International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:2, 2012

A Method to Annotate Programs with High-Level

Knowledge of Computation

Nobuhiko Hishinuma, Jun

Igari, and Rentaro Yoshioka

Abstract—When programming in languages such as C, Java, etc. But if structure of computation is spatial and céemwpit is so

it is difficult to reconstruct the programmer's édeonly from the
program code. This occurs mainly because, mucheoptogrammer's
ideas behind the implementation are not recordetiencode during
implementation. For example, physical aspects ofprdation such as
spatial structures, activities, and meaning ofaldgs are not required
as instructions to the computer and are often elecluThis makes the
future reconstruction of the original ideas difficlAIDA, which is a
multimedia programming language based on the cyloerRodel, can
solve these problems allowing to describe ideasnbeprograms
using advanced annotation methods as a naturansate to
programming. In this paper, a development enviramtmthat
implements the AIDA language is presented with eusoon the
annotation methods. In particular, an actual sifienhumerical
computation code is created and the effects oatimotation methods
are analyzed.

difficult to describe the structure by only textndges can be

useful in describing such features, but the rdiigbiof
document is low.

Even if a programmer has sufficient background Kedge
of the computation, still it is a hard task to nilae line of code
of its implementation with one's understanding.sTdhiificulty
occurs since he spatial and temporal aspects oSsigaly
phenomena are not coded into the

structure, flow of computation and meaning of Vales.
Suppose, for example, there is computation abouticfsm
collision. Some programmers know the particlesqrenfeither
fission, scatter, or capture upon collision. Biéithiere are no
such direct explanations in words in the implememegram,

Keywords—cyberFilm, development environment, knowledgehe programmers need to analyze the program lidmeylt is

engineering, multimedia programming language

|. INTRODUCTION
N traditional text-based programming languages ait,

difficult to understand the programmer's ideas ofrlgm
implemented code [1]. Therefore, as much knowledted to
the environment, objective of the computation, aihe
implementation strategies should be recorded alwitly the

Java and the like, computation is described by amly program.Even if a programmer knows the computatiel, the

sequence of commands. The objective of these codsra®e to
command the computer, not to explain about the naragto
programmers.

When programmers try to understand the prograng,dfien
rely on document. Therefore, programmers shouldterand
maintain high-quality documents. To maintain itsaliy,
suitable modification of the document is requiredading to
change of the program. But in reality, this activis not
performed appropriately [1]. As a result, programsnmust
eventually understand the program by reading iteeda@]. One
of the ways of making programs readable and uraiedable is
by using identifier names and comments [3]. Butése names
and comments are not appropriate, the programmiirdev
confused easily. Furthermore, it is often usefubitmerstand
and visualize the structural construction of theimment
related to the actual phenomenon. Without this kadge, not
only much labor is spent, but also misunderstandowyrs. To
explain such feature, identifier names and commsmisiid be
written in detail and understandable.

Nobuhiko Hishinuma is with the Computer Science dfnfjineering
Department, University of Aizu (e-mail: m5141201@iau.ac.jp).

Jun lgari is with the Computer Science and EngingeDepartment,
University of Aizu (e-mail: m5141202@u-aizu.ac.jp).

Rentaro Yoshioka is with the Computer Science anireering
Department, University of Aizu (e-mail: rentaro@iataac.jp).

programmer can be easily confused by unrelatedscdaenany
cases, there are such codes in a program justke iaork.
For example, input operations are not so important
understand the computation itself. But, these cadies take
up rather great part of programs. Therefore, progrars spend
energy to distinguish main computation from suppertodes.
To focus on only main computation, a mark to dgish them
will be required.In the past, various programmipgpraches
such as object-, aspect-, component- oriented pnoging
have been provided. But, they are methods to jostdinate
program or reduce waste. To address these probiehsnly
that, but the program should be able to record -fagél
knowledge. But traditional programming
methods based on them cannot have the knowleddhein
program, because their specification is just tdemsequential
commands in only text.To solve these problemsAtiimations
and Images for Development of Algorithms (AIDA) tarage
and Active Knowledge Studio (AKS) have been devetb he
AIDA language is a multimedia programming languagsed
on cyberFilm method. The cyberFilm method is a fatro
represents computation using multimedia compongatsis,
animations and extended-texts) [6]-[8]. A computatisually
has various features such as structure, flow, daichjnterface.
The AIDA language consists of four different langesa and
they represent these features: the Language ofriftigac

