasingly common nowadays. The most critical factor is the 

increasing need for wireless systems or portable multimedia 

applications. The portability of a device is heavily bound by its 

energy consumption, since energy consumption affects the 

battery service life and weight, packaging costs, as well as the 

circuit reliability [1]. All video applications are dominated by 

data transfers and therefore, they feature high requirements on 

memory size and performance, while at the same time require 

great amounts of energy for the data transfers from and to off-

chip memory. Energy dissipation must be lowered 

significantly, in order to implement these applications in 

embedded devices. This can be reduced using algorithmic 

modifications and transformations, together with a suitably 

designed custom memory hierarchy [2].  

On the other hand, some of the most popular video 

conference applications are based H.26L [3] protocol. H.26L 

is a high-performance video coding standard for video 

transmission into a low bit rate channel. Also, involve 
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computationally intensive parts of Motion Estimation (ME) 

kernels and require many off-chip memory accesses [4]. It has 

been reported that the ME algorithms are responsible for up to 

60% of the total power consumption [5] of an application 

because they require huge number of off-chip memory 

accesses. For this reason, the performance and energy 

consumption optimization of multimedia algorithms has been 

the subject of extensive research [6], [7], [8], [9], [10].  

Researchers commonly tackle the problem of the ME power 

consumption either by proposing new ME algorithms [6], [7], 

specially designed for low power requirements, or use 

transformations optimization techniques on existing algorithms 

[8], [9], [11] in order to reduce the execution time and the 

energy consumption. Kuhn et al in a detailed survey of ME 

kernels [10], pinpointed the high complexity of the different 

ME kernels under consideration and studied it together with 

the visual quality of the video stream. Motion estimation can 

be performed by various methods. One of them is Full Search 

(FS) which is a computationally-expensive algorithm, but 

guarantees finding the blocks that yield the minimum cost 

value. Due to the high computational complexity, alternative 

search methods are desirable. ME algorithms with lower 

computational complexity are the Hierarchical Search (HS) 

[12], the 3-Step Logarithmic Search (3SLOG) [13], the 

Parallel Hierarchical One-Dimensional Search (PHODS) [13] 

and the Spiral Search (SS) [6]. For the implementation of the 

above algorithms in an embedded system, a number of 

algorithmic optimization techniques have to be employed. The 

critical point, in which system optimization research has 

focused, is the reduction of the number of accesses to off-chip 

data memory. The conclusion is that ME applications have 

high computation requirements that cannot be met in current 

multimedia terminals.  

Cheung et al [6] introduced a novel fast block-matching 

algorithm named “normalized partial distortion search”. This 

algorithm reduces computations by using a halfway-stop 

technique in the calculation of block distortion value. In order 

to increase the probability of early rejection of impossible 

candidate motion vectors, the algorithm normalizes the 

accumulated partial distortion and the current minimum 

distortion before comparison. Even if they proposed 

interesting optimizations in Full Search (FS) algorithm, the 

computational complexity is still very high compared to the 

Spiral Search algorithm.  

A fast ME search method, based on Spiral Search algorithm 

was introduced by Zahariadis et al [14]. They proposed a three 

step algorithm, which follows a spiral path searching outwards 
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for candidate locations that satisfy the matching criterion. The 

efficiency of this algorithm arose from two facts: i) the 

reduction in the number of candidate locations achieved by 

leaving out selected zones of pixels and ii) the reduction in the 

number of computations since they skip some candidate 

locations. It is a fast motion estimation algorithm, but reduces 

the signal-to-noise ratio up to 3dB and uses the mean square 

error criterion. Thus, it has more computational complexity 

than Sum of Absolute Difference (SAD) but it gives a better 

result in output video quality. However, there is no hardware 

implementation taking into account performance and energy 

design issues.  

Furthermore, in [7] researchers proposed power 

consumption models for the H.263 video coding, using 

different ME kernels. The models were developed by 

executing the H.263 encoder on a Pentium III PC. However, 

they have not designed any architecture nor optimized the 

system for the given applications. 

