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A Model for Analyzing the Startup Dynamics
of a Belt Transmission Driven by a DC Motor

Giovanni Incerti

Abstract—In this paper the vibration of a synchronous belt drive
during start-up is analyzed and discussed. Besides considering the
belt elasticity, the model here proposed also takes into consideration
the electromagnetic response of the DC motor. The solution of the
motion equations is obtained by means of the modal analysis in
state space, which allows to obtain the decoupling of all equations,
without introducing the hypothesis of proportional damping. The
mathematical model of the transmission and the solution algorithms
have been implemented within a computing software that allows the
user to simulate the dynamics of the system and to evaluate the effects
due to the elasticity of the belt branches and to the electromagnetic
behavior of the DC motor. In order to show the details of the
calculation procedure, the paper presents a case study developed with
the aid of the above-mentioned software.

Keywords—Belt drive, Vibrations, Startup, DC motor.

I. INTRODUCTION

IN many industrial devices the motion transmission between

parallel axes is obtained by means of belt drive systems,

which allow to obtain low noise operation, good mechanical

efficiency and low cost design solutions.

However, for high dynamic loads, a belt transmission can

introduce unwanted vibrations on the devices to be operated;

as is well known, these phenomena largely depend on the

elasticity of the branches of the belt and occur especially for

multi-stage configurations arranged in series.

Based on these considerations, it is important to verify,

already at the design stage, the vibration of the transmission

in its real operating conditions. Furthermore, the study is more

accurate if the mathematical model of the system takes into

account, at the same time, the deformation of the belt and

the electromagnetic behavior of the motor. In this context, the

paper aims to provide a contribution on the subject, presenting

a model of the complete electromechanical system, in which

the motion equations related to the mechanical components

(belt drive ad pulleys) are solved together with the equation

that describes the electrical response of the motor.

In order to clarify the proposed approach we will analyze

a typical configuration, which consists of a DC motor, a belt

drive and a resistive load, paying particular attention to the

possibility of analytically solve the differential equations of

motion, without using a numerical integration method.

II. MATHEMATICAL MODELING OF THE SYSTEM

To evaluate the dynamics of belt transmissions, taking

into account the axial deformability of the branches, lumped

parameter models are usually adopted; using this approach a

system of ordinary differential equations is written and solved.
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Fig. 1. Schematic representation of the electromechanical system analyzed
in the paper. Each branch of the belt is modeled using a viscoelastic model
(spring and damper in parallel).

This approach, which allows to limit the complexity of the

mathematical model, has been used in several works found in

the technical literature: for example, in [1] the authors analyze

belt transmissions with complex geometries and propose an

algorithm for the automatic deduction of the motion equations

of a system having an arbitrary number of belts and pulleys.

In [2] a lumped parameter model has been developed for a

belt-driven robot, in order to study some dynamic effects and

to optimize the control strategy of the machine.

A study of dynamic characteristics of a differential,

planetary, path-generating mechanism with a synchronous belt

is presented in [3]; by accounting for the belt elasticity

and employing a Lagrangian approach, a dynamic model of

the mechanism is obtained; the effects of belt drive speed

ratio, belt material damping and planet link balancing on the

mechanism behavior are investigated by the authors.

In general the motion equations for a mechanical system

can be derived by imposing conditions of dynamic equilibrium

or by using the Lagrange equations: usually the following

assumptions are considered:

• the belt branches are modeled by linear springs in parallel

with viscous dampers;

• the belt mass is negligible compared to the pulleys mass;

• the motion transmission takes place in ideal kinematic

conditions (absence of slippage, due to the use of a

synchronous belt);

• the belt has no flexural stiffness.