instructions of a
programming language. Example of such aspects deslu

languagesd an

205

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:2, 2012

Dynamics (LAD), the Language of Algorithmic Command

(LAC), the Language of Algorithmic Interface (LABNd the <
Language of Algorithmic Text (LAT). The LAD repregs the
structure and flow of computation. The LAC represetine | determine particle position ‘

activity of computation by variables and formuldfhie LAF
represents the operation related to input/outpta.dehe LAT
represents all the previously described featulasgéther in a
condensed form. AKS is a development environment to
implement program in the AIDA language, and prosidiee
views to edit and browse programs in the four laggs and

“ check if particle is within bounds “

execute the program: the Skeleton View for LAD, Hwemula ‘ particle collision ‘

View for LAC, the IO View for LAF, the Integratedi®&w for

LAT and the Run View to transform the AIDA language v v
program into other languages such as C, Java, FORT&hd ‘ fission ‘ ‘ scatter ‘ ‘ capture ‘

execute the program.The AIDA language can not only
implement the computation like other languagesalsdg allows |

|
to attach annotations about the programmer's id&&S :
supports this effectively by taking advantage oftiple views. - >|—|—
The AIDA language and AKS is not only to computafibut ” continue random-walk w I 1

also to model and document them. Using the AIDAylsaage on ! |

AKS, programmers can extract programmer's ideas fro - - = y v.
implemented programs in such a way as browsingrdeats. In H determine particle position for next generation H
this paper, the AIDA language is applied to an epfam
computation which is to solve the Boltzmann equatiy the
Monte Carlo method [4], [5], and comparing it WRDRTRAN H compute effective increase rate ’
(a traditional text-based programming language)otigh this
comparison, the effectiveness in understanding ciaijpn
ideas of the AIDA language and AKS are analyzed and
represented.This paper consists of follows. In igect?,
overview of the target computation is explainedséttion 3, ‘ generation loop l\
the Integrated View and its effectiveness is ex@gdi by
representing examples applied to the example catipotand
comparing with FORTRAN program. In section 4, thedtions
of other views (Skeleton, Formula, IO and Run vieavg
explained, and the availability of AKS as a develept
environment is represented. Conclusion and futuoekvare

compute average and standard deviation
of effective increase rate

Fig. 1 Flow of Computation

shown in section 5. This computation simulates particles transportaiospace
with range of x-axis (the length of y-axis and sas infinity).

II. TARGET COMPUTATION The particles move and collide in this space rarigofirst, the

A Over View particle position after random-walking is deterntipand the

position is checked if particle is within the rarafehis space. If

the particle is not in the range, the particleugged as leaked
particle, and the random-walking is terminatedh& particle is

in the range, the particle collision is computed.

The example computation we consider is the comioutab
solve the Boltzmann equation by the Monte Carlohwet The
purpose of this computation is to obtain effectinerease of

neutrons by solving Boltzmann equation with Monterl@ The colliding particle performsa reaction from three types of
approach. In addition, some control data and sttigata are qaction:

also computed in this computation. In this sectidhe 1) Fisgon: the colliding particle splits into some partictesd
computation is explained with the flow shown in .Fig changes the moving direction.

This computation says the Boltzmann equation, bt t5y oater: the colliding particle changes the moving
expression of the Boltzmann equation is not appkafée
Boltzmann equation is known as integrodifferengglation 3)
with considering elementary steps such as strearoailision,
fission, scatter, and capture of neutron particBgt, in the
computation to solve by Monte Carlo method, theatign is
not required because each particle are traced aludlated
stochastically.

direction.

