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Abstract—Model Predictive Control has been previously applied 

to supply chain problems with promising results; however hitherto 
proposed systems possessed no information on future demand. A 
forecasting methodology will surely promote the efficiency of 
control actions by providing insight on the future. A complete supply 
chain management framework that is based on Model Predictive 
Control (MPC) and Time Series Forecasting will be presented in this 
paper. The proposed framework will be tested on industrial data in 
order to assess the efficiency of the method and the impact of 
forecast accuracy on overall control performance of the supply chain. 
To this end, forecasting methodologies with different characteristics 
will be implemented on test data to generate forecasts that will serve 
as input to the Model Predictive Control module. 
 

Keywords—Forecasting, Model predictive control, production 
planning. 

I. INTRODUCTION 
URING the last decades, industrial goods production has 
shifted from the local or national level to facilities with 

global outreach that serve many national markets. This 
development has put substantial stress on the supply chains of 
companies, demanding a better organization of performed 
actions and thus calling for supply chain management 
methodologies that can improve customer service while 
reducing cost. This paper will demonstrate the coupling of 
Model Predictive Control with a forecasting system and 
investigate its effectiveness for the problem of supply chain 
management. 

A. Model Predictive Control 
Model predictive control (MPC) is nowadays recognized as 

a standard methodology for the control of industrial and 
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process systems [1]. This is because of its capability to 
incorporate constraints for the manipulated and/or the 
controlled variables, to handle the nonlinearities often present 
in dynamical systems and to overcome modeling mismatch. 
The idea of model predictive control is simple: A process 
model is used to predict the effect of a finite number of future 
moves on the controlled variables. This model is incorporated 
in an on-line open loop optimization problem, which 
determines the optimal control sequence for a given 
performance criterion. The simplest MPC objective function is 
the weighted sum of the two basic control targets, namely the 
sum of squared differences between the predicted outputs and 
their set points over the future prediction horizon and the sum 
of squares of the control moves over the control horizon. After 
the solution of the minimization problem is found, only the 
first of the future control actions is implemented to the system. 
The same procedure is performed repetitively at each time 
step.  

 

 
 

Fig. 1 MPC basic concept 
 
 MPC was first applied to inventory management by 

Kapsiotis and Tzafestas [2], who studied a single 
manufacturing site problem and included a penalty term in the 
objective function for deviations from a reference path for 
inventory in order to compensate for production lead times. 
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Perea-Lopez et al [3] employed MPC to the management of a 
multi-level supply chain with multiple products where demand 
was deterministic, so the need for an inventory control 
mechanism was reduced. Braun et al [4] presented a linear 
MPC methodology for large scale supply chain problems and 
showed that MPC can handle uncertainties due to model 
mismatch and unsuccessful forecasts. Finally, Lin et al [5] 
presented a Minimum Variance Control system with a set 
point not only for the actual inventory level, but also for the 
WIP (Work-In-Process) level, while customer demand was 
expressed by an ARIMA model. Their formulation maintained 
inventory levels at a desired level avoiding the “bullwhip” 
effect and when compared, it proved superior to other 
frameworks. 

B. Forecasting 
Forecasting plays a central role in the efficient operation of 

a supply chain, as it provides valuable information on the 
expected future direction of important factors, thus enabling 
planners to act preemptively and more effectively. Various 
methodologies have been proposed for forecasting and they 
are typically time series algorithms that, depending on the 
nature of the model they are based on, can be classified as 
linear on nonlinear. The simplest method of all is naïve 
forecasting, where the forecast is assumed to be equal to the 
previous value, a method that is often used as a basis for 
comparison. Linear models are the most popular, partly due to 
their simplicity and ease of use. Examples of widely used 
linear methodologies are the autoregressive moving average 
(ARMA) and autoregressive integrated moving average 
(ARIMA) [6], which is a generalization of the former. The 
forecast in these two methodologies is produced after 
differencing the time series at an appropriate order (if 
necessary) using weighted past values of the time series and 
past forecast errors. A general form of the ARIMA(p,d,q) 
model is the following: 

 

( )
1 1

1 1 1
p q

di i
i t i t

i i
L L X Lϕ θ ε

= =

⎛ ⎞ ⎛ ⎞
− − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑       (1) 

 
where L is the lag operator, φi are the parameters of the 
autoregressive part of the model, θi are the parameters of the 
moving average part, p is the order of autoregression, d is the 
order of differencing, q is the order of the moving average 
process and εt are error terms. Depending on the values of the 
parameters in the general form depicted in Eq. (1), there are 
many types of ARIMA models, like the Autoregressive (AR) 
model, which is an ARIMA(p,0,0) model where only past 
values of the function are used to produce a forecast. 

