
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

879

H. Ahmad, S. Kermanshahani, A. Simonet, and M. Simonet

Abstract—The data exchanged on the Web are of different nature
from those treated by the classical database management systems;
these data are called semi-structured data since they do not have a
regular and static structure like data found in a relational database;
their schema is dynamic and may contain missing data or types.
Therefore, the needs for developing further techniques and
algorithms to exploit and integrate such data, and extract relevant
information for the user have been raised. In this paper we present
the system OSIX (Osiris based System for Integration of XML
Sources). This system has a Data Warehouse model designed for the
integration of semi-structured data and more precisely for the
integration of XML documents. The architecture of OSIX relies on
the Osiris system, a DL-based model designed for the representation
and management of databases and knowledge bases. Osiris is a view-
based data model whose indexing system supports semantic query
optimization. We show that the problem of query processing on a
XML source is optimized by the indexing approach proposed by
Osiris.

Keywords—Data integration, semi-structured data, views, XML.

I. INTRODUCTION

N the recent years, the number of data distributed in
multiple information sources as well as the number of

potential users that use these information sources has been
continually increasing. These sources are often heterogeneous.
In other words they use different models for the representation
of data such as the relational model, semi-structured models
on the Web, text files, etc. Accordingly, medical data related
to a patient are found in several kinds of support. Beside this
multiplicity of supports and formats, the semantics of the
various data sources is also heterogeneous, which reflects the
diversity of the points of view of the system designers. As a
consequence, the languages used for programming or
querying these data sources are different.

This raises severe problems to the users who try to combine
- or “integrate” - information from various data sources.

In this context, companies have to meet two challenges in
order to ensure the quality of their data: the fast availability of
the inter-sources information and the discovery of tendencies
from the data stored in the company over time. These
challenges have led companies to realize the integration of
data, which means proposing a more global homogeneous and
coherent vision of their data.

Data integration approaches are classified into two main
approaches. The first one is the mediator approach [16], where

Authors are with TIMC-IMAG Laboratory, 38700 La Tronche, France.

the integration of data is based on the exploitation of
abstracted views describing the contents of the various data
sources. The data items are not stored at the mediator level
and they are accessible only from the original data sources.
The second one is the Data Warehouse approach [17], where a
Data Warehouse contains a selective extraction of the relevant
information stored in diverse sources. After the construction
of the Data Warehouse, the user can formulate his queries
over a single database, the Data Warehouse. The Data
Warehouse (also called materialized) approach is well adapted
when the local sources are frequently modified and the query
response time must be fast, whereas the mediation approach is
preferable if the modifications in the local sources are frequent
[9].

In this article we present the OSIX system (Osiris-based
System for Integration of XML documents). This system is a
materialized framework for XML data integration. This
framework is based on the P-type model, implemented by the
Osiris system. The P-type model allows defining a collection
of real world objects which have the same semantic and
susceptible to be perceived according to several points of
view, called views, which satisfy various categories of users.
We also present the OSIXT (OSIX Tool) which allows
querying a XML data source. This tool uses the object-based
indexing model of the Osiris system in order to allow the
optimization of the query processing over the XML source.

II. XML DATA INTEGRATION

Because of the simplicity and the flexibility of XML, it
plays a growing role in the publication of data on the Web.
However, contrary to structured data, which are data with a
regular structure which can consequently be easily stored in
relational tables, semi-structured data, and XML in particular,
do not have a priori defined schema. When used, the model of
underlying data sources can be seen as a relaxation of the
traditional relational model, in which a less rigid and less
homogeneous structure of the “attributes” is permitted.

The semi-structured model is very useful to represent
different kind of documents: multi-media, hypertextual,
scientific data, etc. As a consequence to the popularity of
XML an enormous amount of XML data of various origins
and thus structured in various ways has become available.
Heterogeneity is detrimental to the massive exploitation of
these data. Indeed, in the absence of specific tools, querying
XML data of various origins requires that the different
DTDs/schemas and their underlying semantics be known,

A Materialized Approach to the Integration of
XML Documents: the OSIX System

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

880

which is impossible in practice. Consequently, it is necessary
to find techniques and methodologies making it possible to
question in a simple and effective manner the enormous
amount of XML data.