Capture: the colliding particle is captured by other pdetic
If the particle is captured, the random-walkingeisminated.
If fission or scatter is selected, the random-wajkis continued
until the particle goes to out of range or capturafier the
random-walking, particles position which are nensremitted
in this generation are determined for next genematiand

206

International Journal of Information, Control and Computer Sciences

ISSN:

Vol:6,

effective increase rate is recorded. Then, the lobphe
generation is carried out the number of times wisctiecided
before computation. Finally, average and standaxdation of
effective increase rate are computed.

B. Implementation Method

To implement this computation in existing programani
language such as FORTRAN, some information are aftieled
or transformed. Through the process, some probléms
understand computation are raised. In this sectibese
problems are represented and explained.

1. Structure of Computation

The main structure of this computation is spattalicture
which represents moving particles in space witlyeaof x-axis.
Then, almost all flow and activities of the comgiata shown in
previous section is done based on this structune.the
FORTRAN program, the information of this structuig
separated into some parts such as variables antlfms of
computation. Fig. 2 represents transformation efstiucture to
FORTRAN specification.

variables :
xs(mxnf), xsn(mxnf), x, xd

activities :
X=X +1r*xXm

if (x.It.xd.and.x.gt.0.0)

xsn(nfi +1) =x

range
Fig. 2 Structure in FORTRAN's Implementation

The structure which is initially intended by th@grammer is
shown in the left of Fig. 2 as an image. This imeg@esents the
structure of moving particles in space with rangg-axis. But

to actualize this structure by the FORTRAN langyage

programmers will write program codes such as thlet of Fig.
2. In this example, the variables(mxnf) andxsn(mxnf) store
the x-position of thenxnf number of particles, andwhich also
store x-position of particle is for calculation. & fariablexd is
for x-width of range. In the activities, first exgasion represents
random-move of the particler(and xm decided by random
number). The condition which is second command he t
activity represents that this structure has ranfee final
activity represents the relationship betwesr{mxnf) andx (i.e.
xsn(mxnf) is to store position for next generation ani for
calculation).

These transformed parts of information are spreathé
FORTRAN program but they are intimately relatedetach
other. Therefore, programmers will spend much tiamel
energy trying to read the program with up and dawn
understand the structure. Moreover, to understhedsbme
activities such as these particles have collisioithis space,
programmers will spend more cost to read. The sireicof
computation is very important factor to understprajram and

2517-9942
No:2, 2012

objectives of computation, so various programmeys to
understand it before understanding computation., Ehase
difficulty and complexity to read program and urglend the
structure increase the cost of understanding ccetipat and

sometimes raises misunderstanding.

LOC 120

LOC = Line of Code

Fig. 3 Number of Lines par Part

2. Sub Computation for Application

A computation often includes computations which are
unrelated to its objective directly such as inpaytput,
initialization, and finalization. In many casesgchkisupportive
computations for main computations are not needed t
understand the computation. But, such sub computatiten
takes up various part of program and prohibits ogners
from reading codes. Fig. 3 represents number e$lpar part in
the FORTRAN program applied to the example commrnatn
this program, over 60 percent of program is usedsf part
and they are intermixed. These unnecessary congngato
understand often confuse programmers when they amad

modify the program.
l Continue | | Terminate

| Q Q
3z ——> \g’:o O;\:to @0

§ Collision | v

‘rMove S(;zitter Fi {s;ion Ca;i;ture
(a) Original Idea
l Continue : w>=¢ |
Weight : w O\Weiglﬁ TW=w-a
/CQ —_— 0 > O R r————
Collision Terminate : w <¢

Move Generate (0 ~ n)

(b) Implementation Method
Fig. 4 Flow of Particle Collision

3. Optimization for Computation

The one of the most important points of the example
computation is to determine type of reaction whartigles are
collided. If the program is implemented accordimg this
original idea devotedly, it may have conditionaaiching to
compute a reaction from three types of reactionloanly and
reiterate it such as Fig.4 (a). But, there are soases that the
implementation disobedient to the flow of origirideas for
optimization. The FORTRAN program is also disobatlit®

