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Abstract—Power system state estimation is the process of 

calculating a reliable estimate of the power system state vector 
composed of bus voltages' angles and magnitudes from telemetered 
measurements on the system. This estimate of the state vector 
provides the description of the system necessary for the operation 
and security monitoring. Many methods are described in the 
literature for solving the state estimation problem, the most important 
of which are the classical weighted least squares method and the non-
deterministic genetic based method; however both showed 
drawbacks.  In this paper a modified version of the genetic 
algorithm power system state estimation is introduced, Sensitivity of 
the proposed algorithm to genetic operators is discussed,  the 
algorithm is applied to case studies and finally it is compared with 
the classical weighted least squares method formulation.  
 

Keywords—Genetic algorithms, ill-conditioning, state 
estimation, weighted least squares. 

I. INTRODUCTION 
HE heart of the data processing activities of the modern 
electric utility energy control center is the power system 

state estimator using both real time measurements and a 
historical database. The power system state estimator detects 
errors in the measurements and calculates an optimal estimate 
of the system state vector of bus voltages' magnitudes and 
angles. This optimal state estimate is then used by the security 
monitoring, operation and control functions of the center [1]. 

The state estimation process is based on a statistical 
criterion that estimates the true value of the state variables of 
the system to minimize or maximize the selected criterion. 
The most common and familiar criterion used with state 
estimation is the weighted least squares method where the 
objective function is to minimize the sum of the squares of the 
differences between each measured value and the true 
estimated value with each squared difference divided or 
“weighted” by the variance of the meter error [2],[3] as 
follows: 
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Where                         
  fi     = function that is used to calculate the value being  

measured by the ith measurement  

 2
iσ     = variance for the 

thi measurement 
J(x)      = measurement residual  
m         = number of independent measurements 
 n        = the number of buses which mean that we have 2n-

1 unknown parameters. 

      zi             = 
thi measurement  

 
This problem maybe optimized by a deterministic iterative 

procedure, the Newton method [4]. Another method to solve 
the state estimation problem is by using genetic algorithms 
[5]; however both showed drawbacks. A modified version of 
the genetic algorithm power system state estimation is 
introduced in this paper, Sensitivity of the proposed algorithm 
to genetic operators is discussed, the algorithm is applied to 
case studies and finally it is compared with the classical 
weighted least squares method formulation.  

II. WEAKNESSES OF THE METHODS DESCRIBED IN THE 
LITERATURE 

A. Weaknesses of the Classical Weighted Least Squares 
Estimator  

The WLS State Estimator leads to the iterative solution of 
the so-called normal equation (NE) [4]:  
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          (2) 

Where 
R-1          = the weighting matrix (diag-1(σ2)) 
H            =   the Jacobian of f(x) 
HT R-1 H = the gain matrix G 

                                                   
It is clear that the Jacobian matrix is a sparse matrix i.e. a 

matrix populated primarily with zeros. Sparsity arises due to 

A Modified Genetic Based Technique for 
Solving the Power System State Estimation 

Problem  
A. A. Hossam-Eldin, E. N. Abdallah, and M. S. El-Nozahy  

T 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1455

 

systems which are loosely coupled as in power systems (for 2 
bus bars to be coupled they should have a line connection 
between them which is not usually the case in practical power 
systems). The sparsity pattern of G can be directly deduced 
from that of H which, in turn, is determined by the network 
topology and measurement configuration. This implies that, G 
will in general be much less sparse (containing many less 
zeros) than the Jacobian matrix and than the bus admittance 
matrix. Consequently, solving the NE will involve 
significantly more computations than those required by the 
power flow solution for the same network to obtain the 
inverse of G. i.e. obtaining the inverse of G needs more 
computations than those required in obtaining the inverse of 
the bus admittance matrix because G is less sparse than the 
admittance matrix. 