Several projects have dealt this problem like TSIMMIS [7],
MIX [5], Xyleme [1][10], VIMIX [4], XyView [13]. The
integration process in these systems is usually based on a view
mechanism [6]. This mechanism allows defining an abstract
(global) schema which presents a unified view of
heterogeneous data sources. There are mainly two approaches
to build the global schema of an integration system [8]: The
Global As View (GAV) approach defines the global schema as
a collection of views over the sources. On the contrary, with
the Local As View (LAV) approach the global schema is built
regardless of sources. The sources are defined as views over
the global schema.

Each one of these two approaches presents advantages and
disadvantages. Querying data sources throughout the global
schema is easier with GAV, while adding new sources is easier
with LAV.

Our approach uses GAV as the method for schema
integration; we define the Osiris global schema as a subset of
views over the sources and then we transform each document
in the source satisfying a concrete schema into a document
satisfying a global schema. We use the indexing system
proposed by Osiris to optimize the query processing over a
XML source. This indexing system will make possible the
automatic determination of the views which a document
satisfies. This way, the search space for the document
answering a query can be contracted to the space of the views
satisfying the query.

III. OSIRIS

A. P-types and Views

Osiris is a view-based database and knowledge base system
where views are similar to concepts defined by logical
properties, as in Description Logic approaches [11]. The main
concept of the Osiris model is the P-type concept, which
supports the specification of viewpoints on a domain [14]. For
example, STUDENT and TEACHER can be viewpoints of the P-
type PERSON in the university domain, To specify a P-type one
first gives its minimal (root) view, then its other views by
simple or multiple specialization. When specializing a view
new attributes and assertions (logical constraints) may be
added. The minimal view is the root of the hierarchy of views
of a P-type. Thus, in Osiris a P-type is defined from its views,
which are object-preserving [12]. Such a top-down approach
is contrary to that of relational systems where views are
defined as restrictions of a set of existing relations, and may
themselves be used as relations in order to define other views.

The type of a P-type is derived from the views declarations
(including the minimal view). The type PERSON contains all
the attributes and methods which appear in its views. The
domain of an attribute in the type PERSON is the union of its
domains in the views where it is declared.

To express that a person may be seen as a student, a
teacher, a sportsman, one will create the views PERSON,
STUDENT, TEACHER, … as subtypes of the P-type PERSON (see
Fig. 1 and Fig. 2). The set of interest of the minimal view
PERSON is identical to that of the P-type PERSON. The domain
of another view is a subset of the domain of the view it
specializes, or of the intersection of the domains of the views
it specializes in case of multiple specialization.

In OSIRIS, a P-type is given the name of its minimal view.
All the objects of a P-type are models of its minimal view.
Access to an object under a viewpoint provides access to the
attributes of the viewpoint. Thus accessing an object from the
minimal view only provides the attributes of the minimal view
while accessing it in the viewpoint of the P-type gives access
to the whole set of attributes of the type.

An object belongs to one P-type, for example PERSON, if
and only if it satisfies the requirements of its minimal view.
This means that its assertions are valid. An object can belong
to only one P-type, which means that P-types are disjoint
concepts if considered in a DL perspective.

Fig.1 Graph of the P-type PERSON

Fig. 2 Inclusion Set of the P-type PERSON

We present the main features of the P-type description
language through a very simple OSIRIS example. The
modeled universe is that of persons and vehicles. Persons may
be STUDENT, TEACHER, TRAINEE-TEACHER, etc, or some of
them simultaneously. A given person is a model of the
minimal view and may belong to none, any or several other
views.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

881

type ADDRESS: (street: STRING; postcode: STRING;
 city: STRING);
view PERSON -- Minimal view of P-type PERSON
attr name : P_NAME; -- P_NAME is declared elsewhere
 children: setof PERSON ;
 sex : CHAR ;
 age: INT;
 ad_pers: ADDRESS;
 military_Service: STRING;
 incomeTax: REAL calc; -- procedural attachment
 carsOwned: setof CAR; -- CAR is a view of a P-type
 VEHICLE
key Name -- External key; not mandatory
methods
 -- other functions specification
assertions -- Domain Constraints
 sex in {"f", "m"};
 0 age 120;
 military_Service in {“yes”, “no”, “deferred”, “exempt”};
end PERSON ; -- Note that the minimal view automatically
 contains a private attribute OID : toid.