207

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:2, 2012

this flow about particle collision. In this prograrparticle
collision is computed by follow steps (Fig. 4 (Bosvs this
flow):
1) recode number of new particles and each positiem({ n
new particles are generated randomly)

2) reduce weight of the particle
3) terminate the particle if it has low weight

Using features of neutron, this computation haseseded to
reduce unless part for implementation and quickergssing
speed of simulation. But, at the same time, thismatation lost
information about the original idea as particlelismn and
three types of reaction. As a result, programmeitk have
difficulty to find where the computation is done ihe
FORTRAN program. It becomes difficult to understaihe
original idea of computations from the FORTRAN pang.

Ill. ANNOTATION METHOD FORHIGH-LEVEL KNOWLEDGE

To describe programmer's ideas before implememtatiee
AIDA language have some annotation methods. Ingigion,
the annotation methods to describe programmerasidee
analyzed and represented through comparing theyrbatex
View with FORTRAN.The Integrated View, which is ookthe
views for the AIDA language, can represent all fdgtures of
computation in a condensed form, and can edit aodde the
computation optimally. For example, the Integratébw
applied to the example computation is shown in Bign the
Integrated View, all computations are representeécbn and
extended text which can represent some particakirsuch as

mathematical symbols. This Integrated View needdy on

one-and-a-half A4 paper compared with that the FRRY
program needs four A4 papers. The Integrated Viewsists of
header and body section.

1. Header Section

Header Section is the top rectangular of Integrétiedv and
represents all structures and variables of comiputat
Structures are represented by structure namefsteuicon and
parameters of structure. The type of structure. (@yGrid,
3D-Grid and moving particles) is determined by stve icon.
If there are same types of structure in the Integr&iew, they
are identified by parameters and name of struc@nethe other
hand, variables are declared by structure icomddticon and
name. Structure icon of variable represents shaparable
such as scalar, 1-, 2-, 3-D grid, moving partickesmat icon of
variable represents the type of variable such tegén, float,
double float, string. In addition, variables carscalhave
information of unit and group by icon [11]. For exale, the
variablexd of Fig. 2 can havBlanometer (nm) as unit amddth
as group using icon.

2. Body Section

Body Section is under the header section and reptefiows
and activities of computation. The body section kame
hierarchical sections called scene which are stralired by
parts of computation. Each scene is representestéaye icon
and terminal section which consists of node icamsfarmulas.

Header (

*
xen,xs @b (3] 5131, (3], i3l chel3l, 3, skf14000]
Sol3i3) s
@ (5f,5t. 50,55, ch, s (@1 [][] i

Body
ki] @ { (. nto, s, wto @1= |][] et <
| @ k(0] = 1.0] nfis = nnb | wst - 1.0f wsou= 0 | ave- 0
Ple
A xs[@] = stlw/2
Ol
»
Generation :
& El ibatch{ @ 1= scnl.n || ntot{@] = nfis | (tle, nfis) (@] = 0
Loop o |8
Fory pre—
@ X @1-xs(@1] W@ -wst
¥ °
Random e
. > [@] | <10 - x + 1/stirgixiogtrandty<2 x rang
Walking %]
o Taoiame | ehadoirame
¢
Particle A=
- > |G L‘r J«‘ @ nfil @] - snulng] xwxsfingl/stingl/ekflibatch-11srand(
Collision Rl

‘ o ‘ @ | wi@1=wx (1- (sflng] + scingl) / (stingl)
et
i

= i doframe | sedoframe
| P
e
E\ (@] = max(w / (B0 X wilb). 1/50))
E' xs[@1 = xsn[@]
e e
il
n=nis
E‘ ekflibatch] = tle / nnb
. wsoul®15 {3, | “ipatch >= nsb weou + wat xntot
ovel®1 | £ | Vinatch>= nsb ave + eklibatch]
| wst(@] = b/ s