Another and perhaps a more important drawback for the 
WLS estimation is the numerical conditioning of the solution 
equations. A linear equation system is said to be ill-
conditioned if small errors in the entries of the coefficient 
matrix and/or the right hand side vector translate into 
significant errors in the solution vector. The more singular a 
matrix is, the more ill-conditioned its associated system will 
be. The degree, to which a system is ill conditioned, can be 
quantified by a measure called the condition number, which is 
defined as: 

       к (A) = ║A-1║.║A║                              (3)                                                                                   

Where ║A║ represents the norm of matrix A 
This value is equal to unity for identity matrices and tends 

to infinity for matrices approaching singularity. Condition 
numbers are typically approximately computed, due to the 
high computing cost of к as evident from its definition above. 
One such approximation which yields a good estimate of the 
condition number is the ratio λ max / λ min where λ max and λ min 
are the largest and smallest absolute eigenvalues respectively 
of a normalized matrix. It can be shown that:  

 
к (A AT) = (к (A))2                               (4)  

                                            
This means that the NE are intrinsically ill-conditioned 

(because the gain matrix contains HT.H element) A 
combination of poor word-length and severe ill-conditioning 
may cause convergence problems or even divergence. 

Furthermore, for the WLS state estimation, the following 
specific sources of ill-conditioning have been described in the 
literature [6]: 

• Very large weighting factors used to enforce 
virtual measurements. 

• Short and long lines simultaneously present at the 
same bus. 

• A large proportion of injection measurements. 
For the above mentioned reasons several alternative 

techniques which try to circumvent the shortcomings of the 
normal equations by avoiding the use of G and/or handling 
measurements in a different manner were adopted such as the 
orthogonal transformations which are more numerically stable 

than other methods. By applying them, the issue of ill-
conditioning is solved. But even this algorithm can suffer 
from divergence. 

B. Weaknesses of the Power System State Estimation 
Using Genetic Algorithms 

Genetic Algorithms Power System State Estimation 
(GAPSSE) is introduced in [5] however the proposed 
algorithms showed some drawbacks, the most important of 
which is that in many cases, the optimal solution is obtained 
before the predetermined maximum number of generations is 
reached (early convergence) however the algorithm has no 
mean to detect the occurrence of convergence and it continues 
till the maximum number of generations is computed, which is 
time consuming as shown in Fig. 1.  

 
Fig. 1 Solution of the GAPSSE 

 
This figure is adopted from [5], it shows that convergence 

is attained at the 234th generation, however the program 
continues till the maximum predefined number of generations 
is reached (which is 300). 

III. MODIFIED GAPSSE 

A. Representation of Variables 
Based on the results obtained in [5] real number encoding 

was adopted. Binary encoding results in a lengthy 
chromosome and thus increasing the computational burden 
introduced to the software. 

B. Fitness Function 
Genetic algorithms are mainly used to optimize 

maximization problems and since the problem of state 
estimation is minimization problem, the fitness function is 
given by [5]:   

    
                  Fmax –F(x)      , if F(x) < Fmax                                                  
 
Fit (x) =                                                                              (5) 
                   0                       , otherwise                   
 
Where F(x) is the raw fitness function = -J(x) (the sum of 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1456

 

weighted squares required to be minimized), Fmax   is the 
largest value of F(x) in the current population.  

This converts the minimization problem into a 
maximization one suitable to be handled by the genetic 
algorithms. Another representation for the fitness function was 
tested:  

Fit(x) = 
1
( )J x

                                      (6) 

However it didn’t give satisfactory results, it also proved to 
be time consuming and suffered convergence problems (in 
some cases it showed divergence) so we settled on the 
representation given in (5). 

C. Generating the Initial Population 
Initial population is generated in a complete random way 

between the pre-specified maximum and minimum values for 
the system state variables as in [5]. It is recommended that the 
difference between maximum and minimum range for system 
state variables is as small as possible to decrease the search 
space and obtain fast convergence.  