view STUDENT: PERSON -- STUDENT specializes PERSON
attr studies: STRING in {"graduate", "postgraduate",
 "doctorate"};
 year : INT;
end STUDENT;

view TEACHER : PERSON -- TEACHER specializes PERSON
attr diplomas : setof STRING in {"degree", "B.A.", "BSc",
 "M.A.","MSc","PhD"} ;
 status: STRING in {"trainee", "lecturer", "professor",
 "instructor", "doctor"};
end TEACHER;

view PROFESSOR: TEACHER -- specializes TEACHER
assertions Diplomas contain "PhD";
 Status = "professor";
end PROFESSOR;

view TRAINEE-TEACHER: STUDENT, TEACHER
 --specializes STUDENT and TEACHER
assertions
 age 27;
 status = "trainee";
 studies = "graduate";
 diplomas contain "degree";
end TRAINEE-TEACHER;

B. Classification Space
Most innovative features of the system come from the use

of a classification space, which is distinct from the original set
of users’ views.

The classification space is a partitioning of the object space
into equivalence classes named Eq-classes, according to the
relation "have the same truth values according to the (entire
set of) Domain Predicates of the type". As a consequence all

objects of a given Eq-class are models of the same assertions
(Domain Constraints and Inter-Attribute Dependencies) [14].

Construction
In a P-type T, one considers for each attribute Ai the set

PT(Ai) of predicates over Ai which appear in the assertions
(Domain Constraints and Inter-Attribute Dependencies) of the
views of T. Elementary predicates in these constraints are of

the form Ai Dik where Dik is a subset of the domain of
definition i of Ai. A predicate Ai Dik defines a
partitioning of i into two (disjoint) sub domains: Dik and i
- Dik. The product of all the partitions [16] defined by the
predicates of PT (Ai) constitutes a partition of i whose blocks
dij, called Stable Sub Domains (SSDs), have the following
property:(Stability of an attribute) When the value of an
attribute Ai of an object varies within the same stable
subdomain dij, Ai continues to satisfy the same set of
predicates of PT (Ai).

Considering the above definition of the P-type PERSON, and
considering only the predicates on the attributes age,
military_Service and sex, we obtain the following partitioning
of the attributes:

SSDs of age: d11 = [0, 18[, d12 = [18, 27],
 d13 =] 27, 65[, d14 = [65,140]
SSDs of sex: d21 = {"f"}, d22 = {"m"}
SSDs of military_Service: d31 = {“yes”},
 d32 = {"no”, “deferred, “exempt”}
This partition can be extended to the space of objects (which
is restricted here to the three dimensions considered) and
constitutes the classification space of the P-type.

Each element of the classification space is called an Eq-
class. It is represented by a tuple with n elements, where n is
the number of classifying attributes of the P-type.

Let SSDAttr1, SSDAttr2, … , SSDAttrN be the set of the stable
sub domains of the attributes ATTR1, ATTR2, …, ATTRn of
the P-type T respectively.

ClassificationSpace T {<d1i, d2j, …, dnk> |
 d1i SSDAttr1 and d2j SSDAttr2 and …
 dnk SSDAttrN}
Partitioning the object space into Eq-classes is central to the
implementation of the Osiris system. Although the actual
partition is not represented in its totality (its size is
exponential to the number of classifying attributes) it
underlies most runtime processes such as object classification,
view classification (subsumption), integrity checking and
object indexing.

C. Indexing Structure Descriptor

An indexing structure called ISD (Indexing Structure
Descriptor) is defined for each P-type [14]. Its main
components are:
1) A vector of SSDs representing one or more Eq-classes

indexing a set of objects. Two values have been added to
represent the unknown and undefined (null) states of an
attribute.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

882

2) A vector of views that provides the status (Valid, Invalid
or Potential) of each view of the P-type for the set of
objects indexed by this ISD.

3) A reference to the actual set of objects of the ISD.
4) The total number of objects indexed by the ISD.

An object, even if only partially known, belongs to one and
only one ISD, as an ISD denotes all its possible Eq-classes.
The sets of Eq-classes corresponding to different ISDs may
not be disjoint in the case of incompletely known objects.
Only actual ISDs, i.e., ISDs containing actual objects, are
represented. When an unknown attribute becomes known the
corresponding object changes its ISD (a new ISD is created if
necessary). When an attribute changes its value it remains
within the same ISD iff none of its attributes has changed its
SSD.