[9 0] D [/ %s - tinateh, . ottt} >

.
[’—_‘ avel@] = ave / (nnb-nsb) | stavi@] = stddev(ave . ekfll . nsb . nth - nsb)
5
(0]) [T or10] (e s oo, waan s, wes @) 5
®

Fig. 5 Integrated View or The Example Computation

Flow of computation is represented by scene icahnanle in
header. For example, the scene Random Walking article
Collision in Fig. 5 are flow for the structureoving particles
and the node icon represents each particle intthetgre. But
the temporal scene likes Generation Loop (Whilef)adn Fig.
5 represents structure by themselves.

A. Structure of Computation

Even if a programmer has sufficient knowledge o th
computation, it is difficult to relate an implemedtcode to
physical phenomenon such as spatial structuresaetidties.
The reason is that such spatial and temporal irdtom is
fragmented and embedded in code with other infaomat

To solve this problem, the AIDA language provide
environment to describe such structural constroctigthout
fragmentation. For example, programmers can sedaxt
determine structures of computation intuitively gared with
traditional programming languages such as FORTRAMau
the Integrated View. Fig. 6 is example to repreffamstructures
and variables of the example computation. In tkangple, the
information related to the structure, which is nmgvparticles in
space with range, is shown in the upper right . Bi. This

208

International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:2, 2012

structure has three parametess,n and group. w means the
range of spacen means the number of particles, agrdup
means the number of types of particlen andxs are variables
based on this structure to store the position digdes. On the
other hand, the other section of Fig. 6 shows ofesestructure
which is related to others such as computatiorstafstics and
observation.

w: 6.1 <=30
n 000 <= 10000 .
group: 3<=3 E Xsn, Xs

W tl

o '@ xd,wgain,wcut,stdv,nnb,
B sf[3], st[3], sc[3], ch[3],
B ss[3][3], sst[3][3]

coNomawm

Fig. 6 Example of Header

Compared with the declaration of structures in th
FORTRAN program (Fig. 2), the information of theustures is
gathered in this section. Therefore, this appraadbles users
to understand what types of structure are compuiethe
program before reading the body of code. In addjtisers can
image and understand spatial structures intuitibglgraphical
icons even if they are not specialist of the exangpimputation.
This approach will reduce the cost and misundedatann the
process of preparation to understand main computati

Computation related to input

e

Computation related to output

Processes related to preparation

*

>
7
3

Fig. 7 Types of Sub Computation

Processes related to finalization

B. Sub Computation for Application

As the structure in the Integrated View, flows ofrputation
can be understood by scene icons before startimgatd the
contents of scenes. Activities of computation sastHormulas
will be also more easily to understand than FORTRBé&tause
the Integrated View can use mathematical symbalk as (e.g.
%, mandX,).

The Integrated View can represent not only impleation
easily, but also can represent explanation of cadatioms
effectively. Scenes can have icons and commersrastations
to explain the computation. Then, users can display
annotations by folding scenes for implementatiosing this
function, users can obtain two types of effectivwmne

The one is that users can read program with olnigiiie part
of main computation. Parts of computation can besified into

main computation and sub computation. The main coatipn
means important part to understand computationgh®wother
hand, the sub computation means not important part
understand it such as input, output, initializatioand
finalization. The main computation is based on ¢xample
computation, so there is just as various typethfatras there are
computations. But, we can anticipate types of thb s
computations to some extent. For example, somestgpsub
computation are represented in Fig. 7 with icortsesk icons
for sub computation are predefined and programeensapply
unified it to a program. Therefore, programmers assess the
code is important or not easily.

Fig. 8 represents example to show the differenveen the
FORTRAN program, unfolded scenes, and folded scertes
top section of Fig. 8 (b) and Fig. 8 (c) represanivity of input
operations for variables of observer structure, andther
section represents activity of initialization foanables of

e

Observer structure.
12 read(7))
2.7 read(?,‘)snu(]),snu(2),snu(3)
28 ¢
29 chc(1)=ch(1)
3:5 sst(.nn,2)=(ss(nn.1)+ss(nn,2)...
36 enddo

(a) FORTRAN

Input patameters from file.