Another method widely used is the Holt-Winters, which is 
an exponential smoothing methodology. As such, it uses 
weighted values of past time series occurrences, where the 
coefficients decay exponentially with each period, thus giving 
more weight to recent values and less to more distant ones. Its 
structure can capture trends and seasonality in data, making it 

suitable for various types of time series data. The additive 
form of the Holt-Winters method is:  

 

t h t t t p h tY b t S eμ+ − += + + +         (2) 

 
where Yt+h is the predicted value of the h-th period ahead in 
time; μt is a mean value of the series, which is updated as in 
Eq. (3), where p the periodicity of the seasonality; bt is a trend 
parameter of the series, updated as in Eq. (4) and St is the 
seasonal component of the series, updated as in Eq. (5). 
 

( ) ( )( )1 11t t t p t tY S bμ α α μ− − −= − + − +    (3) 

( ) ( )1 11t t t tb bγ μ μ γ− −= − + −        (4) 

( ) ( )1t t t t pS Y Sδ μ δ −= − + −        (5) 

 
In most methods, including the two mentioned above, the 

critical parameters of the equations that describe the behavior 
of the time series are not known and have to be established 
through a time-consuming procedure of trial-and error and 
application of statistical tests. Furthermore, the linear structure 
of the model is not able to represent nonlinearities possibly 
present in the time series. Artificial Neural Networks, ANN, 
and more specifically Radial Basis Function (RBF) neural 
networks, is a nonlinear methodology that addresses the 
weaknesses that were mentioned above and are present in 
many models. Its inherent sophisticated structure allows it to 
capture the complexity in the behavior of series with 
nonlinearity, while at the same time model parameters can be 
determined with algorithms that require no trial-and error 
procedure. The RBF neural networks consists of three layers, 
as shown in Fig. 2. The input layer is used to feed the input 
variables into the model. The hidden layer contains a number 
of nodes, which apply a nonlinear transformation to the input 
variables, using a radial basis function. The output layer 
serves as a linear summation unit. The neural network 
depicted in Fig. 2 is a typical RBF neural network with only 
one output node. Each hidden node is associated with a vector 
c with dimension equal to the number of inputs to the node, 
called a center. The activity ν of a hidden node is the 
Euclidean distance between the input vector and the node 
center. The hidden node output is the value of the radial basis 
function when the activity ν is its input variable. In the present 
work, the thin-plate-spline radial basis function is employed:  

  )log()( νννf = . A training algorithm for RBF networks is 
based on using a set of input-output data (xi, yi), i=1,2,…, K1 
in order to determine of the structure and the parameters of the 
network that lead to a minimum error between the predicted 
output and the actual values. This defines a Mixed Integer 
Nonlinear Programming (MINLP) optimization problem, 
which is solved using special training algorithms. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

306

 

 

w1 

wL 

w2 

w3 

w4 

L 

x1 

xN 

3 

1

2 

Σ
4 

ŷ
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Fig. 2 An example of the RBF neural networks architecture 

II. METHODOLOGY 
In this section the proposed control methodology will be 

described in detail. Fig. 3 presents the block diagram of the 
control scheme, consisting of the process, the MPC law and 
the forecasting policy of customers demand. In the following, 
a brief description of the process and afterwards the MPC 
configuration will be presented.  

A. Process Model and Material Balance 
In many production-inventory systems, the production 

process is modelled by a pure delay unit, with a discrete 
transfer function equal to Tz− , where T  is the lead time. 
However, such an assumption is not always realistic since the 
production rate may depend on orders given in different times 
in the past. In this work, we assume that the process dynamic 
behavior is described by a Finite Impulse Response (FIR) 
model. In this case, the system output (production rate ( )R t ) 
will be given by the following Eq.: 
 

( ) ( )
1

n

i
i

R t g Order t i
=

= ⋅ −∑                          (6) 

 
where ( ) , 1,...,Order t i i n− =  is the order rate at time t-i, n is 

the system order and , 1,...,ig i n=  are the system parameters. 
Eq. (6) can easily lead to the transfer function between 
production rate and order rate z-transformed signals: 
 

( )
( )

1
1 ... n

n

R z
g z g z

Order z
− −= ⋅ + + ⋅                    (7) 

 
which obviously is a generalization of pure delay.  

From the block diagram of Fig. 3, inventory ( )Inv z  is 
given by the following equation: 
 

( ) ( ) ( )( )1

1
1

Inv z R z Sales z
z−= −

−
                 (8) 

 
where ( )Sales z  is the z-transform of customers demand 

( )Sales t  and 1

1
1 z−−

 is the transfer function of the integrator. 

Combining Eqs. (6)-(8) we arrive at Eq. (9), which shows that 
inventory at time t is related to order rate with an 
autoregressive with exogenous input model (ARX) that also 
considers customer demand as an external measured 
disturbance. 
 