D. Query Evaluation in Osiris

Queries are evaluated in three steps:
1) Determination of the ISDs corresponding to the query

when rewritten in terms of the SSDs of its attributes.
2) Determination of the ISDs indexing objects that are valid

for the query
3) Projection of the resulting objects onto the attributes of

interest of the query

IV. OSIX (OSIRIS-BASED SYSTEM FOR THE INTEGRATION OF
XML DOCUMENTS)

The architecture of our system OSIX for the integration of
XML documents is described in [3] (see Fig. 3). The system
OSIX consists of:

1) A description processor, which describes an Osiris
schema by an XML schema.

2) A Correspondence processor for every concrete XML
schema, which makes the mapping between this concrete
schema and the global Osiris schema. This mapping
between schemas is a path-to-path mapping [2].

3) A transformation processor, which transforms each XML
document in the data source with a concrete schema into
a document satisfying the global schema.

4) An extraction processor, which parses each XML
document, obtained after transformation, and stores it in
a temporary memory in order to extract atomic values.

5) A classification processor, which classifies objects after
their extraction.

6) A Data Warehouse, which stores the data extracted from
the local sources.

7) A query processor, which uses the information of Stable
Sub Domains (SSDs) to obtain the ISDs satisfying the
query.

8) An extraction processor which searches the objects
which satisfy the query using the corresponding ISDs of
step 7 and extracts the relevant data for the query.

Fig. 3 Architecture of the OSIX System

In the following section we present OSIXT (OSIX Tool),
which is the tool implementing the OSIX system. This tool
allows querying a XML data source and provides an answer to
the query. This tool uses the object-based indexing model of
the Osiris system in order to allow the optimization of the
query processing over the XML source.

V. THE OSIX TOOL (OSIXT)

OSIXT (OSIX Tool) allows querying a XML data source
by using the indexing model of the Osiris system in order to
reduce the response time. The OSIXT tool consists of three
essential models:
1) The transformation model: This model allows making the

transformation of a group of XML documents satisfying a
concrete schema into a group of XML documents which
satisfies the Osiris global schema.

2) The extraction model: This model allows parsing XML
documents obtained after transformation in order to extract
the atomic values (the leaves of the DOM tree of an XML
document) and store these values in a dynamic relational
table.

3) The querying model: This model allows typing a query
over a source of XML documents and giving the
appropriate answer.

A. Functional Architecture

The functional architecture of the OSIXT tool is presented
in Fig. 4. The system consists of three interfaces which allow
making the transformation (“convert” button), the extraction
(“Expert’’ button) and the querying of a XML documents
source (“Query” button).
 The user interface allows to:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

883

1) Enter a set of XML documents already contained in a
folder; these documents satisfy a concrete schema, in
order to perform the transformation. The user will get as
result a folder of XML documents satisfying the global
schema.

2) Select a folder containing XML documents after
transformation in order to execute the “Extraction’’
model. The result of this step is a relational table
containing the atomic values of XML documents
representing the data source.

3) Type a SQL query who will consult the table in order to
get the appropriate answer. The query processing uses
the classification mechanism of Osiris characterized by
use of views and Stable Sub Domains (SSDs) in order to
optimize the response time of the query.

Fig. 4 Functional architecture of OSIXT

In the following section we give a detailed description of
the three main modules of OSIXT, their algorithms and their
graphic interfaces.

B. OSIXT Models

Transformation Model

To be able to take advantage of the indexation offered by
Osiris, The role of this model is to transform every concrete
XML document satisfying a concrete schema into a document
which satisfies the Osiris global schema. This transformation
is made in a semi-automatic manner by using the
correspondence information described by a XSLT file. We
describe below the algorithm of the “Transformation Model”.

Transformation Model Algorithm
TypeDocFile: <doc: Document;
 pathFile: String;
 nameFile:String>

transformDirectoryFiles (nameDirectory: String;
nameFileXSLT: String): List(DocFile)
begin
 Result: List (DocFile);
 fileSource: File;
 listeF: List (File);

 listeF ListeFile(nameDrectory) ;
for every fileSource in listeF do
 doc: Document ;
 docF: DocFile ;
 doc parseXMLFile (fileSource. (), nameFileXSLT);
 docF create DocFile(doc,filePath(), fileSource.path(),
fileSource.name());
 result.add(docF);
endFor
 return (result)
end

transformDirectoryFiles is a function of the type List
(DocFile) , it has two parameters: the directory name
“nameDirectory”, containing the set of XML documents , and
the XSLT file name “nameFileXSLT” defining the mapping
information.

