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Abstract—In this paper we propose a mixture of two different 
distributions such as Exponential-Gamma, Exponential-Weibull and 
Gamma-Weibull  to model heterogeneous survival data. Various 
properties of the proposed mixture of two different distributions are 
discussed. Maximum likelihood estimations of the parameters are 
obtained by using the EM algorithm. Illustrative example based on 
real data are also given. 

 
Keywords—Exponential-Gamma, Exponential-Weibull, Gamma-

Weibull, EM Algorithm, Survival Analysis. 

I. INTRODUCTION 

URVIVAL analysis is a collection of statistical procedures 
for data analysis for which the outcome variable of 
interest is time until an event occurs. Historically, survival 

analysis has usually been carried out using nonparametric 
methods or via the classical statistical analysis of parametric 
survival models. Survival analysis datasets have been usually 
represented with the classical statistical distributions such as 
Gamma, Exponential and Weibull distributions [7]-[10]. 
Besides these pure classical statistical distribution models, 
other novel models for survival data have been developed 
recently. Especially in the heterogeneous structure of the data 
model in the use of mixed distribution has become 
widespread. Frequency distribution in case of single-mode 
data with the standard model of probability distribution is 
useful and helpful. Mixture of distributions is even useful 
because it is applied to represent heterogeneous data set which 
there is evidence of multimodality or simply unimodality [5]. 
Chen et al. [3] used a two-component mixture model for the 
analysis of cancer survival data generalizing an earlier idea in 
Berkson and Gage [2]. In Quiang [13], a similar model of a 
mixture of a Weibull component and a surviving fraction in 
the context of a lung cancer trial is considered. Angelis et 
al.[1] proposed an application of a parametric mixture model 
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to relative survival rates of colon cancer patients from the 
Finnish population-based cancer registry, and including major 
survival determinants as explicative covariates. Marin et 
al.[11] have illustrated how Bayesian methods can be used to 
fit a mixture of Weibulls model with an unknown number of 
components to heterogeneous, possibly right-censored 
survival data using a birth death MCMC algorithm.  

The purpose of this paper is to show that the mixture of the 
different distributions is the appropriate distribution for the  
heterogeneous survival times. The article is organized as 
follows. In Sec. 2, we define the functions of survival time. 
Also several theoretical distributions that have been used 
widely to describe survival time are discussed and their 
characteristics summarized. In Sec. 3, we define mixture of 
two different distributions in survival analysis and the 
maximum likelihood estimations of the parameters are 
obtained by the EM algorithm. In Sec. 4, mixture of two 
different distributions is applied on illustrative examples 
based on heterogeneous survival real dataset successfully. 

II. FUNCTIONS OF SURVIVAL TIME 
Survival time data measure the time to a certain event, such 

as failure, death, response, relapse, the development of a given 
disease, parole, or divorce. These times are subject to random 
variations, and like any random variables, form a distribution. 
Let T  denote the survival time. The distribution of T  can be 
characterized by three equivalent functions. Survival function, 
denoted by )(tS , is defined as the probability that an 
individual survives longer than t : 

 
 t) P(T S(t) >= , ∞<<  t 0                                             (1) 

 
Here )(tS  is a nonincreasing function of time t  with the 
probability of surviving at least at the time zero is 1 and that 
of surviving an infinite time is zero. Cumulative distribution 
function )(tF , is defined as the probability that an individual 
fails before t  
 

)()( tTPtF ≤= , ∞<<  t 0                                              (2) 
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The hazard function )(t  of survival time T  gives the 
conditional failure rate. This is defined as the probability of 
failure during a very small time interval, assuming that the 
individual has survived to the beginning of the interval, or as 
the limit of the probability that an individual fails in a very 
short interval, tt Δ+ , given that the individual has survived to 
time t : 
 

)(
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t
tTttTtPth
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The cumulative hazard function is defined as 
 

∫=−=
t

duuhtStH
0

)())(log()(                                            (4) 

 
Given any one of them, the other two can be derived [9].  
 

))(exp()(1)( tHtFtS −=−=                                              (5) 
 

A parametric survival model is a model in which survival 
time, thus the outcome, is assumed to follow a known 
distribution. By reviewing the literature about modeling the 
survival data, it can be seen that the Exponential, Gamma and 
Weibull probability distribution functions are commonly used 
in survival analysis. The )(tf  probability density function 
(pdf), )(tS  survival function and mean lifetime denoted by 

)(tE  form of these distribution models can be summarized 
below. 
 