D. Genetic Operators for the Modified GAPSSE 
Population size: Determining the size of the population is a 

crucial factor. Choosing a population size too small increases 
the risk of converging prematurely to local minima, since the 
population does not have enough genetic material to 
sufficiently cover the state space. A larger population has a 
greater chance of finding the global optimum at the expense of 
more CPU time. According to [5] a population size of 70 was 
found to give satisfactory results for the 6 bus bars test 
system. 

 
Crossover probability: The effect of varying the crossover 

probability on the fitness value was studied on IEEE standard 
6 bus bar system ; It was found that crossover probability 
doesn’t affect the performance of the program significantly 
thus we used a crossover probability of 0 (no crossover) to 
reduce the computational burden. However for any other 
value for the crossover probability, the algorithm utilizes the 
arithmetical crossover method as follows: 

             t+1 t tX =a.X +(1-a).Y                        (7)          

            t+1 t t=a.Y +(1-a).XY                       (8)         

Where  
Xt, Yt are the parents at generation t. 
Xt+1, Yt+1 are the offsprings at generation t+1. 
a is a random number between the interval [0, 1]. 
  
Fig. 2 shows that the variation in the value of the objective 

function with the variation in the crossover probability is 
almost negligible thus the crossover isn't a key factor in tuning 
the modified GAPSSE. 

 
Fig. 2 Effect of varying crossover probability on the fitness value 

 
Selection: Roulette wheel selection was adopted as in [5]. 
 
Mutation:  Non uniform mutation was used to apply 

random changes on the genetic properties of chromosomes as 
follows: 

 
              Xt + Δ(t, y)       ,     y=Xt

max –Xt 

               if a random digit is smaller than 0.5 
Xt

'=                                                                                    (9) 
                                                                           
              Xt - Δ(t, y)       ,     y=Xt

 –Xt
min 

               if a random digit is smaller than 0.5 
And 

                       b)
T
ty.r.(1y)Δ(t, −=                            (10)  

Where 
X'    = The value of offsprings in the tth generation after                   

mutation.  
Xt     = The value of offsprings in the tth generation before                   

mutation. 
 Xt

max  = The maximum of all offsprings in the tth generation. 
Xt

min  = The minimum of all offsprings in the tth generation. 
T       = The maximal generation number. 
B    = System parameter determining the degree of non-

uniformity. 
r        = random number from [0, 1]. 

 
The function Δ (t, y) returns a value in the range [0, y] such 
that the probability of Δ (t, y) approaches 0 as t increases. This 
property causes this operator to search the space uniformly 
initially (when t is small), and very locally at later generations. 

It was found that the mutation probability as well as the 
constant of non uniformity "b" are key factors that affect the 
performance of the algorithm. Tests were carried on the IEEE 
standard 6 bus bars system. Each test was repeated for 10 
times and the average and the standard deviation of the 10 
runs were computed. 

Fig. 3 shows the effect of varying the mutation probability 
on the fitness value, it is clear that the relation isn't 
deterministic thus we developed Fig. 4 that shows the same 
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data after excluding those results with high noise (tests with 
standard deviation greater than 2%). It is shown that the 
minimum value for the objective function can be obtained at 
mutation probability between 0.5 and 0.8 which are the same 
results obtained by [5], a mutation value of 0.6 was used in the 
program. Fig. 5 studies the effect of varying the constant on 
non uniformity on the fitness value and again after excluding 
results with high noise it is evident from Fig. 6 that best 
performance for the modified GAPSSE can be obtained when 
the constant of non uniformity ranges between 3 and 6 which 
are again the same results obtained by [5], a value of 3.6 was 
used throughout the rest of the calculations. 

 

 
 

Fig. 3 Effect of varying mutation probability on the fitness value 
 

 
Fig. 4 Effect of varying mutation probability on the fitness value 

considering only tests with low level of noise (standard deviation less 
than 2%) 

 

 
Fig. 5 Effect of varying constant of non uniformity on the fitness 

value 

 
Fig. 6 Effect of varying constant of non uniformity on the fitness 

value considering only tests with low noise (standard deviation less 
than 2%) 

 
Tuning those 2 parameters (mutation probability and 

constant of non uniformity) affects greatly the results obtained 
by the modified GAPSSE. 