For each source file, the transformation defined in the file
“nameFileXSLT” is applied on all source files contained in
the directory “nameDirectory”. We obtain as result a list of
XML files after transformation.

Fig. 5 presents a part of the OSIXT graphic interface called
“Convert” which allows converting a directory of XML
documents satisfying a local schema into a directory of XML
document satisfying the schema global.
The main window is composed of several buttons:

1) The “source” button, which allows selecting the
directory name containing the set of XML documents
satisfying a local schema.

2) The “XSLT FILE” which allows selecting the XSLT
file name which makes the mapping between the local
and the global schema.

3) The “target” button which allows specifying the target
directory name which will contain the set of XML
documents after transformation.

4) The “Convert Source to Target” button is the key button
of this interface; it allows making the transformation by
using the mapping between the local schema and the
global schema. This mapping is described by the
selected XSLT file.

Fig. 5 Main window of the convert processor

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

884

1. Extraction Model

Following to the previous processor, all the documents of
the source are transformed into documents satisfying the
Osiris global schema. The extraction model parses these
documents in order to extract the OSIRIS objects and store
these objects in the Data Warehouse. We also store the Oids
of these objects and the identifier of the document which
contains this element in the source. We store this information
in a relational table; the schema of this table has the following
form:

Data _Store (oid, docID, attr1, attr2, …, attrm) where:

1) Oid is the object identifier in the Osiris system.
2) attr1, attr2, … , attrm are the classifying Osiris attributes

and all the simple elements having atomic values in the
source base.

3) docID is the identifier of the document which contains
the corresponding element in the source base.

Extraction Model Algorithm
Type AttributeValue: < AttributeName: STRING;
 dfSource: DocFile;
 value: STRING;
 Xpath: STRING>
getAttributeValues (docF: DocFile): List (AttributeValue)

Begin
result: List (AttributeValue);
doc: Document; Xpath: String;
doc docF.getDocument();
Xpath “//*[not (*)]”; (it allows to get all elements
without a child element)
NodeList: List (Node);
NodeList XPathAPI.selectNodeList(doc, Xpath);

For each node n Do
 name: String;
 value: String;
 name n.getName();
 value n.getValue();
 path getXPath(n, doc);
 Attr: AttributeValue;
 Attr create AttributeValue(name, value, path, docf);
 Result.add (attr)
EndFor
return (result);
End

The function “getAttributeValue” returns a list of
“AttributeValue” where each element is a leaf element of the
document object contained in Docfile. Each leaf node is
defined by its name, its value, its path and its document name.

Fig. 6 presents a part of the OSIXT graphic interface called
“Export” which allows extracting the atomic values of XML
files after transformation; it also allows choosing the name of
the relational table where the atomic values will be stored.

Fig. 6 Main window of the Export processor

The “Export to DataBase” button is the key button of this
interface; it allows to extract the atomic values and to store
them it in a relational table.

2. The Querying Model

This model allows typing a query over a source of XML
documents and giving the appropriate answer. To do that the
system uses SSD information in order to evaluate the query as
explained in section 3 by performing the following steps:

1) The system rewrites the query in terms of SSDs and
determines the potential ISDs corresponding to the
query.

2) Among these ISDs, the system determines the ISDs
which contain the objects validating the query (valid
ISDs) and those which contain the objects that could
potentially participate in the response of the query
(potential ISDs). In these cases there are other conditions
to verify. If an object satisfies these conditions, it
participates to the response.

After these two steps, we determine the effective ISDs of
the query, i.e., those stored in the ISD space of the system
because they have at least a stored object. The valid ISDs give
the valid objects for the query, whereas the potential ISDs
give the objects for which a supplementary test must be made
to determine if it is an actual answer to the query. For the
potential objects we define the conditions to verify, so that an
object of the ISD satisfies the query.

In the ISD (Indexing Structure Descriptor) of our system,
for every object we have a reference towards the
corresponding object stored in the Data Warehouse. For the
objects validating the query we use their reference to be able
to recover the atomic values of the attributes asked in the
query. For the possibly valid objects, we need to verify that
these objects satisfy the supplementary conditions that are
necessary to confirm whether or not the object satisfies the
query.

