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 
Abstract—Following a review of various approaches that are 

utilized for classifying the tail behavior of a distribution, an easily 
implementable methodology that relies on an arctangent 
transformation is presented. The classification criterion is actually 
based on the difference between two specific quantiles of the 
transformed distribution. The resulting categories enable one to 
classify distributional tails as distinctly short, short, nearly medium, 
medium, extended medium and somewhat long, providing that at 
least two moments exist. Distributions possessing a single moment 
are said to be long tailed while those failing to have any finite 
moments are classified as having an extremely long tail. Several 
illustrative examples will be presented. 

 
Keywords—Arctangent transformation, change of variables, 

heavy-tailed distributions, tail classification.  

I. INTRODUCTION 

HIS section features an overview of certain criteria that 
have been previously introduced in the statistical literature 

for the purpose of labeling distributional tail behavior. Fairly 
recently, [1] provided several classification categories for 
identifying light to heavy-tailed distributions, these being 
based on moments, hazard rate functions and mean excess loss 
functions.  

Previously, [2] examined the limiting behavior of density 
quantile functions in terms of a parameter α wherefrom one 
could identify three types of tail behavior: short, medium and 
long tails, corresponding to α < 1, α ൌ 1 and α > 1, 
respectively. In order to refine the tail classification advocated 
by [2], [3] also relied on a quantity c that depends on the 
hazard function associated with a given distribution, this 
enhancement generating five categories of tail behaviour: 
short [0 ൏ 𝛼 ൏ 1]; medium-short ሾ𝛼 ൌ 1, 𝑐 ൌ 0]; medium-
medium [𝛼 ൌ 1, 0 ൏ 𝑐 ൏ ∞]; medium-long [𝛼 ൌ 1, 𝑐 ൌ ∞]; 
and long [𝛼 ൐ 1]. Actually, this criterion has a theoretical 
connection with the limiting size of extreme spacings. The 
reader may also refer to [4] whose classification is based on 
the residual lifetime distributions. The aforementioned 
classification techniques are reviewed in [5].  

As explained in [6], there exists a variety of methodologies 
for determining whether a distribution has an exponential or a 
power tail, including QQ-plots, likelihood methods, and plots 
of the mean residual life functions. 

As well, [7] and [8], among others, proposed criteria that 
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take into account the behaviour of a sizeable portion of the 
distribution at hand. An efficiency-based tail ordering 
technique was introduced by [9] in the context of location 
experiments. Another approach consists in relating the 
limiting distribution of the standardized maximum of a given 
distribution (when it exists) to that of the Weibull, Gumbel or 
Fréchet distributions (the three extremal distributions), which 
leads to categorizing the distribution as having a short, 
medium or long tail, respectively. It is manifestly desirable to 
develop procedures that will yield additional categories with a 
view to identifying more precisely the tail behaviour of a wide 
array of distributions. 

The conceptually simple technique being advocated in this 
paper results in eight categories. It is applied to numerous 
theoretical distributions, the resulting tail behaviours being 
generally found to be consistent with those determined by 
making use of other criteria. In the case of a sample of 
observations, one must initially obtain a density estimate to 
which the proposed approach can then be readily applied. Of 
course, the larger the sample, the more reliable the results, 
which is corroborated by a small-scale simulation study 
presented in Section III. The proposed methodology, which is 
described in Section II, is applied to an array of widely used 
distributions in Section IV. 

II. A METHODOLOGY BASED ON THE ARCTANGENT 

TRANSFORMATION 

We are proposing to make use of the percentiles of a 
transformed distribution to define a criterion for characterising 
the tail behaviour of a given distribution. More specifically, on 
letting X represent a distribution having finite mean µ, finite 
variance σ2 and probability density function (PDF) 𝑓ሺ𝑥ሻ, the 
standardized random variable 𝑌 ൌ ሺ𝑋 െ 𝜇ሻ σ⁄  is mapped onto 
(−1, 1) or a subset thereof via the transformation Z ൌ (2/π) 
arctan(Y). The density functions of certain distributions that 
have been so transformed are plotted in Figs. 1-15. These 
distributions include the normal, Weibull with parameters  0.5 
and  2, extreme value, logistic, exponential, Student t on 3, 5 
and 20 degrees of freedom (df), lognormal, Uniform(0,1), 
Beta(5,2), type-II Beta(5,3) and (50,30), and Gamma(50,1). 
The dots indicate the 90th and 99.9999th percentiles of Z.  

