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Abstract—The separation of speech signals has become a research
hotspot in the field of signal processing in recent years. It has
many applications and influences in teleconferencing, hearing aids,
speech recognition of machines and so on. The sounds received are
usually noisy. The issue of identifying the sounds of interest and
obtaining clear sounds in such an environment becomes a problem
worth exploring, that is, the problem of blind source separation.
This paper focuses on the under-determined blind source separation
(UBSS). Sparse component analysis is generally used for the problem
of under-determined blind source separation. The method is mainly
divided into two parts. Firstly, the clustering algorithm is used to
estimate the mixing matrix according to the observed signals. Then
the signal is separated based on the known mixing matrix. In this
paper, the problem of mixing matrix estimation is studied. This paper
proposes an improved algorithm to estimate the mixing matrix for
speech signals in the UBSS model. The traditional potential algorithm
is not accurate for the mixing matrix estimation, especially for low
signal-to noise ratio (SNR).In response to this problem, this paper
considers the idea of an improved potential function method to
estimate the mixing matrix. The algorithm not only avoids the inuence
of insufficient prior information in traditional clustering algorithm,
but also improves the estimation accuracy of mixing matrix. This
paper takes the mixing of four speech signals into two channels as
an example. The results of simulations show that the approach in this
paper not only improves the accuracy of estimation, but also applies
to any mixing matrix.

Keywords—Clustering algorithm, potential function, speech signal,
the UBSS model.

I. INTRODUCTION

W ITH the development of science and the technology,

blind source separation is widely used in many fields,

such as image processing [1], biomedicine [2], speech signal

processing [3], communication [4], industrial machinery [5]

and so on. According to the number of observed signals

and the number of source signals, blind source separation

can be divided into three categories: normal blind source

separation (NBSS), overdetermined blind source separation

(OBSS) and under-determined blind source separation (UBSS)

[6]. When the number of observed signals and source signals

is equal, it is NBSS. When the number of the observed

signal is more than the source signal, it is OBSS. When the

number of the observed signal is less than the source signal,
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it is UBSS. Methods such as information maximization and

independent component analysis (ICA) can be used to solve

blind separation problems[7]. The method of ICA has been

widely used. This method solves the problems of NBSS and

OBSS. But this method does not solve the UBSS problem.

Michael and Terrence in [8] proposed the sparsity of the

signal for the first time and the blind signal is separated by

the sparse characteristic of the signal, which is a pioneering

algorithm in the history of under-determined blind separation.

This method consists of two steps. The first step is estimating

the mixing matrix according to observed signals. The next step

is recovering the source signals based on the known mixing

matrix. In this paper, the problem of mixing matrix estimation

is studied. Mixing matrix estimation problem is divided into

two classes. One is that the source signal is completely sparse,

the other is the source signal is not completely sparse[9].

This paper discusses the case where the source signal is

sufficiently sparse. First, a simple single source point detection

method is used to improve the sparsity of signals[10]. Then

an improved method is proposed to estimate the number of

source signals and the mixing matrix. Many scholars have

studied the mixing matrix estimation algorithm. The k-means

algorithm is proposed by Li et al in [11] to estimate the mixing

matrix. In order to set the number of initial clustering centers,

the algorithm needs to know the number of source signals in

advance. At the same time, the algorithm is greatly affected

by the initial clustering center. Due to these shortcomings of

k-means, some scholars have proposed DBSCAN algorithm

to estimate the number of source signals and the mixing

matrix[12]. However, the algorithm is greatly affected by the

clustering radius and the minimum number of clusters. Dong

in [13] proposed an improved potential function to estimate the

mixing matrix. However, the estimation accuracy of the mixing

matrix is not good, especially in the low signal-to-noise ratio.

In order to solve the problem, this paper proposes an improved

potential function to estimate the mixing matrix. This method

improves the estimation accuracy at low SNR and is applicable

to any mixing matrix at the same time. The rest of the paper is

arranged as follows. Section II introduces the basic model of

our method. In Section III, our algorithm is derived. Followed

by Section IV, it describes the simulation results and analysis.

Finally, conclusions are drawn in Section V.
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II. THE BASIC MODEL

We use a simple linear instantaneous mixing model. For

convenience, we ignore the effects of noise. Then the data

model can be represented as follows.

x (t) = As (t) =

M∑
i=1

aisi (t) (1)

where x (t) = [x1 (t) , x2 (t) , · · · , xN (t)]T is a N-dimensional

observation signal vector, A = [a1, a2, · · · , aM ] is a N ×M
dimension mixing matrix, s (t) = [s1 (t) , s2 (t) , · · · , sM (t)]T

is a M-dimensional source signal vector, t is the time sampling

point and represents the M-th column vector of the mixing

matrix.