In previous research works [8], [9] we had introduced data 

memory hierarchy optimization techniques for motion 

estimation algorithms, using global loop and data-reuse 

transformations for three different embedded processor 

architecture models. Even though we had managed to reduce 

energy consumption up to 10-60%, the algorithms had high 

computational complexity to execute on portable devices. In 

this research work we confront the computational complexity 

and energy consumption together. We propose a novel version 

of Spiral Search (SS), in which we make algorithmic 

optimizations to it, and design a low power memory hierarchy 

(achieving a 77% reduction in complexity and 64% reduction 

in energy consumption). 

The objective of the proposed work is the study, the 

optimization and the implementation of SS algorithm. The 

original SS has a criterion which interrupts the search if it 

exceeds a certain threshold. Even though SS is a less intensive 

computationally algorithm than FS, it still has a high 

computational complexity, making it difficult to implement it 

in embedded devices. We address this problem by presenting a 

new modified form of the SS algorithm, which improves both 

execution time and energy consumption. The modified 

algorithm performs the search in a fashion similar to the SS 

algorithm, but uses a step search larger than one pixel 

comparing to the original SS.  This results in omitting the 

comparisons of roughly half the number of the blocks, thus 

decreasing the computational complexity of the modified 

algorithm.  

In addition, we achieve further energy and performance 

gains by designing a memory hierarchy that decreases the 

number of off-chip memory data transfers to a minimum. The 

proposed memory hierarchy is the outcome of the exploration 

of all possible structures of hierarchy for the algorithm, and 

determining the optimal one in terms of execution time and 

energy consumption. The algorithmic modifications involve, 

however, a reduction in the video quality, which remains in the 

level of tolerance, as proven by experimental results (Peak 

Signal to Noise Ratio, PSNR measurements). Finally, the 

optimized version of the proposed Modified SS algorithm 

quadruples the performance and reduces the energy 

consumption by 64%, compared with the original SS 

algorithm. 

II. SPIRAL SEARCH MOTION ESTIMATION ALGORITHM AND 

MODIFIED ALGORITHM 

In a sequence of frames, the current frame is computed from 

a previous frame known as reference frame. The current frame 

is divided into blocks, typically 16×16 pixels in size. Each 

block is compared to a block in the reference frame and the 

best matching block is selected. The search is conducted over 

a predetermined search area. A vector denoting the 

displacement of the block in the reference frame with respect 

to the block in the current frame is computed. This vector is 

known as “motion vector”. Motion estimation algorithms 

compute the motion vectors by minimizing a cost function, 

referred to as distance criterion. The most widely used distance 

criterion is the Sum of Absolute Differences (SAD) [1]. The 

SAD criterion of the block located at (m,n) position of a frame 

is calculated using Equation 1, with If and If-1 being the pixel’s 

luminance of the current and previous frames, respectively. 

The motion vector (MVx, MVy) is given for the block located at 

(x,y), which yields the minimum SAD criterion value. 
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A. Spiral Search Motion Estimation Algorithm  

The SS algorithm compares a block of the previous frame 

with blocks of the current frame inside the search area. The 

search area is centered at the same coordinates as the previous 

frame block. The searching process on the search space moves 

outward spirally (Fig. 1), which means that it moves in circles 

with increasing radius. Fig. 2 shows the pseudo-code of SS 

algorithm. The first two external loop indices divide the 

frames into B×B size blocks. The l-indexed loop refers to the 

spiral which we are located, while the k-indexed loop 

describes the location of the block within the spiral. The 

distance criterion SAD is computed from all pixels of the B×B 

block. If the value of the SAD criterion is higher than the value 

of the previous best matching block, there is a break in the m-

indexed loop execution (stop criterion), because a better match 

cannot be found in this block. 