The stiffness k of the belt branches can be determined by the

well-known relationship k = EA/l, where E is the Young’sUniversity of Brescia, 25123 Brescia, Italy, (e-mail: giovanni.incerti@unibs.it).
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modulus of the belt material, A is the cross sectional area

of the branch and l its length; the damping coefficient c can

be experimentally determined through free vibration tests (for

example using the logarithmic decrement method [4]).
As a case study, we consider the system shown in Fig. 1,

consisting of a DC motor, a gear speed reducer, a synchronous

belt drive and a resistant load, which provides a torque linearly

variable as a function of speed.
As regards the mechanical part, we observe that the system

has two degrees of freedom (DOF), represented by the

angular coordinates ϑ1 e ϑ2; the rotation ϑm of the motor

is proportional to the rotation ϑ1 according to the assigned

transmission ratio assigned z (ϑm = zϑ1) and therefore it

does not represent an additional degree of freedom.
To analyze the dynamics of the system we use the Lagrange

equations, which, for the case under consideration, assume the

following form:

d

dt

(
∂T

∂ϑ̇i

)
− ∂T

∂ϑi
+

∂D

∂ϑ̇i

+
∂U

∂ϑi
=

δW

δϑi
i = 1, 2 (1)

where the symbols T , D, U and W respectively indicate

the kinetic energy of the system, the Rayleigh dissipation

function, the potential energy due to the elastic deformation

of the belt branches and the work done by the external actions

(motor torque and the load torque) acting on the system. The

complete list of the symbols used in the equations is given in

Appendix C.
For a permanent magnet DC motor the torque τm is

proportional to the current I that flows in the armature circuit;

the load torque τr acting on the system can be considered as

the sum of a constant term τr0 and linearly variable term with

the angular speed ϑ̇2. Therefore will be valid the following

relationships:

τm = kmI τr = τr0 + μϑ̇2 (2)

The virtual work done by the motor and the load torque is:

δW = zτmδϑ1 − τrδϑ2 (3)

Using the sign conventions shown in Fig. 1 the kinetic energy

can be written as:

T =
1

2
(J∗

1 ϑ̇
2
1 + J2ϑ̇

2
2) (4)

where J∗
1 = J1+z2Jm. The potential energy and the Rayleigh

dissipation function assume the following expressions:

U = k(r1ϑ1 − r2ϑ2)
2 D = c(r1ϑ̇1 − r2ϑ̇2)

2 (5)

Substituting the above expressions into (1) and calculating the

required derivatives we obtain the motion equations of the

device shown in Fig. 1:⎧⎪⎪⎨
⎪⎪⎩

J∗
1 ϑ̈1 + 2cr21ϑ̇1 − 2cr1r2ϑ̇2+

+2kr21ϑ1 − 2kr1r2ϑ2 = zkmI

J2ϑ̈2 − 2cr1r2ϑ̇1 + 2cr22ϑ̇2 − 2kr1r2ϑ1+

+2kr22ϑ2 = −(τr0 + μϑ̇2)

(6)

As regards the electric behavior of the motor, the application

of the Kirchhoff’s voltage law to the armature circuit of the

motor gives (see Fig. 2):

V (t) = RI + Lİ + zkmϑ̇1 (7)

+

_
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Fig. 2. Armature circuit of the DC motor.

At this point we made explicit (6) with respect to the angular

accelerations ϑ̈1 e ϑ̈2 and (7) with respect to the time derivative

of the armature current; finally we introduce the two identities

ϑ̇1 = ϑ̇1 e ϑ̇2 = ϑ̇2, obtaining in this way the following system

of differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ̇1 = ϑ̇1

ϑ̇2 = ϑ̇2

ϑ̈1 =
1

J∗
1

(−2kr21ϑ1 + 2kr1r2ϑ2 − 2cr21ϑ̇1+

+2cr1r2ϑ̇2 + zkmI)

ϑ̈2 =
1

J2
[2kr1r2ϑ1 − 2kr22ϑ2+

+2cr1r2ϑ̇1 − (2cr22 + μ)ϑ̇2 − τr0]

İ =
1

L
[−zkmϑ̇1 −RI + V (t)]

(8)

Using matrix notation, (8) can be rewritten in the form:

ẋ(t) = Ax(t) +Bu(t) (9)

where:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0

−2kr21
J∗
1

2kr1r2

J∗
1

−2cr21
J∗
1

2cr1r2

J∗
1

zkm

J∗
1

2kr1r2

J2
−2kr22

J2

2cr1r2

J2
−2cr22 + μ

J2
0

0 0 − zkm

L
0 −R

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

B =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0

− 1

J2
0

0
1

L

⎤
⎥⎥⎥⎥⎦ (11)

x(t) =
{

ϑ1(t) ϑ2(t) ϑ̇1(t) ϑ̇2(t) I(t)
}T

(12)

u(t) =
{

τr0 V (t)
}T

(13)