Exponential Distribution: 
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Gamma Distribution: 
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where )( 1αxΓ  is called an incomplete Gamma function and 

calculated by ∫ −−=Γ
x

t
x dtet
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Weibull Distribution: 
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III. MIXTURE MODEL OF TWO DIFFERENT 
DISTRIBUTIONS 

 
3.1. Model 

Mixture model of two different distributions assumed that 
the population consists of g=2 distinct subgroups or 
subclasses. Mixture model of two different distributions can 
written as 

 
);()1();();(Y,X YYXX tftftf θπθπψ −+=                   (15) 

 
where the vector ),( θπψ =  contains all unknown parameters 
π  and ),( YX θθθ =  in the mixture model. The function 

);( XX tf θ  is called mixture component density function for 
some parameter Xθ , );( YY tf θ  is defined similarly.  
 

In this study, to model the heterogeneous survival times, we 
used the mixture of two different distributions of Exponential-
Gamma, Exponential-Weibull and Gamma-Weibull which are 
defined as 
 

),;()1();()( 11expexp βαπλπ tftftf gmgm −+=−             (16) 

),;()1();()( 22expexp βαπλπ tftftf wblwbl −+=−           (17) 

),;()1(),;()( 2211 βαπβαπ tftftf wblgmwblgm −+=−             (18) 

 
where π  is the mixture weight of the distributions and 

)1,0(∈π . )(exp tf , )(tf gm  and )(tf wbl  are defined as in Eqs. 

(6), (9) and (12) respectively. The maximum likelihood 
estimators of parameters of these mixture distributions are 
estimated using Expectation-Maximization (EM) algorithm  
 

3.2. Parameter Estimation in Mixture Models of Two Different 
Distributions  using with EM Algorithm 

In finite mixture models, the EM (Expectation-
Maximization) algorithm has been used as an effective 
method to find maximum likelihood parameters estimation 
[12]. In EM framework, the observed data ntt ,,1 …  is 
considered as an incomplete data and latent class variables 
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21, zz  to be missing where 1)(11 == ii xzz  if observation it  
belongs to 1 th class and 0 otherwise  and ni ,,1…= . The EM 
algorithm is applied to the mixture distributions by treating z  
as missing data. EM algorithm can be preceded with two 
steps, E- and M- steps.  

 
In E step, to estimate the hidden variable vector 

[ ]iii zzz 21= , Conditional expectation funciton 
)|( 1 ii tzE and )|( 2 ii tzE  are used. 
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In M step, )|( 1 ii tzE  and )|( 2 ii tzE function which are 

calculated in E step is maximized under the conditional of on 
mixture weights as )1,0(∈kπ . To estimate the mixture 
weights and parameters vectors which are denoted by π  and 

),( YX θθθ =  respectively, Lagrange method can be used. The 
estimated mixture weight is defined by  
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The maximum likelihood estimator of λ  parameter can be 

obtained with Eq. (22) for Exponential-Gamma and 
Exponential-Weibull distributions. The maximum likelihood 
estimator of λ  parameter is given by 
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The maximum likelihood estimators of 1α  and 1β  

parameters can be obtained with Eqs. (23) and (24) 
respectively for Exponential-Gamma mixture distribution. The 
maximum likelihood estimators of 1α  and 1β  parameters are 
given by  
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where r  is number of Newton-Raphson iteration  within 

EM algorithm and (.)ψ  with (.)ψ ′  are a digamma and 
trigamma functions respectively. The maximum likelihood 
estimators of 1α  and 1β  parameters of Gamma-Weibull 

mixture distribution  are estimated using iz1ˆ  instead of iz2ˆ  in 
the Eqs. (23) and (24). 

 

The maximum likelihood estimators of 2β  and 2α  
parameters can be obtained with Eqs. (25) and (26) 
respectively for Exponential-Weibull and Gamma-Weibull 
mixture distribution. The maximum likelihood estimators of 

2β  and 2α  parameters are given by  
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Newton-Raphson iteration  within EM algorithm.  

IV. APPLICATIONS 
 

4.1. Simulation 

Simulations were performed to investigate the convergence 
of the proposed EM scheme. We generated 1000 samples of 
size 100, each randomly sampled from the mixture of two 
different distributions. The graphs of the mixture of two 
different distributions for simulation parameters are shown in 
Figure 1. 

 
(a) 
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(b) 

 
(c) 

Fig 1. The graphs of the mixture models of two different 
distributions for simulation parameters 

 

No restriction was imposed on the maximum number of 
iterations and convergence was assumed when the absolute 
differences between successive estimates were less than 410− . 
The results from the simulated data sets are reported in Table 
1, which gives the averages of the maximum likelihood 
estimators )ˆ,ˆ( θπav  and standard errors )ˆ,ˆ( θπse . 

Convergence was achieved in all cases, even when the 
starting values were poor and this emphasizes the numerical 
stability of the EM algorithm. The values of  )ˆ,ˆ( θπav  and 

)ˆ,ˆ( θπse  suggest that the EM estimates performed 
consistently. According to the simulation results, the EM 
approach works well with different mixture proportions. 
 