 Even though the SS algorithm compares all the blocks in 

the search space area like the FS algorithm, SS differs in the 

stop criterion. The computational complexity of the SS 

algorithm (CCSS) is calculated by Equation 2, where Ncomp and 

CCblock are the number of the block comparisons and the 

computational complexity yield by a single block comparison, 

respectively. 

blockcompSS CCNCC ⋅=         (2) 
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Fig. 1 MSS uses less comparison blocks compared with SS, using 

steps with distance one, two or three pixels 

 
/* Selecting block of the frame */
for(x=0;x<N/B;x++)
 for(y=0;y<M/B;y++)
 {
  /* Spiral index */
  for(l=1; l<= MAX_Spiral_index)
   /* Block index into the Spiral */
   for (k=1; k<=MAX_Number_Block_in_Spiral)
    {
     for(m=0;m<B;m++)
      for(n=0;n<B;n++) /* For all pixel of the block */
      {
        SAD criterion calculation
        if(SAD > SAD_previous) break; /* SS only */
      }
      step++;

      Calculate next k and l
    }
 }

/* Additional commands in MSS */
if(SAD > Vth1) step++;
if(SAD > Vth2) step++;

 
Fig. 2 The pseudo-code of SS algorithm, the MSS algorithm has 

additionally the command in the box 

B. Modified Spiral Search Motion Estimation Algorithm 

During the study of the motion estimation in the SS 

algorithm, we observed an interesting characteristic. The SAD 

criterion value decreases approaching to the block with the 

best match to the previous frame. Furthermore, it was set to 

zero or was too small when the suitable block was found. 

Therefore, we considered that we could achieve a reduction in 

the algorithm’s processing time if we decreased the number of 

blocks for which the SAD value was calculated in each spiral. 

Specifically, we found out during the observations that for 

these two frames, as we moved away from the best match 

block, the SAD value becomes higher (>450).  On the other 

hand, there is no large difference of SAD values between two 

blocks located one pixel away from each other. For example, 

the maximal difference is 1×16×256=4096 (1 pixel step 

multiplied by the 16 pixels of the one dimension and 256 of 

the highest possible luminance difference) in the worst case. In 

practice, we measured the difference to vary between 100 and 

500.  

We can explain this as follows: the luminance value of a 

pixel differs a little from its neighbor’s pixels. In addition, the 

SAD value for the nearby blocks is small, such that if the SAD 

of (x, y) block is high (higher than a threshold VTH1), then also 

the SAD value of (x+1, y) will be high and could not be the 

best matching block. Thus, we skip the calculation for this 

block and we compare the (x+2, y) block, yielding a step equal 

to 2. Similarly, if the SAD of (x, y) block is much higher 

(higher than a threshold VTH2) we skip the next two blocks and 

we compare the (x+3, y) block. Such, pixel steps are defined 

according to the current value of the SAD criterion. 

Summarizing, we compute the pixel step by using two 

thresholds VTH1 and VTH2 (VTH1<VTH2), as follows: 

•  if SAD<VTH1, we have a step equal to 1 pixel   

•  if VTH1<SAD<VTH2, we have a step equal to 2 pixels 

•  if SAD>VTH2, we have a step equal to 3 pixels 

The pseudo-code of the MSS algorithm is similar to the SS 

algorithm and has additionally the new check conditions, for 

the two thresholds values, after the calculation of SAD 

criterion (Fig. 2). Using higher threshold values, the video 

quality will deteriorate but the complexity will be lower. This 

is clearly a trade-off for the designer between the video quality 

and performance. We should also notice that for low bit-rate 

applications the video quality is not the most important factor. 

The performance and the energy consumption (which are both 

related with the complexity of the algorithm) are the most 

important, especially in mobile multimedia terminals. The 

proposed MSS allows to the designer to have a pool of 

solutions for his/her Motion Estimation (ME) application. 

Equation 3 calculates the computational complexity of the 

MSS algorithm. More specifically, the sum  gives the total 

number of the 2-pixels steps, and the  gives the total number of 

the 3-pixels steps. An overhead (Overheadstep) inside the block 

comparison has been added, in order to scale the step (1, 2 or 3 

pixels) according to the SAD criterion value. 

( ) ( )
stepblockcompMSS OverheadCCstepsstepsNCC +⋅⋅−−= ∑∑ )3()2( 2  (3) 

Finally, the block comparison reduction using both the 2-

pixels step and the 3-pixels step gives smaller computational 

complexity compared with the SS algorithm.   