Set initial data to observers.

(b) Folded

E‘ { sf. st, sc, ss, ch, snu })[@]= Z G “xlib"
,? @ { nnb, ntb, nsb, wtlb }[@]=

i Ii' ekf[0] = 1.0| nfis = nnb‘ wst=1.0 wsou=0

T

(c) Unfolded

Fig. 8 Sub Computation Scenes and Its Explanateamé&s

Compared with the FORTRAN program such as Fig.)8 (a
the computations are distinguishable on the bdsprapared
icons to explanation. Therefore, users can not @avgid
reading meaningless computation, but also mininsize of
program. Additionally, whenever users want to reaghange
such sub computation scene, users can find the pdim the
explanation. This approach will reduce the costdearching
main computation from large program.

About the other effectiveness of annotations isesgnted in
next sub section.

209

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:2, 2012

C.Optimization for Computation

The other effectiveness to use the annotationsdenes is
that users can read and understand both implerr@ntaethod
and original ideas which are initially intendedfgmpgrammers.

111 call colid(w,ng,x,xm,wlo) |

207 subroutine colid(w,ngx x...
216 nfi=snu(ng)*w*sf(ng)/st(n...

228 w=w'(1.~(sf(ng)+sc(ng))/...
229 wlo=wpre-w

© | 243end
128 call wiwnd(istwwcu,wgawtlb) ‘

245 subroutine wiwnd(istw,w...

258 if(w.gtwtlb) return
259 a=w/(wsu*wtlb)
260 b=1/wmxs

261 rr=rand()

262 c=max(a,b)

275 end

129 if(ibatch.gt.nsb)then
130 wcut=wcut+wcu
131 wgain=wgain+wga

(a) FORTRAN

Determine type of reaction.
(Paricle Collision)

e P

>fO Fission
C)>O Scatter

Q Capture

7
(b) Folded

@ [wi@]=w x (1 - (sflng] + sclngl) / (st[ng])]

weight
(]

1

"“’"“4 [if [do-frame [else-do-frame |
_ next break
Ll (™0 [™a |

e

1z

@ cl@] = max(w / (3.0 x wtlb), 1/5.0))‘

(c) Unfolded

Fig. 9 Scenes for Implementation Method and Origideas

Fig. 9 also represents flow and activity of the rapke
computation, but this scene is compute main contiputdor
particle collision. This unfolded scene is impleteeh by
implementation methods such as the FORTRAN prodfim
9 (a)). Therefore, there are three scenes to exptanputation
to calculate number of particles genesis, compunatieight of
particle and termination particle according tontsght in Fig.9
(c). This scene also has annotations which areesepted by

Fig. 9 (b). Whereas the scenes of Fig. 9 (c) eryita behavior
of computation, this annotation represents infoiomabased on
programmer's original ideas; particle collision émete types of
reaction. As you can see, the Integrated View cmiga and
represent computation based on implementation rdsttas
well as computation according to the ideas. Assalteusers
can understand the rationale behind computatioteads of
documents. This function can record the progranamer'
knowledge and purpose, and propose it to readeitsouti
misunderstanding. This approach will reduce thek rig
misunderstanding the computation and the cost tenstand
the computation.

In addition, the deference from the FORTRAN progriam
that not only the computation is represented byualis
components, but also some formulas which are noéssarily
to understand or modify computation are hided. &le,
Fig. 10 represents the FORTRAN program and a soéttee
Integrated View about computation to calculate nembf
particles genesis. In FORTRAN programfj which means
number of particles genesis is computed at firstenl xsn
which means the positions of generated particle®désrded
(L220 to L222) anahfis which means total number of particles
is uploaded (L224). But, only the computation tdcukate
number of particles genesis is appeared in thgiated View
and the others are hided. Because, even if the afiahe
computation for number of particles genesis is gedn the
computation for recording positions and uploadotgltnumber
will be needed. As a result, the Integrated Viewdmes more
compactness than traditional programming languages
provides strong information encapsulation.

