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 
Abstract— Portfolio optimization is one of the most important 

topics in finance. This paper proposes a mean–variance–skewness 
(MVS) portfolio optimization model. Traditionally, the portfolio 
optimization problem is solved by using the mean–variance (MV) 
framework. In this study, we formulate the proposed model as a 
three-objective optimization problem, where the portfolio's expected 
return and skewness are maximized whereas the portfolio risk is 
minimized. For solving the proposed three-objective portfolio 
optimization model we apply an adapted version of the non-
dominated sorting genetic algorithm (NSGAII). Finally, we use a real 
dataset from FTSE-100 for validating the proposed model. 

 
Keywords—Evolutionary algorithms, portfolio optimization, 
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I. INTRODUCTION 

HE classical MV model assumes that assets' returns tend 
to follow a Gaussian distribution, and therefore the 

characteristics of these assets can be described only by their 
first and second central moments of distributions. However, 
according to Chunhachinda et al. [1], asset’s returns of the 
world's 14 major stock markets are not normally distributed. 
Moreover the same authors find that the correlation matrix of 
these stock markets was stable during January 1988 –
December 1993. The authors utilize a polynomial goal 
programming approach in which investor preferences for 
skewness can be incorporated, to determine the optimal 
portfolio consisting of the choices of 14 international stock 
indexes. According to [1], the skewness alters drastically the 
composition of the derived portfolio. Moreover, according to 
the same study investors trade expected return of the portfolio 
for skewness. 

According to Lai [2], when the skewness is taken into the 
portfolio optimization process the resulting optimal portfolio 
differs from the one that is obtained by the classical MV 
framework. Moreover, when we consider the three-objective 
optimal portfolio, investor preference can be incorporated as a 
polynomial goal programming problem. The authors conclude 
that a MV efficient portfolio is not necessarily efficient in 
terms of the MVS optimization framework. 

Liu et al. [3] propose a MVS model for portfolio selection 
with transaction costs. The authors assume that the cost of 
buying and selling stocks can be represented with a function 
that calculates the difference between the existing investment 
choices and the updated portfolio after performing the 
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necessary adjustments. Finally, the authors convert the 
aforementioned problem into a linear programming problem. 
According to [3], this technique can be used to solve large-
scale portfolio selection problems. The authors provide a 
numerical example to illustrate that the method can be 
efficiently used in practice. Konno et al. [4] formulate a 
general portfolio optimization problem maximizing skewness 
subject to fixed expected return and variance constraints, 
whereby both the quadratic and cubic terms are linearly 
approximated to yield a mean-absolute deviation-skewness 
model.  

The main contributions of this work are as follows. First, 
we propose a MVS model, which is an extension of the 
classical MV portfolio theory [5]-[7]. In particular, the 
expected return and skewness are maximized, while the risk is 
minimized. Second, for solving the examined MVS model we 
propose the application of a multi-objective evolutionary 
algorithm (MOEA) for handling the complexity that 
introduces the third central moment (i.e. the skewness) which 
is a non-concave function. 

The remainder of the paper is organized as follows. Section 
II provides the formulation of the proposed MVS portfolio 
optimization model. The proposed MOEA for solving the 
examined model is presented in Section III. The design of 
experiments and the experimental results are presented and 
discussed in Section IV. Finally conclusions are drawn in 
Section V. 

II. THE MVS PORTFOLIO OPTIMIZATION MODEL 

A. The Proposed Model 

The MVS model is a direct extension of the classical MV 
portfolio model [8]-[10]. The MVS optimization framework is 
a reasonable choice to model investment situations where 
assets' returns do not follow the Gaussian distribution [11], 
and therefore the characteristics of these assets can be better 
described with the assistance of the third central moment (i.e. 
the skewness) [12]. For more general use the MVS 
optimization framework is given by the following 
relationships. 