III. THE PROPOSED ALGORITHM

A. Single Source Points Detection

In general, the signal sparsity is not good in time domain,

but it is good in time frequency domain, so the signal is usually

converted to time frequency domain for processing. Applying

STFT on both sides of (1), we can get the expression of time

and frequency domain.

X(t, f) = AS (t, f) =
M∑
i=1

aiSi (t, f) (2)

where X(t, f) = [X1 (t, f) , · · · , XN (t, f)]
T

and S (t, f) =
[S1 (t, f) , · · · , SM (t, f)]

T
are the STFT coefficients of the

observed signal and the source signal at the time frequency

point (t, f). In this paper, a two-channel mixing signal is taken

as an example. Then (2) can be written.

[
X1 (t, f)
X2 (t, f)

]
=

[
a11 a12 · · · a1M
a21 a22 · · · a2M

]
⎡
⎢⎢⎢⎣

S1 (t, f)
S2 (t, f)

...

SM (t, f)

⎤
⎥⎥⎥⎦ (3)

The estimation of mixing matrix mainly depends on the

sparsity of signals. For the method of single source point

detection, any two column vectors are irrelevant. Because the

signal is completely sparse in this paper, there is only one

source signal at any TF point. So (3) can be written as:[
X1 (t, f)
X2 (t, f)

]
=

[
a1i
a2i

]
Si (t, f) (4)

If there is only one source signal at a time frequency point,

there are the following expressions.

X1 (t, f) = a11S1 (t, f)

= a11 [Re (S1(t, f)) + jIm (S1(t, f))]
(5)

X2 (t, f) = a21S1 (t, f)

= a21 [Re (S1(t, f)) + jIm (S1(t, f))]
(6)

where Re() and Im() denote the real part and the imaginary

part of the complex number, respectively. From (5) and (6),

we can get:

Re [X1 (t, f)]

Re [X2 (t, f)]
=

Im [X1 (t, f)]

Im [X2 (t, f)]
(7)

If there are two source signals at a time frequency point, the

following expression exists:

X1 (t, f) = a11S1 (t, f) + a12S2 (t, f) (8)

X2 (t, f) = a21S1 (t, f) + a22S2 (t, f) (9)

If this situation is still satisfied with (7), it will need to:

a11
a21

=
a12
a22

(10)

or
Re (S1)

Re (S2)
=

Im (S1)

Im (S2)
(11)

Since any two columns of the mixing matrix are irrelevant,

(10) is not valid. And the probability of (11) is very small. So

you can use (7) to detect a single source point. In fact, this

condition is very harsh, so we need to relax the condition.∣∣∣∣Re [X1 (t, f)]

Re [X2 (t, f)]
− Im [X1 (t, f)]

Im [X2 (t, f)]

∣∣∣∣ < ε1 (12)

where ε1 is a positive number close to zero.

B. Removal of Low Energy Points and Normalization
Treatment

In addition to some noise points, the detected single source

points have low energy around the origin, which affect the

estimation accuracy of the mixing matrix. In order to improve

the estimation accuracy, these low energy points are generally

removed. It can be achieved by the following formula:

‖X (t, f)‖ > λ ·max ‖X (t, f)‖ (13)

where the parameter λ ∈ (0, 1) .

The scatter diagram before removing the low energy points

is shown in Fig. 1. Four straight lines can be roughly seen from

the diagram. After removing the low energy points, the scatter

plot becomes as shown in Fig. 2. The four straight lines can

be clearly seen from the diagram. Then, we can estimate the

mixing matrix more accurately. It can be seen from Fig. 1 that

Fig. 1 The scatter diagram before removing the low energy points

the observed signal shows obvious clustering characteristics
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Fig. 2 The scatter diagram after removing the low energy points

after normalized processing, which is convenient for the

estimation of mixing matrix.

In order to estimating clustering centers, this paper

introduces potential functions.

J (zk) =
T∑

i=1

‖x̂i‖
[
exp

(
−‖xi − zk‖2

b

)]γ
k = 1, 2, · · · ,K

(14)

In (14), zk is the k-th clustering center vector on the

hypersphere. K is the number of cluster centers and b is the

scale parameter. x̂i is a normalized term of xi. Parameter γ can

be obtained by correlation comparison method. The estimation

of parameter b is as follows:

b̂ =
1

T

T∑
t=1

(
1

m
|x̃i (t)− μx̃i

|
)

(15)

where μx̃i
is the mean value of a mixing signal. Potential

function obtains local maximum value at cluster centers. The

number of local maximum values is the number of source

signals. The vector corresponding to the local maximum value

is the column vector of the mixing matrix. In order to obtain

good estimation accuracy at low signal-to-noise ratio, a method

to improve the potential function is used in this paper. The

specific steps are as follows.