III. OPTIMIZATION TRANSFORMATIONS 

In multimedia applications the energy consumption related 

to memory transfers is the dominant factor in total energy cost 

[11]. This motivated us to find an efficient method to reduce it. 

For this purpose, we created an application specific data 

memory hierarchy which exploits the temporal locality of the 

data, by reusing them.  If there is a sufficient reuse of the data, 

it can be advantageous to copy the data that are used 

frequently to a smaller memory, such that for the following 

usages a data element can be read from the smaller memory 

instead of the larger memory. The smaller memories require 

less energy per access and as a result they decrease the total 
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energy consumption. However, we must first determine the 

specific data sets, which are heavily re-used in a short period 

of time and therefore, are appropriate to be placed in a 

separate memory. Consequently, we performed an exhaustive 

data reuse exploration of the application’s data over time. In 

order to explore the memory hierarchy, algorithmic 

optimizations are required.   

We optimized the SS and MSS algorithm using algorithmic 

transformations for energy consumption and performance, 

according to the methodologies [8], [9] and [11], for typical 

input video sequences benchmark QCIF (176×144). One type 

of optimizations applied is the global loop transformations 

such as loop merging and tiling, which are used to increase the 

regularity of the loop structure of the application. We also 

applied data reuse transformations in order to reduce the 

number of off-chip data memory transfers.  In particular, SS 

algorithm has two data arrays (current_frame and 

previous_frame), which account for most of the data accesses. 

Using profiling, we found that the two array signals of 

176×144 pixel size have the highest number of data accesses 

[15]. These blocks carry two subsequent frames of the video 

sequence and are used in some processing loops, resulting in 

many different copy candidate implementations.  

Using a data reuse detection technique [16], [17] we found 

out that in the SS algorithm, three arrays are possible copy 

candidates: (i) prev_line of size 176×48, (ii) RW of size 48×48 

and (iii) CB of size 16×16. Of course different sizes of video 

sequences result in different prev_line size. Though, the size 

of RW and CB remain the same, because these copy candidates 

depend on block size only. The purpose of the three arrays is 

to copy part of the data from the off-chip memory of current 

and previous frames. Thus, a lot of different memory 

hierarchies can be designed combining these arrays. For this 

reason, an exhaustive exploration between the multitudes of 

different memory hierarchy implementations is required. 

Exploring all the possible different memory hierarchy 

structures, based on the three block candidates, we discovered 

17 different memory hierarchies. These hierarchies were 

produced by all the different combinations of the three copy 

candidates. Every data reuse transformation corresponds to a 

different memory hierarchy, such that 17 transformations exist 

(Fig. 3).  

The number on top of every copy candidate (Fig. 3) 

identifies the current data reuse transformation. The first 

number corresponds to the transformation with data reuse from 

the higher level, while the second number corresponds to the 

transformation with data reuse between the higher level and 

the same block. Our goal is to move accesses from off-chip 

memory to on-chip layers.  When the dominant part of the data 

memory accesses are happening to the memory blocks of small 

size, closer to the processor core, the energy consumption is 

reduced and the performance is increased. 
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Fig. 3 An exploration is required to pinpoint the optimum memory 

hierarchy. The numbers indicate different memory hierarchies 

 

These blocks carry copies of off-chip data. Taking into 

consideration the on-chip size specification, we have to 

carefully select the on-chip arrays in order not to exceed it. 

On-chip size specification depends on the selected processor. 

We decided to use a low power embedded processor 

ARM920T to implement the SS and MSS algorithms.  

The ARM920T processor has a scratchpad memory of 16 

Kbytes. We assigned the array signals prev_line, RW and CB 

with sizes 8448 bytes, 2304 bytes and 256 bytes respectively 

to the on-chip memory. The excessively large sizes of 

current_frame and previous_frame did not allow these to be 

mapped there. Taking into consideration the previous facts, we 

propose an embedded system architecture with 64 KB off-chip 

and 16 KB on-chip data memory (Fig. 4), to implement the SS 

algorithm. 