E. Stalling Detection Technique 
One of the weaknesses of the GAPSSE is that  even if the 

optimal solution is obtained before the predetermined 
maximum number of generations is reached the program 
continues till the maximum number of generations is 
calculated, which is time consuming and very unprofessional. 

A stalling technique is proposed in is paper that checks on 
the following criterion: 

*If gen. count >=21 
*If (absolute value (best value (current gen.)-average value 

(current gen.)) <0.1  
 & (absolute value (best value (current gen.)-best value (10 

previous gens)) <0.1 
            Stalling occurred 
        End 
    End 
That is when the difference between the average values for 

the raw fitness function is larger than the best value by a small 
tolerance (taken as 0.1) and at the same time the best value for 
the raw fitness functions didn’t improve for 10 successive 
iterations the program has reached convergence. We start to 
check this criterion after the 21st generation to avoid 
premature convergence. 

 
Fig. 7 Solution of the GAPSSE after applying the stalling 

detection technique 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1458

 

Solving the same problem showed in Fig. 1 using the 
modified GAPSSE we were able to attain convergence after 
244 generations instead of 300 as shown in Fig. 7 
corresponding to a time of 11.11 seconds instead of 18.22 
seconds for the GAPSSE proposed in [5]. 

IV. MODIFIED GAPSSE VS. WLS ESTIMATOR 
The WLS state estimator will be compared to the modified 

GAPSSE with tuned genetic operators. Studying the reasons 
behind the weaknesses of the WLS state estimator we notice 
that such reasons aren’t probable to occur in a practical large 
scale power system (short lines aren’t usually connected to the 
same bus bars with long lines and flow measurements are 
usually more than the injection measurements) thus the ill-
conditioning problem isn't likely to occur unless in very small 
systems (up to 4 bus bars) so no additional improvements 
have to be done to the classical WLS approach. In the next 
sections we will apply both techniques on test cases, compare 
the results obtained by each to justify the selection of a certain 
technique to be used for solving the state estimation problem. 

A. State Estimation of the 6 Bus Bars Test System  
Applying both estimators to estimate the states of the 

standard IEEE 6 bus bars test system we get the following 
results: 

i. State estimation of the 6 bus bars test system using 
modified GAPSSE 

The modified GAPSSE was able to solve the state 
estimation problem in 244 generations corresponding to 11.11 
seconds resulting in a sum of residuals (J) that is equal to 
41.0894; the estimated values are shown in Appendix A. 

ii. State estimation of the 6 bus bars test system using 
WLS estimator 

The WLS estimator solved the state estimation problem in 
0.156 seconds resulting in a sum of residuals (J) that is equal 
to 40.9730. The estimated values are shown in Appendix B. 

Table I shows that the state variables estimated by the WLS 
estimator are more accurate than those estimated by the 
modified GAPSSE; however for both techniques the 
maximum error is within the accepted range. 

 
TABLE I  

ESTIMATED STATE VARIABLES FOR THE IEEE 6 BUS BARS TEST SYSTEM 
 

Modified 

GAPSSE 

 

 

WLS estimator 

 

 

State 

Variable  

 

Base 

case 

values 

States % error  States % error 

Θ2 -0.0642 -0.0670 4.3614 -0.0669 4.2056 

Θ3 -0.0747 -0.0781 4.5515 -0.0780 4.4177 

Θ4 -0.0734 -0.0760 3.5422 -0.0758 3.2698 

 

Modified 

GAPSSE 

 

 

WLS estimator 

 

 

State 

Variable 

 