216 nfi=snu(ng) *w*sf(ng) /st(ng)/ek+rand ()
217 ¢

218 if(nfi.eq.0) goto 2000
219 ¢

220 do i=1,nfi

221 xsn (nfis+i)=x

222 end do

223 ¢

224 nfis=nfis+nfi

\

IE\ | nfil @] = snul[ng] *wxsflngl/sting]/ekflibatch-1]+rand() J

Fig. 10 Extraction of Reconstructive Computation

IV. OTHERMETHOD FORANNOTATION

Besides the Integrated View, AKS have four views to
understand features of computation and to conflprogram
more easily. Fig. 11 represents relationship betweaews of
AKS. These views are synchronized with togethed,they can
support to watch and edit the implementation. Tkel&on
View, the Formula View and the 10 View represerttéges of

210

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:2, 2012

computation along with the Integrated View. Theedefice of
these views and the Integrated View, the Integraféslv
represents whole features of combination but thésevs
represent each specialized features. The Run Vimes ot
represent features of combination supported by AHeA
language but it is also important view for AKS. ft
implementation in the AIDA language, it is execuiedhe Run
View. In this section, description of each viewépresented.

1. Skeleton View

The Skeleton View focuses on structures and flows o

computation according to LAD. Detailed informatiofiflow of

the computation can be watched by animations ardés as
annotations. For example, Fig. 12 is image of ramgalking

scene which can be watched on the Skeleton Vieanlif the
Integrated View, users may be able to understany e

overview of structure, but users can understant ¢ve more
detailed action of structure using this view. Addiglly, users
can also edit the information in this view.

2. Formula View

The Formula View focuses on formulas and activitiés
computation according to LAC. When users want tdt ed
formulas, this view will be often used. Of causasib formula
can be edited in the Integrated View, but there swee
particular formulas such as structured expression
specification of the LAC.

For example, Fig. 13 represents two types of giredt
formula. Fig. 13 (a) represents computation for ditonal

branching. This formula means that the expression

WSOU = Wsou + wst * ntot is computed whematch = nsb is

true. Fig. 13 (b) represents computation for lomgc@mplex
expression and means (1). Using these particulanuias,

programmers can describe expressions more briaftyout

temporal variables. The Formula View is prepareddit such
expression easily because the view is specializegldit and
watch formulas.

Ko (1)

G=(aw+ ——
tempr - fa

3.10 View

The 10 View focuses on input and output betweenAtizA
language and any components according to LAF. igiew,
users can select, edit and check input/output .fild#s
input/output files are selected on the Integratddwy the
information is reflected to this view.

4, Run View

There is the Run View to build and execute the oy
written in the AIDA language with AKS. This view gerates
program code in other programming language by tatapl
programming [9], [10]. After the program generafitive AIDA
language becomes compile-able program as otheudges.
Then, the program can be executed on this viewetrel he 1O
data can be confirmed on the 10 View.

Active Knowledge Studio

' M
Integrated View

I

Skeleton View Formula View 10 View <> RunView
—_ y:x+dz Eﬂ
t Y xdx+a T
f(a,b) -ﬁ
~ Y,

Fig. 11 Relationship of Views

a

x coordinate

§ <

collision leak

1 | 1
A Y)

fission scatter capture

% <

record # of neutr-

ons and position decide direction

,/t
Y

collision

ad

collision

Fig. 12 Image the Flow of Computation

' - <> 1
wsou[@)+ -%-ﬁ}; ibatch == nsb wsou + wst *Xntot

2
wsou

(a) Inline IF Formula

2 1
G[@ = [n*] I aw

“ eXKxag
3
Itempr[]—ea

(b) Inline Pattern Formula

Fig. 13 Structured Formulas

211

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:2, 2012

V.CONCLUSION AND FUTURE WORKS [5]