 

 
Fig. 4 The architecture of the embedded system is based on ARM 

core with 16 KB on-chip memory 

 

The proposed architecture is optimized for the 176×144 

pixels QCIF video sequence. In order to use video sequences 

with larger size, the RW and CB remain the same size, but the 

prev_line will have different size. This means that the on-chip 

memory depends on the frame size. The sizes of 
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previous_frame and  current_frame are direct related with the 

size of input video sequence, too. 

The system consists of an external data memory, instruction 

memory and the processor unit. Applying the Data transfer and 

Storage Exploration (DTSE) Methodology, the number of 

memory accesses to the background memory current_frame 

and previous_frame, is reduced. prev_line, RW and CB are 

placed in on-chip memory, carrying copies of off-chip data. 

Thus a significant number of memory accesses are shifted 

from off-chip memory to on-chip memory. 

Since the energy consumption per access to the external 

(off-chip) memory is much higher compared with on-chip 

accesses, the proposed system architecture has very low energy 

consumption compared to the original architecture, as our 

estimations reveal. 

IV. EXPERIMENTAL RESULTS 

To evaluate our MSS algorithm, we took measurements in 

video quality and made estimations in terms of cycles and 

energy consumption. The measurements reveal that the output 

video quality of the MSS is similar to the SS algorithm. 

Comparison measurements between SS and MSS algorithms 

were also performed, in order to estimate the energy savings 

and the performance increase in an ARM920T core 

implementation. Finally, the new implementation of MSS 

algorithm is suited to low power devices, because it achieves 

higher energy savings compared to the original SS algorithm. 

A. SS and MSS Evaluation  

We used an ARM processor core emulator, called 

ARMulator [18] to take our measurements in terms of 

executed cycles and memory accesses. This tool, which 

features algorithm and basic system architecture simulation, 

estimates the number of cycles, the number of instructions, and 

the number of accesses to data memory. The simulation results 

for the number of cycles for the SS and MSS algorithms, show 

significant performance improvement (Fig. 5). As illustrated, 

the SS and MSS implementations have a big difference in 

execution times. It is obvious that the proposed algorithm 

requires less than half the execution time compared with the 

SS, for all transformations. Transformation No. 5 (pinpointed 

by the dashed line in Fig. 3) requires fewer cycles to 

implement: 69% of the original MSS cycles and merely 23% 

of the original SS algorithm cycles.  

The huge reduction of the number of execution cycles 

(which improves the performance) of the MSS algorithm 

enables the design of real-time hardware implementations. The 

average number of (micro-)instructions required to implement 

the MSS is 31% of the average number of transformations 

required for the original algorithm (Fig. 6). The number of 

executed commands is directly related to the energy 

consumption of the instruction memory. With other words 

reducing the number of executed instructions we are reducing 

the instruction memory energy consumption.  

The energy consumption of the Data and Instruction 

Memory is estimated using the CACTI energy model [19]. Fig. 

7, total energy consumption in both instruction memory and 

data memory hierarchy, illustrates the energy benefits of our 

algorithm. The best results in memory energy consumption are 

given by transformation No 3. The data memory has very low 

penalty in terms of energy consumption. The proposed 

architecture, using the on-chip memory minimizes the off-chip 

memory transfers, which are more power consuming compared 

to the on-chip memory transfers. The total memory energy 

consumption in the MSS algorithm is reduced by 50% 

compared to the original SS algorithm. 

 

Fig. 5 Our MSS has lower execution time than the original SS 

 

Fig. 6 Our MSS has lower number of executed instructions, showing 

a reduced complexity compared with original SS 

 

 

 
Fig. 7 Our MSS has lower data and instruction energy consumption, 

compared to the original SS 
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B. Video Quality Measurements 

The MSS algorithm has fewer block-matching comparisons, 

resulting in lower computational complexity. This does not 

yield always the best matching and does not always result in 

optimal motion vectors. For this reason, the reconstructed 

sequence may have lower video quality compared with the 

sequence using the SS algorithm. Fig. 8 presents the PSNR of 

different video sequences (benchmark) using different 

threshold values; the first point of X-axis corresponds to the 

original SS algorithm, while all the remaining values 

correspond to different VTH1 values. The values of VTH2 are 

related with VTH1 according to the relation 1.5×VTH1. 