As is known, A and x are respectively the state matrix and

the state vector of the system, u is the input vector and B
the input matrix. The differential equations here obtained are

linear and for their solution the analytical method described

in the next section can be used.
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III. ANALYTICAL SOLUTION IN STATE SPACE

An analytical solution for the system of equations (9) can be

found using the modal analysis in state space; this procedure

requires the calculation of two different types of eigenvectors

[5] [6]. We proceed by considering first the problem of free

vibrations (or homogeneous problem), obtained by imposing

u(t) = 0; from (9) we get:

ẋ(t) = Ax(t) (14)

Equation (14) represents in matrix form a system of

five first-order ordinary differential equations with constant

coefficients, whose solution is:

x(t) = xeλt (15)

where x is a constant vector and λ a constant scalar. By

substituting (15) into (14) and simplifying the exponential term

on both sides, we obtain:

Ax = λx (16)

Equation (16) represents the eigenvalue problem with a

nonsymmetric real matrix A. The solution of (16) gives

the eigenvalues λi and the corresponding eigenvectors xi,

(i = 1, . . . , 5). These eigenvalues can be real or complex.

Since A is a real matrix, if λi is a complex eigenvalue,

its complex conjugate λi will also be an eigenvalue of A;

moreover the eigenvectors xi and xi, corresponding to λi and

λi, will also be complex conjugates to one another.

Now let us consider the eigenvalues-eigenvectors problem

for the transposed matrix AT :

ATy = λy (17)

Since the determinants of A and AT are equal, (16) and (17)

generates the same characteristic equation, i.e.:

|A− λI| ≡ |AT − λI| = 0 (18)

where I is the 5 × 5 identity matrix. Consequently the

eigenvalues of A and AT are identical; on the contrary the

eigenvectors of these matrices will be different.

The eigenvectors xi, i = 1, . . . , 5 of A are called right
eigenvectors, whereas the eigenvectors yj , j = 1, . . . , 5 of

AT are called left eigenvectors; more details about these

denominations are given in Appendix A.

The right eigenvalues xi and the left eigenvalues yi are the

columns of the matrices X and Y, which are defined by the

following relationships:

X = [x1 x2 x3 x4 x5] Y = [y1 y2 y3 y4 y5] (19)

If the eigenvectors X and Y are properly normalized, the

following equations are valid (see Appendix B for details):

YTX = I YTAX = Λ (20)

where Λ is the 5× 5 diagonal matrix of eigenvalues, i.e.:

Λ =

⎡
⎢⎢⎢⎢⎣

λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

⎤
⎥⎥⎥⎥⎦ (21)

Now we introduce the linear transformation:

x(t) = Xη(t) (22)

where η = [η1 η2 η3 η4 η5]
T is the vector containing the modal

coordinates ηi(t). Substituting (22) into (9) and premultiplying

by YT both sides of the equation, we obtain:

YTXη̇(t) = YTAXη(t) +YTBu(t) (23)

Considering (20), we can rewrite the above equation in the

form:

η̇(t) = Λη(t) + q(t) (24)

where:

q(t) = YTBu(t) (25)

In this way we have obtained the complete decoupling of the

differential equations that describe the system dynamics, since

the matrix equation (24) contains five independent equations,

which can be separately solved. Each of them is a first

order nonhomogeneous linear differential equation, that can

be written as:

η̇i(t) = λiηi(t) + qi(t) i = 1, . . . , 5 (26)

The solution of (26) can be expressed in the general form:

ηi(t) = ηi(0)e
λit +

∫ t

0

qi(τ)e
λi(t−τ)dτ i = 1, . . . , 5 (27)

For calculating the initial conditions ηi(0) in terms of modal

coordinates, it is sufficient to invert (22) and to set t = 0:

η(0) = X−1x(0) (28)

From the first of (20) we have X−1 = YT and therefore

the calculation of the inverse of matrix X can be replaced by

the transposition of matrix Y; this simplifies the computation

process. Therefore we can rewrite (28) in the form:

η(0) = YTx(0) (29)

After determining the modal coordinates by means of (27),

the solution of the system (9) can be obtained using the linear

transformation given by (22).