Base 

case 

values 

States % error  States % error 

Θ5 -0.0922 -0.0963 4.4469 -0.0961 4.2299 

Θ6 -0.1040 -0.1077 3.5577 -0.1075 3.3654 

V1 1.0500 1.0440 0.5714 1.0459 0.3905 

V2 1.0500 1.0405 0.9048 1.0424 0.7238 

V3 1.0700 1.0617 0.7757 1.0637 0.5888 

V4 0.9881 0.9805 0.7692 0.9825 0.5667 

V5 0.9861 0.9769 0.9330 0.9790 0.7200 

V6 1.0000 0.9977 0.2300 0.9999 0.0100 

B. State Estimation of the 14 Bus Bars Test System 
Applying both estimators to estimate the states of the 

standard IEEE 14 bus bars test system; we obtained the 
following results: 

i. State estimation of the 14 bus bars test system using 
modified GAPSSE 

The modified GAPSSE failed to solve the state estimation 
problem of the 14 bus bars test system moreover it showed 
premature convergence at J=327.8 after 312 seconds as shown 
in Fig. 8. 

 

 
Fig. 8 Solving the IEEE 14 bus test system   state estimation using 

modified GAPSSE 

ii. State estimation of the 14 bus bars test system using 
WLS estimator 

The WLS estimator solved the state estimation problem in 
0.312 seconds resulting in a sum of residuals (J) that is equal 
to 1.6956; the estimated values are shown in Appendix C. 

Table II shows the estimated state variables using the WLS 
estimator for the 14 bus bar test system and their deviation 
from the base case values: 
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TABLE II  
ESTIMATED STATE VARIABLES FOR THE IEEE 14 BUS BARS TEST SYSTEM 

 

Modified 

GAPSSE 

 

 

WLS estimator 

 

 

State 

Variable 

 

Base 

case 

values 

States % 

error 

States % error 

Θ2 0.0869-  N/A* N/A 0.0843-  3.0257 

Θ3 0.2220-  N/A N/A 0.2193-  1.2075 

Θ4 0.1803-  N/A N/A 0.1765-  2.0979 

Θ5 0.1532-  N/A N/A 0.1500-  2.1448 

Θ6 0.2482-  N/A N/A 0.2447-  1.3892 

Θ7 0.2334-  N/A N/A 0.2290-  1.8736 

Θ8 0.2332-  N/A N/A 0.2285-  2.0030 

Θ9 0.2608-  N/A N/A 0.2568-  1.5037 

Θ10 0.2635-  N/A N/A 0.2596-  1.4957 

Θ11 0.2581-  N/A N/A 0.2544-  1.4386 

Θ12 0.2630-  N/A N/A 0.2592-  1.4435 

Θ13 0.2646-  N/A N/A 0.2610-  1.3471 

Θ14 0.2800-  N/A N/A 0.2759-  1.4522 

V1 1.0600 N/A N/A 1.0588 0.1107 

V2 1.0450 N/A N/A 1.0446 0.0353 

V3 1.0100 N/A N/A 1.0090 0.0961 

V4 1.0190 N/A N/A 1.0186 0.0365 

V5 1.0200 N/A N/A 1.0195 0.0490 

V6 1.0700 N/A N/A 1.0694 0.0568 

V7 1.0620 N/A N/A 1.0612 0.0755 

V8 1.0900 N/A N/A 1.0887 0.1209 

V9 1.0560 N/A N/A 1.0552 0.0743 

V10 1.0510 N/A N/A 1.0501 0.0819 

V11 1.0570 N/A N/A 1.0562 0.0802 

V12 1.0550 N/A N/A 1.0544 0.0535 

V13 1.0500 N/A N/A 1.0494 0.0551 

V14 1.0360 N/A N/A 1.0355 0.0471 
*Not Available 

V. RESULTS AND DISCUSSION 
It's clear from the above 2 sections that using the WLS 

estimator is more favored in solving the state estimation 

problem as: 
• It doesn’t exhibit divergence problems. 
• About 70 times faster than the modified GAPSSE 

(WLS estimator needed 0.156 second compared to 
11.11 seconds for the modified GAPSSE).  

