
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

708

Abstract— XML is becoming a de facto standard for online data

exchange. Existing XML filtering techniques based on a
publish/subscribe model are focused on the highly structured data
marked up with XML tags. These techniques are efficient in filtering
the documents of data-centric XML but are not effective in filtering
the element contents of the document-centric XML. In this paper, we
propose an extended XPath specification which includes a special
matching character ‘%’ used in the LIKE operation of SQL in order to
solve the difficulty of writing some queries to adequately filter
element contents using the previous XPath specification. We also
present a novel technique for filtering a collection of document-centric
XMLs, called Pfilter, which is able to exploit the extended XPath
specification. We show several performance studies, efficiency and
scalability using the multi-query processing time (MQPT).

Keywords—XML Data Stream, Document-centric XML,
Filtering Technique, Value-based Predicates.

I. INTRODUCTION
HE eXtensible Markup Language (XML) can be used to
mark up content in various ways [1]. Based on the content,

XML documents are often broken down into two categories:
data-centric and document-centric XML. Data-centric XML is
a highly structured data marked up with XML tags. On the
other hand, document-centric XML refers to loosely structured
documents (often text) marked up with XML [2]. An example
of a document-centric XML is Really Simple Syndicate (RSS)
files. The top_stories.xml (available at
http://rss.cnn.com/rss/edition.rss) RSS files that are disseminated
from CNN.com have an average of 52 elements and a
maximum file depth of 4. The structure of this XML is very
simple because the average length of element contents is about
56 characters. However, it has long element contents between
XML tags.

Many XML filtering techniques based on data-centric XML
has been studied in the database research community. Although
the previous filtering techniques may be applied to the
dissemination of the document-centric XML (e.g., RSS), they
are not insufficient. The main reason is that they do not support
a special matching character for information retrieval of
element contents in document-centric XML. In other words,

This work was supported by the Korea Science and Engineering Foundation

(KOSEF) grant funded by the Korea government (MOST)
(No.R01-2006-000-10609-0).

XPath [3] or XQuery [4] exploit the text() function to process
value-based predicates. Since the text() function simply
supports the string equality comparison operation between an
operand of a predicate and the element contents of XML, it is
proper to write the value-based predicates used in data-centric
XML containing short element contents. However, it is
troublesome to make value-based predicates in
document-centric XML.

In this paper we extend the idea of structure matching of the
XML filtering system, and propose a novel XML filtering
technique, called ‘Pfilter’, which is adequate for the
document-centric XML. In order to copy with value-based
predicates in document-centric XML, we make an addition, a
special matching character ‘%’ into the XPath specification,
which is similar to the LIKE operator of the SQL statement. In
addition, since the document-centric XML filtering is radically
different from traditional XML query processing that depends
heavily on such information for query processing and
optimization, we propose a novel algorithm for processing the
value-based predicates.

The Contributions of the Pfilter technique are as follows:
• First, the Pfilter is a filtering engine capable of processing a

significant amount of value-based predicates.
• Second, the Pfilter proposes a special matching character

‘%’ in the operand string of the traditional XPath text()
function.

• Third, Pfilter separates structure matching and value-based
predicate matching. So, value-based predicate matching
technique may be applied to various and different structure
matching techniques.

The rest of the paper is organized as follows: Section 2
briefly summarize the previous techniques in a XML filtering
system. In Section 3, we propose a novel technique, which is to
append a modified Aho-Corasick dictionary matching tree [5].
In Section 4, with respect to maintenance cost, scalability, and
efficiency, we compare our results with a variant of Yfilter [6]
with the original Aho-Corasick dictionary matching tree.
Finally, Section 5 summarizes our work.

II. RELATED WORKS
A traditional RDBMS executes the selection operation prior

to everything else in the query plan. Such modification of the
query plan is an attempt to improve the efficiency of query

A Keyword-Based Filtering Technique of
Document-Centric XML using NFA

Representation

Changwoo Byun, Kyounghan Lee, and Seog Park

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

709

processing by reducing the intermediary results and minimizing
the input of the next operation. However, applying this
heuristic to the XML filtering system in a manner similar to the
Yfilter approach does not yield as good performance as
expected. In addition to Yfilter, there have been numerous
XML filtering techniques proposed. However, most studies
focused on structural matching due to the XML characteristics
that involve multiple nests of the upper elements [7]-[11]. They
are very effective for applications in the data-centric XML, but
are insufficient for filtering document-centric XML. This is not
to say that there have been no XML filtering system research
efforts to effectively process the value-based predicates.

The XML filtering system that uses XPush [12] and RDBMS
[13] defines and shares the atomic predicate, which refers to
the predicates that constitute the elements of conjunction in
value-based predicates. Sharing atomic elements in this manner
allows a short-cut evaluation of the predicate conjunctions, and
enhances the processing efficiency of the value-based
predicates. In order to effectively process the value-based
predicates, XSQ [14] exploits the pushdown transducer to share
the atomic predicates. This technique enables the sharing of
numeric and string constants, and as far as we know, it is the
most effective technique for processing value-based predicates.
However, the number of states created by XSQ increases by

(2)nO -fold (n is the number of occurrences of ‘*’ in the test
node of all queries) as compared to using NFA. There is the
problem of consuming much memory.

However, it is difficult for the XML filtering systems
mentioned above to apply in the XML filtering system with
value-based predicates for which numerous queries should be
registered. XSQ also has the disadvantage of not being able to
use structure matching that shares the common prefix element.