IV. SIMULATION RESULTS

The previously described model has been used for

simulating the dynamic behavior of the belt transmission

shown in Fig. 1 during startup. To perform the simulations, it

was assumed that the DC motor was controlled with a voltage

signal having the following exponential form:

V (t) = Vmax(1− e−t/γ) (30)

where Vmax and γ indicate, respectively, the maximum

value of the voltage command and the time constant of the

exponential function. The complete list of parameters used

for the calculation is shown in Table I.

In order to solve the differential equations, the

method of modal analysis in state space has been

employed, using numerical techniques [7] for solving

the eigenvalue-eigenvector problems and for calculating the

integral in (27).
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TABLE I
SYSTEM PARAMETERS USED FOR NUMERICAL SIMULATIONS

Jm = 4× 10−4 kgm2 τr0 = 0Nm

J1 = 0.018 kgm2 μ = 5Nms/rad

J2 = 0.25 kgm2 z = 15

k = 120 kN/m Vmax = 24V

c = 20Ns/m R = 0.15Ω

r1 = 80mm L = 0.2mH

r2 = 160mm km = 0.09Nm/A

The exactness of the results has been verified by comparing

the solution obtained by modal approach with the solution

resulting from the numerical integration of the system

equations (9); the numerical computation has been performed

using the fourth order Runge-Kutta method, with step size

Δt = 0.1ms.

Fig. 3 show the time histories of the following variables:

motor armature voltage (Fig. 3a), armature current (Fig. 3b),

electric and mechanical power (Fig. 3c, d), angular velocity

of the pulleys (Fig. 3e, f), angular acceleration of the pulleys

(Fig. 3g, h).

The plots have been calculated for three different values of

the time constant (γ1 = 20 ms, γ2 = 40 ms, γ3 = 60 ms),

using a maximum motor voltage Vmax = 24 V.

The numerical simulations here presented show that the

mathematical model of the belt transmission can be used

during the design stage to simulate with good reliability

the dynamic phenomena occurring during the system startup;

clearly it is necessary to carry out the validation of the

model by means of experimental activity, especially as regards

the determination of the damping parameters of the system.

The identification of the system parameters represents an

interesting perspective of research that could be developed in

the future through the use of an instrumented test rig, which

allows the user to detect by experiments the most important

physical parameters (motor voltage and current, driving torque,

angular velocity and angular acceleration of the pulleys), that

are necessary for the model validation.

V. CONCLUSIONS

The paper presented the dynamic analysis during startup

of a synchronous belt drive with non-negligible elasticity.

The study was carried out through the formulation of

a mathematical model which considers also the electrical

response of the DC motor. To simplify the system modeling,

a matrix approach in the state space was used.

As regards the mechanical aspects, the analysis was carried

out with the traditional Lagrangian method; for the 2 DOF

system under consideration, this method allowed to write a

system of two second order linear differential equations with

constant coefficients. The addition of (7) required the insertion

of a row and a column in the state matrix.

To simulate the system dynamics the modal approach in the

state space was used, which allowed to decouple the equations

and to obtain the solution of the problem in analytical terms.

The results obtained by this method are in agreement with

those obtained by Runge-Kutta algorithm, which, although of

easier application, allows only a numerical evaluation of the

solution.

The proposed method has been implemented in a software

package and it can be easily extended to the study of similar

systems with lumped parameters, where the vibrations are due

to the compliance of the mechanical components (belt, joints,

etc.); in general, assuming that the system under considerations

has n degrees of freedom, its description in the state space

will require the use of 2n+ 1 variables, since, in addition to

the mechanical coordinates, it is necessary to add the current

flowing in the armature circuit of the electric motor.