• Obtains more accurate results. 
However it might show ill-conditioning problems in case of 

small power systems (less than 4 bus bars), thus we can 
conclude that: 

• For very small systems (less than 4 bus bars) we 
have to use the modified GAPSSE as WLS 
estimator shows ill-conditioning. 

• For power systems containing 4-6 bus bars we 
might use either estimator; however we favor 
using the WLS estimator. 

• For large power systems (more than 6 bus bars) the 
modified GAPSSE fails to find a solution and 
hence we have to use the WLS estimator. 
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APPENDIX A 

 SOLVING THE STATE ESTIMATION PROBLEM FOR THE IEEE 6 BUS BARS TEST SYSTEM USING MODIFIED GAPSSE 

The Base case value The Measured value The Estimated value  

Measurement KV MW MVAR KV MW MVAR KV MW MVAR 

Mv1 241.5   238.4   240.1   

MG1  107.9 16  113.1 20.2  111.73 18.84 

M1-2  28.7 -15.4  31.5 -13.2  30.30 -14.28 

M1-4  43.6 20.1  38.9 21.2  44.72 21.26 

M1-5  35.6 11.3  35.7 9.4  36.71 11.86 

Mv2 241.5   237.8   239.3   

MG2  50 73.4  48.4 71.9  47.52 70.23 

M2-1  -27.8 12.8  -33.9 9.7  -29.32 11.90 

M2-3  2.9 -12.3  8.6 -11.9  3.02 -12.64 

M2-4  33.1 46.1  32.8 38.3  32.35 45.23 

M2-5  15.5 15.4  17.4 22  15.58 14.84 

M2-6  26.2 12.4  22.3 15  25.89 10.90 

Mv3 246.1   250.7   244.2   

MG3  60 89.6  55.1 90.6  59.49 87.77 

M3-2  -2.9 5.7  -2.1 10.2  -2.98 6.23 

M3-5  19.1 23.2  17.7 23.9  19.17 23.01 

M3-6  43.8 60.7  43.3 58.3  43.30 58.53 

Mv4 227.7   225.7   225.5   

MG4  -70 -70  -71.8 -71.9  -70.18 -70.07 

M4-1  -42.5 -19.9  -40.1 -13.3  -43.55 -20.69 

M4-2  -31.6 -45.1  -29.8 -43.3  -30.88 -44.33 

M4-5  3.1 -3.9  0.7 -17.4  4.25 -5.05 

Mv5 226.8   225.2   224.7   

MG5  -70 -70  -72 -67.7  -71.60 -69.51 

M5-1  -33.5 -13.5  -36.6 -17.5  -35.55 -13.65 

M5-2  -15 -18  -11.7 -22.2  -15.09 -17.44 

M5-3  -18 -26.1  -25.1 -29.9  -18.07 -25.82 

M5-4  -4 -2.8  -2.1 -1.5  -4.21 -2.53 

M5-6  1.6 -9.7  -2.1 -0.8  1.32 -10.07 

Mv6 230   228.9   229.5   

MG6  -70 -70  -72.3 -60.9  -68.93 -65.96 

M6-2  -25.7 -16  -19.6 -22.3  -25.33 -14.52 

M6-3  -42.8 -57.9  -46.8 -51.1  -42.34 -55.83 

M6-5  -1.6 3.9  1 2.9  -1.26 4.39 
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APPENDIX B 
SOLVING THE STATE ESTIMATION PROBLEM FOR THE IEEE 6 BUS BARS TEST SYSTEM USING WLS ESTIMATOR 