Let q(α) represent the ሺ100 ൈ 𝛼ሻth quantile of the 
distribution of Z. We propose to employ the difference 
between the 90th and 99.9999th percentiles of Z as a criterion 
for classifying the right-tail behavior of X. We denote this tail 
index by 

 

                   𝑝 ൌ 𝑞ሺ0.999999ሻ –  𝑞ሺ0.90ሻ .                      (1)  
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Fig. 1 PDF of Z for the normal distribution 
 

 

Fig. 2 PDF of Z for the Weibull distribution (k = 2) 
 

 

Fig. 3 PDF of Z for the extreme value distribution 
 

 

Fig. 4 PDF of Z for the logistic distribution 
 

 

Fig. 5 PDF of Z for the exponential distribution 
 

 

Fig. 6 PDF of Z for the t distribution on 3 df 
 

 

Fig. 7 PDF of Z for the lognormal distribution 
 

 

Fig. 8 PDF of Z for the Weibull distribution (k = 0.5) 
 

 

Fig. 9 PDF of Z for the Uniform(0,1) distribution 
 

We define distributions whose mean is finite but whose 
variance is infinite as having a long tail and distributions 
whose mean is undefined as having an extremely long tail.     

Generally, the fewer the number of finite moments a 
distribution possesses, the heavier its tail is. The proposed tail 
behavior categories and their associated tail index ranges are: 
 Distinctly Short:                   𝑝 ൏ 0.1 
 Short:                       0.1 ൑   𝑝 ൏  0.2  
 Nearly Medium:      0.2 ൑   𝑝 ൏  0.3 
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 Medium:                  0.3 ൑   𝑝 ൏  0.4 
 Extended Medium:  0.4 ൑   𝑝 ൏  0.5 
 Relatively Long:                   𝑝 ൒  0.5 
 Long:                       Indefinite second moment 
 Extremely Long:      Indefinite first moment. 

 

 

Fig. 10 PDF of Z for the Beta(5,2) distribution 
 

 

Fig. 11 PDF of Z for the type-II Beta(5,3) distribution 
 

 

Fig. 12 PDF of Z for the t distribution on 3 df 
 

 

Fig. 13 PDF of Z for the Gamma(50,1) distribution 
 

 

Fig. 14 PDF of Z for the t distribution on 20 df 
 

 

Fig. 15 PDF of Z for the type-II Beta(50,30) distribution 
 

The left-tail behavior of a distribution is similarly 
characterized by defining the corresponding tail index as  

 

p* ൌ  𝑞ሺ0.10ሻ –  𝑞ሺ0.000001ሻ.                           (2) 
 

The specified ranges for p also apply to p*.  
When this methodology is implemented, a distribution is 

deemed to be heavy tailed if it belongs to one of the following 
categories: Extended Medium (0.4 ≤ p < 0.5), Relatively Long 
(p ≥ 0.5), Long or Extremely Long. For instance, the 
lognormal, Weibull(k) with 𝑘 ൏ 1, Pareto, Student t with 
fewer than 6 degrees of freedom and Cauchy are such 
distributions. Heavy-tailed distributions belong to the 
medium-long and long tail categories in Schuster’s 
classification. 

III. A SIMULATION STUDY 

 

Fig. 16   PDF of Z, 100 Exp(1) points 
 

We generated samples of sizes 100, 1000, 50000 and 
1000000 from the standard exponential distribution and 
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obtained the following tail indices from their kde’s: 0.281119, 
0.309942, 0.342787 and 0.361315. We observe that these 
values tend to the theoretical p-index for the standard 
exponential distribution, which is 0.3672. The corresponding 
density functions of Z are plotted in Figs. 16-19. 

 

 

Fig. 17 PDF of Z, 1,000 Exp(1) points 
 

 

Fig. 18   PDF of Z, 50,000 Exp(1) points 
 

 

Fig. 19 PDF of Z, 1,000,000 Exp(1) points 

IV. APPLICATION OF THE TAIL INDEX CRITERION 

Some illustrative classification results resulting from the 
application of the proposed tail index criterion are presented in 
Table I for certain commonly utilized distributions. It should 
be noted that for the beta, Weibull and lognormal 
distributions, the shapes of the standardized densities and thus 
the tail behavior and the associated value of the tail index vary 
with the parameters. 

V. CONCLUSION 

While being readily implementable, the proposed approach 
to characterising distributional tail behaviour produces easily 
identifiable categories that, generally, prove consistent with 
those obtained by making use of other criteria.  

 
 
 

TABLE I 
THE TAIL BEHAVIOR OF CERTAIN DISTRIBUTIONS 

Distribution Tail Behavior Tail Index 

             Uniform    
Beta(5, 2) 
Normal 

Rayleigh 
Type-II Beta(50,30)

Extreme value 
Logistic 

Exponential 
Student t on 5 df 
Type-II Beta(2,5) 
Student t on 3 df 

Lognormal 
Type-II Beta(5,3) 

Weibull 
Student t on 2 df 

Cauchy 

Distinctly Short 
Short 

Nearly Medium 
Nearly Medium 

Medium 
Medium 
Medium 
Medium 

Extended Medium 
Extended Medium 
Relatively Long  
Relatively Long  
Relatively Long 
Relatively Long  

Long 
Extremely Long 

0.0646 
0.1152 
0.2898 
0.2998 
0.3444 
0.3549 
0.3562 
0.3672 
0.4244 
0.4591 
0.5071 
0.5201 
0.5609 
0.5800 

** 
** 

** Moment-based. 
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