• Conduct STFT for observed signals x (t) and convert it

to X(t, f).
• Delete the points in X(t, f) according to the single source

point detection condition.

• Normalize the remaining points in X(t, f).
• Find the points corresponding to local maxima for

potential function.

• Use fixed point iteration method to find the clustering

center.

• Obtain the distance between the cluster centers and the

points detected by single source points.

• Classify each single source point into the nearest class

and get the new cluster center by averaging the single

source points in each class.

• If the cluster centers obtained by the two iterations are the

same, the cluster centers are the estimate of the mixing

matrix, otherwise repeat the above steps.

IV. SIMULATION RESULTS AND ANALYSIS

In order to determine the performance of the algorithm, the

normalized mean square error (NMSE) is used to evaluate the

mixing matrix estimation. The expression is as follows:

NMSE = 10 log

(∑
ij (ãij − aij)

2∑
ij a

2
ij

)
(16)

where ãij is the (i, j) element of the estimated mixing matrix

and aij is the (i, j) element in the original mixing matrix.

In this paper, four speech source signals are mixed into two

observed signals as an example. The source signals used in

the simulation experiment is from [14]. The original mixing

matrix is.

A =

[
0.3420 0.6428 0.8660 0.9848
0.9397 0.7660 0.5000 0.1736

]
(17)

The results of Fig. 3 can be obtained after a single source

point detection and normalization process.

Fig. 3 The scatter diagram normalized

From Fig. 3, we can clearly see that there are four categories,

that is , four source signals. After the process of the potential

function, we can get the three-dimensional plot of the potential

function J(z), as shown in Fig. 4.

Fig. 4 Three-dimensional plot of J(z)
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From Fig. 4, we can clearly see that there are four

peaks. We can estimate the number of source signals based

on the number of peaks.In order to estimate the mixing

matrix, we need to estimate the location of the peak value.

Therefore, we transform the three-dimensional plot of J(z) into

a two-dimensional plot to better estimate the location of the

peak value. The two-dimensional plot of J(z) is shown in Fig.

5.

Fig. 5 Two-dimensional plot of J(z)

According to the result of Fig. 5, we can estimate the

position of the peak value, but the accuracy of the mixing

matrix estimated by this method is not high. In order to

improve the estimation accuracy of the mixing matrix, this

paper proposes an improved potential function algorithm to

estimate the mixing matrix. The mixing matrix Ã estimated

by the algorithm in this paper is as follows:

Ã =

[
0.3438 0.6415 0.8666 0.9846
0.9391 0.7671 0.4990 0.1749

]
(18)

By comparing the original mixing matrix A, it is found

that the proposed algorithm is effective. To better illustrate

the generality of the algorithm, another set of mixing matrix

is used to verify the algorithm. The original mixing matrix A
and the estimated mixing matrix Ã are as follows:

A =

[
0.1673 0.5317 0.8499 0.9920
0.9850 0.8472 0.5177 0.1247

]
(19)

Ã =

[
0.1716 0.5308 0.8506 0.9915
0.9847 0.8477 0.5212 0.1289

]
(20)

The experimental results show that the algorithm is effective

for other mixing matrices.

Gaussian white noise is used in this paper. The contrast

algorithm is the algorithm of Dong in [14]. The parameters of

the algorithm are derived from [14]. Fig. 6 shows the average

NMSE obtained after 100 Monte Carlo experiments. From Fig.

6, we can see that the estimation accuracy of the proposed

algorithm is obviously better than that of the other algorithm

in 5-30 dB. The experimental results show the effectiveness of

an improved potential function algorithm.

Fig. 6 Comparison between this algorithm and other algorithms in performance

V. CONCLUSIONS

This paper presents an improved algorithm to estimate

the mixing matrix for speech signals in UBSS model. The

estimation accuracy of traditional potential function algorithm

is not high, especially in low SNR. Therefore, we consider

an improved potential function method to estimate the mixing

matrix. The algorithm not only improves the estimation

accuracy of mixing matrix, but also applies to other matrices.

This paper takes the mixing of four speech signals into two

channels as an example. It can be seen from the experimental

results that the algorithm can estimate the mixing matrix well

without noise. In the case of noise, the algorithm has a good

estimation accuracy compared with other algorithms. At the

same time, it is found that the algorithm is applicable to other

mixing matrices by replacing the mixing matrix.
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