In summary, we have proposed three types of anantat
methods to record programmer's ideas with hightevé]
knowledge. The first annotation method is to démcrihe
structural construction of the application envir@mindefinition
and icons. As a result, even if programmers dohaet prior [7]
knowledge, they can understand the structure easityout
analyzing program code. The second annotation rdeith®o 8]
readily distinguish between main computation anppsutive
computation by marking them a predefined clasdificeof tags.
Using this annotation method, programmers can focusiain
computation to analyze easily. The last annotatiethod is to
explain high-level knowledge such as objectivesarfiputation
and implementation strategies. Through understandinthe
knowledge, programmers can understand the progrdeme
original ideas and its relationship with implemeiata methods.
Previously, a programmer's efficiency and qualitfy o
understanding a program depends mostly on indiVidbiity.

But, these annotation methods enable programmers wh
develop the program to suggest the way of undedsigrthe
computation. This approach reduces not only labér o
understanding, but also the risk of misunderstandin

In addition, a development environment called AKSthe
AIDA language has been implemented to demonstitatset
methods, and the computation to solve the Boltznesuation
by the Monte Carlo method was modeled and impleatkrAs
an evaluation, these methods and applications bhataned a
good reputation from the developers using the elamp
computation. Additionally, through the developmefitAKS,
various program specification and visualizationhtéques in
each view were developed.

As future work, the development of AKS is contirgiizong
with the improvement of the AIDA language. In peutar,
more information to understand programmer's ideah @s
about variables, formulas and input/output contemils be
implemented. Other functions, such as searchigobtations,
debugging a program at the level of annotations als®
considered.

[9]

ACKNOWLEDGMENT

The sample computation and related FORTRAN program
presented in this paper were provided from Japaolddu
Energy Safety Organization (JNES). We appreciateSJlfor
their cooperation. Also we thank our laboratory rhers for
their support in developing AKS.

REFERENCES

[1] T.D.LaToza, G. Venoliaand R. DeLine, “MaintaigiMental Models: A
Study of Developer Work Habits”, ICSE, New York,@80

[2] T. D. LaToza, D. Garlan, J. D. Herbsleb and B. Ayeké, “Program
Comprehension as Fact Finding”, ESEC-FSE, New Y20K7.

[3] D. Lawrie, C. Morrell, H. Feild and D. Binkley, “Vét's in a Name? A
Study of Identifiers” In 14th International Confame on Program
Comprehension.

[4] S.A. Dupree, S. K. Fraley, “A Monte Carlo PrimarPractical Approach
to Radiation Transport”, Kluwer Academic/Plenum ksiter, New York,
2002.

S. A. Dupree, S. K. Fraley, “A Monte Carlo Primesliyme 2: A Practical
Approach to Radiation Transport”, Kluwer Academlefifim Publisher,
New York, 2004.

N. Mirenkov, A. Vazhenin, R. Yoshioka, T. Ebihafia, Hitomi and T.

Mirenkova “Self-Explanatory Components: a New Pamgming

Paradigm”, International Journal of Software Engnmg and

Knowledge Engineering, 11(1), 5-36, 2001.

N. Mirenkov and R. Yoshioka, “Visual Computing WithEnvironment
of Self-explanatory Components”, Soft Computing rdali 7, 20-32,

2002.

N. Mirenkov and R. Yoshioka, “A Multimedia SystemRender and Edit
Self-Explanatory Components”, The Journal of Ine¢rfiechnologies,
3(1), 1-10, 2002.

Y. Watanobe, N. Mirenkov and R. Yoshioka, “Algoniic CyberFilm

Language”, FCST '06, Japan-China Joint Workshof620

[10] T. Ebihara, “A Program Generator from CyberFilm Sfieations”,

unpublished, University of Aizu, 2005.

[11] K. Takeshige, “A Language of Embedded Clarity Sugpanpublished,

University of Aizu, 2011.

212