4.2. Failure times for oral irrigators 

The studied real dataset in this paper is failure times for oral 
irrigators dataset in [4] and studied by Jiang and Murthy [6]. 
This dataset is dealing with failure times for oral irrigators. 
The estimated parameters, K-S test statistics and mean square 
error (MSE) values for the (pure) pdf of Exponential 
distribution, the (pure) pdf of Gamma distribution model, the 
(pure) pdf of Weibull distribution model and the pdf of  
Exponential-Gamma, Exponential-Weibull and Gamma-
Weibull for failure times for oral irrigators data are given in 
Table 2. The mean square error  is one of many ways to 
quantify the difference between an estimator and the true 
value of the quantity being estimated. MSE is obtained with  

{ }

mn

tFtEmp
n

i
ii

−

−
=

∑
=1

2)()(
MSE                                    (27) 

where )4.0/()3.0()( +−= nitEmp i  for ni ,...,1=  is empirical 
distribution, m  is the number of free parameters in the 
distribution and )( itF  is theoretical distribution function.  

A graphical comparison of the fitted (pure) pdf of 
Exponential, Gamma and Weibull distributions model and 
the fitted pdf of the mixture models of Exponential-Gamma, 
Exponential-Weibull and Gamma-Weibull for failure times 
for oral irrigators data is given in Figure 2.  

                                                     TABLE I 
                               SIMULATION RESULTS 
 

Exponential-Gamma : 
          6.01 =π   2=λ      101 =α     5.11 =β  

 1π̂  λ̂  1α̂  1β̂   

)ˆ,ˆ( θπav  0.6041 2.0502 11.7699 1.4165  

)ˆ,ˆ( θπse  0.0018 0.0133 0.1443 0.0143  

Exponential-Weibull  
          8.01 =π   5=λ       152 =α    52 =β  

 1π̂  λ̂  2α̂  2β̂   

)ˆ,ˆ( θπav  0.8110 4.4460 14.9555 5.0691  

)ˆ,ˆ( θπse  0.0019 0.0538 0.0128 0.0206  

Gamma–Weibull : 
                     3.01 =π    31 =α     5.01 =β    82 =α   52 =β  

 1π̂  1α̂  1β̂  2α̂  2β̂  

)ˆ,ˆ( θπav  0.3075 3.4077 0.5446 8.0142 5.2434 

)ˆ,ˆ( θπse  0.0018 0.0405 0.0108 0.0073 0.0226 

TABLE II 
PARAMETER ESTIMATIONS, K-S and MSE VALUES 

 
 Parameter Estimations K-S MSE 

Exponential =λ̂ 264.5593 0.1127 0.0034 

Gamma =1α̂ 1.1219, =1̂β 235.8211 0.1151 0.0032 

Weibull =2α̂ 276.3050, =2β̂ 1.1464 0.1182 0.0033 

Exponential 
& 

Gamma 

=1π̂ 0.7109 

=λ̂ 165.7352 

=1α̂ 65.5052, =1̂β 7.7484 

0.0591 0.00047 

Exponential 
& 

Weibull 

=1π̂  0.6561 

=λ̂ 148.1692 

=2α̂ 520.9826, =2β̂ 6.8394 

0.0575 0.00041 

Gamma 
& 

Weibull 

=1π̂ 0.6507 

=1α̂ 1.1412, =1̂β 127.1518 

=2α̂ 521.5024, =2β̂ 6.8419 

0.0500 0.00034 
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(a) 

 
(b) 

 
(c) 

Fig 2. The survival functions of fitting models for failure times 
for oral irrigators data 

 
This can be seen graphically from Figure 2 that the mixture 

models of two different distributions such as Exponential-
Gamma, Exponential-Weibull and Gamma-Weibull fits much 
better than the (pure) Exponential, Gamma and Weibull 
distributions to represent failure times for oral irrigators 
dataset. 

V. CONCLUSIONS 
In this paper we proposed the mixture models of two 

different distributions such as Exponential-Gamma, 
Exponential-Weibull and Gamma-Weibull to represent the 
heterogeneous survival data sets. The maximum likelihood 
estimations of parameters of the mixture models obtained with 
EM algorithm. Simulations were performed to investigate the 
convergence of the proposed EM algortihm. According to the 
simulation results, the EM algorithm was succesfull in 
estimation of parameters of the mixture models. The mixture 
models of two different distributions such as Exponential-
Gamma, Exponential-Weibull and Gamma-Weibull 
successfully applied for modeling  failure times for oral 

irrigators dataset. Gamma –Weibull mixture distribution is 
best distribution for modeling failure times for oral irrigators 
within the mixture models of two different distributions. 
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