The Base case value The Measured value The Estimated value  

Measurement KV MW MVAR KV MW MVAR KV MW MVAR 

Mv1 241.5   238.4   240.5   

MG1  107.9 16  113.1 20.2  111.9 18.7 

M1-2  28.7 -15.4  31.5 -13.2  30.3 -13.3 

M1-4  43.6 20.1  38.9 21.2  43.8 21.1 

M1-5  35.6 11.3  35.7 9.4  36.8 11.8 

Mv2 241.5   237.8   239.8   

MG2  50 73.4  48.4 71.9  47.5 70.1 

M2-1  -27.8 12.8  -33.9 9.7  -29.4 11.9 

M2-3  2.9 -12.3  8.6 -11.9  3 -12.7 

M2-4  33.1 46.1  32.8 38.3  32.3 45.2 

M2-5  15.5 15.4  17.4 22  15.6 13.8 

M2-6  26.2 12.4  22.3 15  25.9 10.8 

Mv3 246.1   250.7   243.6   

MG3  60 89.6  55.1 90.6  59.5 87.8 

M3-2  -2.9 5.7  -2.1 10.2  -3 6.3 

M3-5  19.1 23.2  17.7 23.9  19.2 23 

M3-6  43.8 60.7  43.3 58.3  43.3 58.5 

Mv4 227.7   225.7   226   

MG4  -70 -70  -71.8 -71.9  -70.2 -70.1 

M4-1  -42.5 -19.9  -40.1 -13.3  -43.6 -20.7 

M4-2  -31.6 -45.1  -29.8 -43.3  -30.9 -43.3 

M4-5  3.1 -3.9  0.7 -17.4  3.3 -5.1 

Mv5 226.8   225.2   225.2   

MG5  -70 -70  -72 -67.7  -71.8 -69.5 

M5-1  -33.5 -13.5  -36.6 -17.5  -35.6 -13.6 

M5-2  -15 -18  -11.7 -22.2  -15.1 -17.4 

M5-3  -18 -26.1  -25.1 -29.9  -18.1 -25.9 

M5-4  -4 -2.8  -2.1 -1.5  -3.2 -2.5 

M5-6  1.6 -9.7  -2.1 -0.8  1.3 -10.1 

Mv6 230   228.9   230   

MG6  -70 -70  -72.3 -60.9  -68.9 -65.9 

M6-2  -25.7 -16  -19.6 -22.3  -25.4 13.5 

M6-3  -42.8 -57.9  -46.8 -51.1  -42.4 -55.8 

M6-5  -1.6 3.9  1 2.9  -1.2 3.4 
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APPENDIX C 
SOLVING THE STATE ESTIMATION PROBLEM FOR THE IEEE 14 BUS BARS TEST SYSTEM USING WLS ESTIMATOR 