 
Optimize: 𝑓ሺ𝑤ሻ ൌ ሺ𝑓ଵሺ𝑤ሻ, 𝑓ଶሺ𝑤ሻ, 𝑓ଷሺ𝑤ሻሻ (1) 
   
Maximize portfolio return: 𝑓ଵሺ𝑤ሻ ൌ ∑ 𝑤௜𝑟̅௜

ே
௜ୀଵ   (2) 

   
Minimize portfolio risk: 𝑓ଶሺ𝑤ሻ ൌ ∑ ∑ 𝑤௜

ே
௝ୀଵ 𝑤௝𝜎ఐ𝜎௝𝜌௜௝

ே
௜ୀଵ   (3) 

   
Maximize portfolio 
skewness: 

𝑓ଷሺ𝑤ሻ ൌ
∑ ∑ ∑ 𝑤௜

ே
௞ୀଵ 𝑤௝

ே
௝ୀଵ 𝑤௞𝑆୧୨୩

ே
௜ୀଵ   (4) 
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where 𝑤 and 𝑟̅௜ represent the weight of asset 𝑖 in the portfolio 
and the return on the asset 𝑖, respectively. 𝜎௜ represents the 
standard deviation of stock returns 𝑖. 𝜌௜௝ is the correlation 
between asset 𝑖 and 𝑗 and -1 ൑ 𝜌௜௝ ൑ 1. Finally, 𝑆୧୨୩ represents 
the coskewness between the returns of assets 𝑖, 𝑗, and 𝑘, 
respectively. 

The MVS portfolio optimization model considers 
simultaneously three conflicting objectives namely the 
portfolio's expected return, variance and skewness [13]. 
Analytically, the portfolio's expected return and skewness are 
maximized whereas the portfolio's variance is minimized. 

To address the limitations of the conventional optimization 
methods when generating the Pareto-optimal front, the 
metaheuristic optimization algorithms have been successfully 
applied to the multi-objective optimization problems [14], 
[15]. In particular, for solving the proposed MVS model we 
propose an adapted version of the NSGAII.  

III. AN ADAPTED VERSION OF NSGAII FOR SOLVING THE 

MVS PORTFOLIO OPTIMIZATION PROBLEM 

For the purposes of the present study we use an adapted 
version of NSGAII. In particular, the NSGAII [13] has been 
adapted to work well with the proposed MVS model and the 
imposed constraints. Also a reparation operator is utilized to 
make the infeasible solutions feasible. Fig. 1 presents the 
pseudocode of the adapted NSGAII.  

 
step 1: Initialize population; 
step 2: Apply the reparation operator for making the solutions  
            feasible 
step 3: Evaluate candidate solutions 
step 4: Rank population 
step 5: while termination condition is not true do  
step 6: Selection 
step 7: Crossover  
step 8: Apply the reparation operator for making the solutions  
             feasible 
step 9: Mutation  
step 10: Apply the reparation operator for making the solutions  
              feasible 
step 11: Evaluate objective functions 
step 12: Combine parent and child populations, rank population 
step 13: Select the winning individuals  
step 14: Stopping criteria met?  
step 15.a: Yes: Report the derived solutions. 
step15.b:  No: Go to step 5 

Fig. 1 Pseudocode of the adapted NSGAII for solving the MVS 
model 

 
As shown in Fig. 1 the adapted NSGAII starts by generating 

a population. Then the population is sorted based on Pareto 
conditions [16] into a number of fronts [17]. Thus, the first 
front is composed from the non-dominated solutions in the 
current population. The individuals of the second front are 
being dominated by the solutions of the first front. 
Respectively, the individuals of the third front are being 
dominated by the solutions of the second front and so on [18]. 
Next, the algorithm assigns to each solution a rank based 

either on fitness value of the particular individual or 
respectively on the front the particular individual belongs to. 
Furthermore, a parameter called crowding distance is 
calculated for each individual [19], [20]. The crowding 
distance is used to estimate the distance between the obtained 
solutions. The bigger the distance between the obtained 
solutions the better the derived front is. The selection between 
the obtained solutions is performed with the assistance of 
binary tournament selection [21]. In particular, an individual is 
selected if the rank is less than the other or if crowding 
distance is greater than the other. As soon as the selection 
process is done, the obtained solutions are subject to genetic 
operators, namely recombination and mutation operators [22]. 
Finally, we merge together the current population and the 
obtained offsprings and the resulting population is sorted 
again. Only the best N solutions are selected. These N 
solutions compose the new population [23], [24]. 

IV. DESIGN OF EXPERIMENTS AND EXPERIMENTAL RESULTS 

For the experiments we used one dataset from FTSE-100 in 
London, having 100 assets. The dimension of the available 
dataset is presented in Table I. 