Measurements using the 200 frames video sequences of 

“Akiyo”, “Coastguard”, “Container”, “Foreman”, “M_d”, and 

“Silent” yield a PSNR of MSS similar with SS. For example, 

for “Akiyo” sequence the SS algorithm gives PSNR 37.55 dB, 

while the MSS gives PSNR 34.75 - 36.24 dB for variable 

threshold values. Fig. 8 indicates that MSS algorithm gives 

very good results in video quality for the remaining 

benchmarks, compared with the original SS. As the thresholds 

values increase the numbers of block comparisons increase, 

which means that the computational complexity increases. 

Thus, for higher threshold values the PSNR measurements of 

MSS are very close with the SS algorithm. 
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Fig. 8 The quality of different video sequences using 

 

MSS algorithm (measured in PSNR), is similar with SS 

algorithm. 

In order to validate our estimations we examined a 

representative set of video sequences (Table I). Table I 

presents the PSNR measurements, for different established 

video sequence benchmarks. Comparing the PSNR 

measurements of the different ME algorithms, we conclude 

that MSS algorithm has similar PSNR with PHODS and 

3SLOG algorithms. The MSS PSNR results are 2.3 dB lower, 

2.6 dB lower, 2.3 dB and 1 dB lower, than the original SS, HS, 

3SLOG and PHODS respectively. Taking into consideration 

that researchers from the video processing domain indicate as 

acceptable the video quality of over 30 dB [20], we conclude 

that using the Modified Spiral Search ME algorithm we have a 

satisfactory video quality. 

 

 

TABLE I 

PSNR MEASUREMENTS OF MSS SHOW THAT THE VIDEO QUALITY OF MSS IS 

SIMILAR WITH OTHER POPULAR MOTION ESTIMATION ALGORITHMS 

 

In order to evaluate the modified algorithm, we computed 

the PSNR of the output video, together with the number of 

cycles (Fig. 9) versus the threshold values. Fig. 9 shows that 

the execution time (i.e. number of cycles) of the proposed 

algorithm, implemented on an ARM processor core, is about 

the half of the original algorithm, while, on the same time, the 

PSNR level is similar. The quality can be further improved 

using a higher threshold, incurring a small penalty in the 

number of processing cycles. 

 Concluding, the optimized MSS algorithm gives an overall 

optimal result in terms of performance (up to 77% increase) 

and energy consumption (up to 64% reduction), with some 

penalty in image quality (about 2 dB video degradation in the 

PSNR). Furthermore, MSS algorithm provides trade-offs to 

the designer in terms of performance, energy consumption and 

video quality. 
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 Fig. 9 Execution time vs. video quality comparison between SS and 

MSS with variable threshold values 

V. CONCLUSION 

ME algorithms are crucial in the multimedia applications 

domain. ME algorithms (e.g. spiral search) are the dominant 

part in the system computational complexity and energy 

consumption of video applications. We have presented a 

promising Modified Spiral Search algorithm with lower 

computational complexity. The MSS algorithm reduces the 

number of block comparisons using two threshold values and 

steps bigger than one, depending on the previous criterion 

value of the block matching. The Modified Spiral Search 

algorithm is an optimized form of SS, which increases 

algorithm performance by a factor of four, with minimal 

PSNR (dB) Akiyo Coastguard  Container Foreman M_d Silent 

MSS 31.28 23.66 30.50 30.22 39.07 29.70 

SS & FS 36.17 27.68 31.74 31.77 39.63 31.55 

HS 34.81 28.50 33.17 32.02 39.94 31.87 

3SLOG 34.29 28.51 32.06 32.00 39.84 31.70 

PHODS 31.07 27.93 31.30 30.52 39.55 30.27 
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degradation in video quality. 

An exploration between the different memory hierarchies 

has been carried out, in order to find the optimal one. An 

embedded system architecture implementing the MSS and SS 

algorithms, based on ARM920T processor, has been 

presented.   
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