Fig. 7 presents a part of the OSIXT graphic interface called
“Query” which allows choosing or writing a SQL query over a
XML source and provides the appropriate answer.

The main window is composed of several buttons:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

885

1) The “Load Query File” button allows selecting the Query
name that we want to execute. The query text is
displayed in the “Query text” filed.

2) The “Execute” button allows executing the selected
query and displaying the result in the “Query Result”
field.

3) The “chronometer” button allows showing the query
execution’s time.

Fig. 7 Main window of the querying processor

VI. CONCLUSION

In this paper, we have presented the OSIX system (Osiris-
based System for the Integration of XML sources). This
approach is based mainly on the three following processors:
transformation, extraction and querying. Our system uses the
ISD (Indexing Structure Descriptor) provided by Osiris in
order to achieve semantic query optimization. This indexing
makes possible the automatic determination of the views that a
document satisfies. This way, the search space for the
documents answering the query can be reduced to the ISDs
which satisfy the query.

We also have presented the OSIX tool which allows
querying a XML data source and provides an answer to the
query.

In future work we will focus on the maintenance of the
modifications of data sources in our materialized approach.

REFERENCES

[1] S. Abiteboul, S. Cluet , G. Ferran and M-C. Rousset: “The Xyleme
Project”. Gemo Repot 248, INRIA, 2001.

[2] H.Ahmad, S. Kermanshahani, A. Simonet and M. Simonet: “A View-
Based Approach to the Integration of Structured and Semi-structured
Data”, IEEE International Baltic Conference on Databases and
Information Systems-Communication of Baltic DBIS , 2006.

[3] H.Ahmad, S. Kermanshahani, A. Simonet and M. Simonet: “Data
Warehouse based Approach to the Integration of Semi-structured Data”,
WCMT The 1st International Workshop on Web-based Contents
Management Technologies, Suzhou, China 2009

[4] X. Baril: “Un modèle de vues pour l’intégration de sources de données
XML: VIMIX ”. PHD thesis, Languedoc University of Science and
Techniques, 2003.

[5] C. Bornhovd: “MIX – A Representation Model for the Integration of
Web- Based Data”. Technical report, Dep.CS, Darmstadt University of
Technology, Germany, 1998.

[6] M. Cannataro, S. Cluet, G. Tradigo, P. Veltri and D. Vodislav:” Using
views to query XML. In Encyclopedia of Database Technologies and
Applications”, pp.729-735 , 2005.

[7] H. Garcia-Molina: “The TSIMMIS approach to mediation: Data Models
and Languages”. Journal of Intelligent Information Systems. 8(2) pp
117-132, 1997.

[8] A. Halevy: “Answering queries using views: A survey”. The VLBD
Journal, 10(4), 270-294. 2001.

[9] S. Kermanshahani: “Semi-Materialized Framework: a Hybrid Approach
to Data Integration”, CSTST Student Workshop, Paris, October 2008.

[10] I. Manolescu, D. Florescu and D. Kossman: “Answering XML Queries
Over Heterogeneous Data Sources”. In proceedings of the 27 th
International Conference on VLDB, 2001.

[11] M. Roger, A. Simonet, M. Simonet, "Bringing Together Description
Logics and Databases in an Object-Oriented Model", DEXA 2002,
Database and Expert System Applications, Toulouse, Sept. 2002.

[12] M. H. Scholl, C. Laasch, M. Tresch, “Updatable Views in Object-
Oriented Databases”, Proc. 2nd DOOD conf., pp 187-198, Dec. 1991.

[13] I. Sebi : “Interrogation de Documents XML à Travers des Vues”. PhD
thesis, EDITE, CEDRIS Laboratory, 2007.

[14] A. Simonet, M. Simonet, "Classement d’instance et Evaluation des
Requêtes en Osiris", in BDA’96 : Bases de Données Avancées, Cassis,
France, pp 273-288, Aug. 1996.

[15] D. Stanat, D. McAllister: “Discrete Mathematics in Computer Science”,
Prentice Hall, 1977.

[16] G. Wiederhold. “Mediators in the architecture of future information
systems”. IEEE Computer Magazine, 25(3), 38-49, 1992.

[17] M.-C. Wu, A. P. Buchmann. “Research issues in data warehousing”. In
Datebanksysteme in Buro, Technik and Wissenschaft, pp. 61-82, 1997.