 
TABLE I 

THE DIMENSION OF THE TEST PROBLEM 

Index Dimension 

FTSE-100 100 

 
We solve the proposed MVS model with the assistance of 

the NSGAII. For the fine-tuning of the algorithm we run two 
different configurations of the NSGAII: (a) in the first 
configuration of the NSGAII we use 50,000 function 
evaluations as the stopping condition and (b) in the second 
configuration of the NSGAII we use 100,000 function 
evaluations as the stopping condition. 

 
TABLE II 

THE METRICS OBTAINED FOR SOLVING THE MVS PORTFOLIO OPTIMIZATION 

PROBLEM UNDER THREE DIFFERENT PERFORMANCE METRICS 

Problem: The MVS model NSGAII (50,000 eval.) 

HV. Mean and Std 2.70e-018.7e-03 

HV. Median and IQR 2.68e-011.8e-02 

IGD. Mean and Std 2.88e-033.5e-04 

IGD. Median and IQR 3.08e-036.3e-04 

EPSILON. Mean and Std 1.03e-034.1e-04 

EPSILON. Median and IQR 8.67e-046.4e-04 

Problem: The MVS model NSGAII (100,000 eval.) 

HV. Mean and Std 2.89e-012.2e-03 

HV. Median and IQR 2.89e-014.5e-03 

IGD. Mean and Std 2.26e-031.6e-04 

IGD. Median and IQR 2.25e-033.1e-04 

EPSILON. Mean and Std 6.90e-046.7e-05 

EPSILON. Median and IQR 6.94e-041.3e-04 

 
In the NSGAII algorithm the mutation probability is set to 

0.1 and the crossover probability is set to 0.9 for all test 
problems. The population size was set to 100. Also, for each 
problem we have executed 20 independent runs. The 
experimental results of the bi-objective problem, i.e. the 
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averages, standard deviations, medians and the interquartile 
ranges (IQR) of all metrics, are given in Table II. Table II 
presents the results of the NSGAII under the two different 
configurations: (a) in the first configuration of the NSGAII we 
use 50,000 function evaluations as the stopping condition and 
(b) in the second configuration of the NSGAII we use 100,000 
function evaluations as the stopping condition. Table II shows 
the derived values for the different performance measures 
used (i.e. HV, IGD and Epsilon indicator) for evaluating 
algorithm's performance. The higher the value of HV indicator 
the better is the computed front. The smaller the value of 
Inverted generational distance (IGD) and Epsilon indicator, 
the better is the distribution of the solutions. 

 
TABLE III 

BOXPLOTS FOR HV, IGD AND EPSILON: (A) NSGAII (50,000 EVAL.), (B) 

NSGAII (100,000 EVAL.) UNDER THREE DIFFERENT PERFORMANCE METRICS 

HV 

NSGAII (50,000 
function evaluations) 

NSGAII (100,000  
function evaluations) 

 

IGD 

NSGAII (50,000 
function evaluations) 

NSGAII (100,000  
function evaluations) 

 

Epsilon 

NSGAII (50,000 
function evaluations) 

NSGAII (100,000  
function evaluations) 

 

 
Table III uses boxplots to present graphically, the 

performance of the NSGAII for solving the MVS model under 
the two different configurations: (a) in the first configuration 
of the NSGAII we use 50,000 function evaluations as the 
stopping condition and (b) in the second configuration of the 
NSGAII we use 100,000 function evaluations as the stopping 
condition. The experimental results indicate that the second 
configuration of the NSGAII with the 100,000 function 
evaluations generates better results than the first configuration 

of the NSGAII with the 50,000 function evaluations for all 
different performance metrics. 

Finally, Fig. 2 shows the trade-off fronts obtained for the 
different configurations of the MVS portfolio optimization 
model. 

 

 

Fig. 2 The derived efficient frontiers for the MVS portfolio 
optimization model 

V. CONCLUSIONS 

In this paper we apply a well-known MOEA, namely the 
NSGAII for solving the MVS portfolio optimization model, 
under the two different configurations: (a) in the first 
configuration of the NSGAII we used 50,000 function 
evaluations as the stopping condition and (b) in the second 
configuration of the NSGAII we used 100,000 function 
evaluations as the stopping condition. The experimental 
results indicate that the second configuration of the NSGAII 
with the 100,000 function evaluations generates better results 
than the first configuration of the NSGAII with the 50,000 
function evaluations for all different performance metrics.  
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