( ) ( ) ( ) ( )
1

1
n

i
i

Inv t Inv t g Order t i Sales t
=

= − + ⋅ − −∑        (9) 

 

B. Robust Model Predictive Control Scheme 
In case of inventory control (Fig. 1), manipulated variables 

of the proposed control scheme are the future order rates 
( ) , 0,..., 1Order t j t j ch+ = −  and controlled variable is the 

predicted inventory ( )
^

, 1,...,Inv t j t j ph+ = . A predictor for 

inventory is formulated based on the material balance 
represented of Eq. (9). In order to test the robustness of the 
proposed control scheme, we assume that the predictor is 
based on an approximation of the process parameters 

^
, 1,...,ig i n=  and not their actual values (Eq. (6)). The 

inventory predictor also uses an estimation of unknown future 
sales ( ) , 1,...,ForSales t j t j ph+ = . This estimation can be 

the simple projection of current sales over the prediction 
horizon, or can be calculated from a forecasting policy, as is 
the case here. So, the optimization problem solved on line is 
described by the set of Eqs. (10)-(17). 
 

( )
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( ) ( ) ( ) ( ) ( )
^

1

1
n

i
i

e t t Inv t Inv t g Order t i Sales t
=

= − − − ⋅ − +∑  (13) 

( ) ( ) ( )1 ,

0,..., 1

Order t j t Order t j t Order t j t

j ch

δ + = + − + −

= −
 (14) 

( )min max , 0,..., 1u Order t j t u j ch≤ + ≤ = −   (15) 

( )min max , 0,..., 1u Order t j t u j chδ δ δ≤ + ≤ = −  (16) 

( ) 0, ,...,Order t j t j ch phδ + = =  (17) 

 

where ( )
^

, 1,...,Inv t j t j ph+ =  is the j- step ahead prediction 

of inventory, ph and ch are the prediction and the control 
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horizon respectively, TInv  is the target inventory value, 

( ) , 0,..., 1Order t j t j chδ + = −  are the future control moves 

(Eq. (14)), w, r are weight matrices and ( ) , 1,...,e t j t j ph+ =  

is the predictor error (Eq. (12)-(13)). Eq. (11) shows that the 
current value of the predictor is equal to the actual. Eq. (12) 
denotes that the predictor error should correct only the first 
prediction since Eq.(10) is an autoregressive model. Eq. (13) 
gives the predictor error from current sales and inventory 
value. Eqs. (15)-(16) are hard constraints that bound the 
manipulated variables and the control moves respectively. 

minu , maxu , are the lower and upper bounds for order rates and 

minuδ , maxuδ , are the lower and upper bounds for control 
moves. Eq. (17) ensures that no control moves are made after 
the control horizon.  
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Fig. 3 Block diagram of MPC scheme for inventory control 

III. RESULTS 
The proposed MPC-forecasting framework was tested in 

four test cases, where in each case a different forecasting 
method was employed in order to produce sales forecasts. The 
forecasting methodologies used were naïve forecasting (for 
comparison purposes), Linear Autoregression (Linear AR), 
Holt-Winters and RBF neural networks (RBF ANN). 

The test data was supplied by a leading Greek dairy 
products manufacturer concerning the sales of a fast moving 
product and the results are shown in Table I. The first column 
contains the average error for forecasting the sales time series 
and the second the sum of squared deviations from the 
inventory set point. 

 
TABLE I 

IMPLEMENTATION RESULTS 

Method Average Forecasting 
Error 

Deviation from 
inventory set point 

(SSQE) 

RBF ANN 0,0534 170,33 

Holt 0,0958 182,23 

Linear AR 0,1020 179,59 

Naïve model 0,1988 400,089 
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Fig. 4 Comparison between Actual sales and the ANN forecast 

 
These results indicate, first of all, the character of the time 

series, which is mostly nonlinear since the nonlinear method 
used (RBF neural networks) provides definitively better 
forecasts than the two other linear methods. Secondly, it 
becomes clear that employment of a forecasting methodology 
leads to improved performance of the MPC module. In 
particular, the forecasting method that produced the best 
results, that is RBF neural networks, led to a drastic reduction 
of the deviation from the inventory set point, thus leading to 
significantly less inventory holding costs. Figs. 4-6 show the 
results of the ANN forecasting case of framework 
implementation to the problem studied. As can be observed in 
Fig. 4, forecast values are close to the actual values, thus 
providing an advantageous insight for the future actions of the 
MPC module of the framework.  

Fig. 5 depicts production orders, while Fig. 6 shows the 
course of product inventory over the time period studied. It 
must be pointed out that the inventory gradually approaches 
the set point over the course of time and shows small and 
decreasing variance from its set point, especially towards the 
end of the period studied. 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

O
rd

er
 O

(t)

time t  
Fig. 5 Production orders (ANN forecasting case) 
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Fig. 6 Product inventory (ANN forecasting case) 

 

IV. CONCLUSION 
A framework for supply chain management based on Model 

Predictive Control combined with a forecasting module was 
presented. Various linear and nonlinear forecasting 
methodologies were evaluated in order to investigate the 
existence of possible nonlinearity in the sales time series. The 
nonlinear method used, namely RBF neural networks, 
exhibited superior forecasting performance, showing that the 
series had mostly nonlinear character. The simulation results 
demonstrated that forecast accuracy leads to improved control 
performance, thus leading to more efficient management of 
the supply chain. 
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