The Base case value The Measured value The Estimated value  

Measurement KV MW MVAR KV MW MVAR KV MW MVAR 

Mv1 243.8   245.2   243.5   

MG1  232.3 -22.5  224.4 -21.8  225.3 -22.8 

M1-2  156.7 -23.4  149.1 -23.8  151.5 -23.6 

M1-5  75.6 0.9  77.3 0.8  73.8 0.7 

Mv2 240.3   239.9   240.3   

MG2  18.5 20.7  19.0 21.4  22.3 20.8 

M2-1  -152 24.8  -146 24.4  -147 24.2 

M2-3  73.2 1.2  73.6 1.2  73.2 1.5 

M2-4  56.2 -4.2  55.2 -4.1  55.5 -4.0 

M2-5  41.5 -1.0  43.2 -1.0  41.1 -0.8 

Mv3 232.3   230.0   232.1   

MG3  -94.3 2.4  -97.3 2.3  -94.9 2.1 

M3-2  -70.9 -0.6  -68.9 -0.7  -70.8 -0.9 

M3-4  -23.4 3.1  -24.2 2.9  -24.0 3.0 

Mv4 234.4   231.3   234.3   

MG4  -48.8 -11.2  -46.7 -11.4  -46.6 -11.2 

M4-2  -54.5 2.0  -55.1 2.0  -53.8 1.8 

M4-3  23.8 -4.8  23.9 -4.7  24.4 -4.6 

M4-5  -61.1 17.9  -58.3 18.3  -59.8 17.8 

M4-7  27.4 -20.2  26.7 -19.3  27.1 -20.0 

M4-9  15.5 -6.2  15.4 -6.1  15.5 -6.1 

Mv5 234.6   235.3   234.5   

MG5  -10.8 -38.3  -11.1 -38.3  -10.2 -38.7 

M5-1  -72.8 -0.1  -72.1 -0.1  -71.2 -0.4 

M5-2  -40.6 -3.6  -41.2 -3.7  -40.3 -3.8 

M5-4  61.6 -16.3  63.6 -16.4  60.3 -16.2 

M5-6  41.1 -18.3  40.5 -18.6  40.9 -18.2 

Mv6 246.1   248.8   246.0   

MG6  -8.0 36.7  -8.4 37.1  -8.2 36.9 

M6-5  -41.1 23.2  -42.9 22.6  -40.9 23.1 

M6-11  7.3 3.5  7.5 3.6  7.3 3.7 

M6-12  7.8 2.6  7.4 2.5  7.6 2.6 

M6-13  17.9 7.4  17.3 7.1  17.8 7.5 

Mv7 244.3   244.4   244.1   

MG7  0.4 11.9  0.4 12.2  0.9 11.9 
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The Base case value The Measured value The Estimated value Measurement 

KV MW MVAR KV MW MVAR KV MW MVAR 

M7-4  -27.4 22.6  -26.5 22.3  -27.1 22.3 

M7-8  -0.1 -16.9  -0.1 -16.9  -0.3 -16.6 

M7-9  27.9 6.2  29.0 6.2  28.4 6.2 

Mv8 250.7   253.2   250.4   

MG8  0.1 17.3  0.1 16.6  0.3 17.0 

M8-7  0.1 17.3  0.1 17.1  0.3 17.0 

Mv9 242.9   240.8   242.7   

MG9  -28.8 10.0  -29.5 10.1  -29.3 10.0 

M9-4  -15.5 7.7  -15.2 7.3  -15.5 7.6 

M9-7  -27.9 -5.4  -27.8 -5.2  -28.4 -5.3 

M9-10  5.3 4.3  5.4 4.2  5.3 4.4 

M9-14  9.4 3.5  9.0 3.3  9.3 3.4 

Mv10 241.7   243.9   241.5   

MG10  -9.1 -5.9  -9.1 -6.1  -9.0 -6.0 

M10-9  -5.3 -4.2  -5.2 -4.4  -5.3 -4.3 

M10-11  -3.8 -1.6  -4.0 -1.7  -3.7 -1.7 

Mv11 243.1   241.4   242.9   

MG11  -3.4 -1.7  -3.5 -1.8  -3.5 -1.8 

M11-6  -7.3 -3.4  -7.3 -3.3  -7.2 -3.6 

M11-10  3.8 1.7  3.7 1.7  3.7 1.7 

Mv12 242.6   239.8   242.5   

MG12  -6.0 -1.7  -6.0 -1.7  -5.8 -1.8 

M12-6  -7.7 -2.4  -7.6 -2.3  -7.6 -2.5 

M12-13  1.7 0.8  1.7 0.7  1.8 0.7 

Mv13 241.5   241.9   241.4   

MG13  -13.8 -6.2  -14.3 -6.3  -13.9 -6.1 

M13-6  -17.7 -7.0  -18.2 -7.0  -17.6 -7.0 

M13-12  -1.7 -0.7  -1.6 -0.7  -1.8 -0.7 

M13-14  5.6 1.5  5.6 1.5  5.4 1.6 

Mv14 238.3   240.1   238.2   

MG14  -14.8 -4.7  -15.0 -4.8  -14.5 -4.6 

M14-9  -9.3 -3.2  -9.0 -3.1  -9.2 -3.2 

M14-13  -5.5 -1.4  -5.6 -1.5  -5.4 -1.5 

 

 
 
 
 