APPENDIX A

RIGHT AND LEFT EIGENVECTORS

The denominations right eigenvalues and left eigenvalues
are due to the position of the eigenvectors relative to the matrix

A. In fact, looking at the first member of the equation (16)

we note that the eigenvector x is to the right of A;

Considering instead the equation (17) and calculating the

transpose of both members, we get: yTA = λyT . The first

member of the equation thus obtained clearly shows that the

eigenvector y (in transposed form) is located to the left of the

matrix A. In Linear Algebra the eigenvalue problem for AT

is called the adjoint eigenvalue problem and the eigenvectors

yj , j = 1, . . . , 5 are known as adjoint eigenvectors of the

eigenvectors xi, i = 1, . . . , 5.

APPENDIX B

PROOF OF EQUATIONS (20)

To give a proof of (20), we begin by rewriting (16) for

the generic right eigenvector xi and (17) for the generic left

eigenvector yj :

Axi = λixi ATyj = λjyj (31)

Considering the second of (31) and transposing both members

we get:

yT
j A = λjy

T
j (32)

Pre-multiplying the first of (31) to yT
j and post-multiplying

(32) to xi, we obtain:

yT
j Axi = λiy

T
j xi yT

j Axi = λjy
T
j xi (33)

Subtracting the second of the (33) from the first, we have:

(λi − λj)y
T
j xi = 0 (34)

If i �= j, the eigenvalues λi and λj are distinct and thus their

difference is not null; therefore from (34) we deduce that:

yT
j xi = 0 i, j = 1, . . . , 5 (35)

Equation (35) states that, for a given matrix A and for

λi �= λj , the right eigenvectors xi are orthogonal to the left

eigenvectors yj .

Substituting (35) into the first or second of the (33) we get:

yT
j Axi = 0 i, j = 1, . . . , 5 (36)
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Fig. 3. Simulation results: a) Motor voltage (command signal); b) Armature current; c) Electric power at the motor terminals; d) Mechanical power at the
motor shaft; e) Angular velocity ϑ̇1; f) Angular velocity ϑ̇2; g) Angular acceleration ϑ̈1; h) Angular acceleration ϑ̈2.
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This relationship shows that the eigenvectors xi and yj are

orthogonal also with respect to the state matrix A.

For i = j we obtain from (33) the following result:

yT
i Axi = λiy

T
i xi i = 1, . . . , 5 (37)

Generally yT
i xi �= 1, but, for each pair of eigenvectors yi e xi

we can always find a normalization coefficient αi such that:

(αiy
T
i )(αixi) = 1 (38)

According to this equation the coefficient αi will be:

αi =
1√
yT
i xi

i = 1, . . . , 5 (39)

Multiplying by αi the components of the vectors yi and xi, we

get new normalized eigenvectors which satisfy the relation1:

yT
i xi = 1 i = 1, . . . , 5 (40)

According to (40), we rewrite (37) in the form:

yT
i Axi = λi i = 1, . . . , 5 (41)

Using the matrices defined by (19), considering the

orthogonality property (35) and taking into account the

normalization condition (40), we can write:

YTX = I (42)

Finally, from (41) we have:

YTAX = Λ (43)

where Λ is defined by (21).

APPENDIX C

LIST OF SYMBOLS

Pulley (1) rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ϑ1

Pulley (2) rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ϑ2

Motor shaft rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ϑm

Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Potential energy due to system elasticity . . . . . . . . . . . . . . . . . . . . . . . . . U
Rayleigh dissipation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D
Work done by motor and resistant torques . . . . . . . . . . . . . . . . . . . . . . . W

Motor torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .τm
Load torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τr
Constant component of the load torque . . . . . . . . . . . . . . . . . . . . . . . . . τr0
Viscous friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .μ

Moment of inertia of the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jm
Moment of inertia of pulley (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J1
Moment of inertia of pulley (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2
Axial stiffness of the belt branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k
Damping constants of the belt branches . . . . . . . . . . . . . . . . . . . . . . . . . . . c
Pulley (1) radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r1
Pulley (2) radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r2
Gear ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . z

Armature voltage of the DC servomotor . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum armature voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vmax

Armature current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Armature resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R
Armature inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L
Torque/back e.m.f. costante fo the DC motor . . . . . . . . . . . . . . . . . . . .km
Time constant of the exp. function (used as command voltage) . . . . . γ

1For convenience, the new normalized eigenvectors are indicated with the
same symbols yi e xi used for the non-normalized eigenvectors.
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