III. VALUE-BASED PREDICATE EXECUTION IN PFILTER

A. Shared Value-Based Predicate Matching

1) Representation of the Value-based Predicate
In order to perform an efficient execution of value-based

predicates, a novel technique should identify the common
prefix characters of the operand in the predicate and share the
processing among them. In comparison, the Yfilter sequentially
processes the predicate operands for each predicate. The
technique combines all value-based predicate operands into an
NFA form, i.e., a single finite state machine (FSM). This
value-based predicate NFA has two characteristics: One is a
single accept state which exists for each predicate operand and
the other is the common prefix characters that appear only
once.

Fig. 1 shows examples of a structural NFA representing
eight queries and a value-based predicate NFA. Since the
structural NFA closely resembles the structural NFA approach
of Yfilter [6].

Fig. 1 NFA-based representation of the XPath query

A point of note here is that unlike the Yfilter’s structural

NFA, each accept state (query ID, path ID, level, matching
character info.) has additional information constructed in pairs.
In matching character information, “N” refers to no predicate,
“E” to predicate exists but ‘%’ not occurred, “P” to predicate
exists and prefix ‘%’ occurred, and “PS” to predicate exists and
prefix-suffix ‘%’ occurred. The directed edge represents
transition, and the characters appearing on the edge of the
value-based predicate NFA refer to the input that induces
transition. Finally, the shaded circle in the two NFA signifies
that each location step of the path expression or the characters
of the operand are shared in the structural NFA and the
value-based predicate, respectively. The points of caution in
such NFA form representation are that the two NFA share the
common prefix, have multiple accept states, and that the special
matching character ‘%’ is not represented in the value-based
predicate NFA.

The operand of each value-based predicate has a single
accept state in the value-based predicate NFA. When the
special matching character ‘%’ is removed, a predicate with an
identical operand can share the accept state.

2) Constructing a Combined NFA
The value-based predicate NFA shown in Fig. 1 (c) is the

result of consecutively applying the method of constructing
with respect to the eight queries that will be explained below. In
fact, the structure of the value-based predicate NFA is simpler
than the structural NFA, which considers ‘*’ and ‘//’. The
directional graphs, referred to as the value-based predicate
NFA fragments, shown in Fig. 2 correspond to the eight queries

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

710

of Fig. 1 (a). However, since query Q1 only represents path
expression, only seven value-based predicate NFA fragments
are displayed in Fig. 2.

Fig. 2 Value-based predicate NFA fragments

Let us denote each value-based predicate NFA fragment as

NFAv. NFAv can be combined into a single, value-based
predicate NFA in a simple manner. As shown in Fig. 1 (c), there
always exists an initial state that is shared among all NFAv. The
‘*’ that induces transition for all characters in the initial state of
the value-based predicate NFA makes this model
nondeterministic. The value-based predicate NFA, combined to
insert a new NFAv, either (1) reaches the accept state of NFAv
or (2) repetitiously searches until there is no transition that
corresponds to NFAv. In the first case, the final state becomes
the accept state (query ID, path ID, level), and the (query ID,
path ID, level) pair is associated with the accept state. In the
second case, a new branch is constructed in the final state of
arrival of the combined value-based predicate NFA. This
branch is structured with a non-matched transition of NFAv.
This value-based predicate NFA insertion/deletion algorithm is
described in Fig. 3.

Input: inserting value-based predicate NFA fragments, NFAfragments
Output: value-based predicate NFA, NFAvalue
for each NFAv � NFAfragments do
 for each state s � NFAv do
 if s is accept state then
 associate s with (query ID, path ID, level) pair w.r.t. NFAv;
 if s is not shared with NFAvalue then
 NFAvalue is branched off using remainder states of NFAv;
 break;
 else if // s is shared with NFAvalue
 do nothing;
return NFAvalue;

(a) Inserting algorithm
Input: deleting value-based predicate NFA fragments, NFAfragments
Output: value-based predicate NFA, NFAvalue
for each NFAv � NFAfragments do
 for each state s � NFAv do
 if s is not shared with NFAvalue then
 delete state s form NFAvalue;
 if s is accept state then
 delete (query ID, path ID, level) pair w.r.t. NFAv from NFAvalue;

else if // s is shared with NFAvalue
 do nothing;
return NFAvalue;

(b) Deletion algorithm
Fig. 3 Operands insertion/deletion algorithm for value-based predicate

NFA

In the NFA model of Fig. 1 (c), if a state with a self-loop (i.e.,
state ID 0) is transitioned into the next state, then transition
takes place to the state with the self-loop and the current state

when the next character is inputted. This signifies that the
number of states to process during the next character input has
increased from one to two.

The important thing in the construction of a value-based
predicate NFA examined so far is the fact that the process is
incremental. In turn, since a new operand can be easily added to
the value-based predicate NFA, the advantage of this approach
is that maintenance is simple for the NFA.

3) Implementing NFA Structure
In fact, automata can be implemented using various data

structures. Therefore, in order to execute an effective
value-based predicate, we implement the value-based predicate
NFA with a hash table. The reason behind this approach is that
automata based on a hash table can reduce the
insertion/deletion time of the NFA state. In order to implement
this approach, each state has the following data structure: (1) a
variable that can store the state ID, (2) a small hash table that
can store correct transition (i.e., transition hash table), and (3)
an accept state that has an additional linked list with (query ID,
path ID, level) pairs as elements. A transition hash table for
each state has a (input character, next state ID) pair. Here, the
input character is the key of the hash table and is mapped with
transition. Moreover, the next state ID is that which arrives
when the current state ID is transitioned. There is no need for an
additional data structure to represent the initial state with a
self-loop transition in the hash table. Fig. 4 shows the result of
the implementation of Fig. 1 (c) into hash tables. The number
allocated to each hash table indicates the state ID, and the thick
rectangle denotes the accept state. Each accept state has a
(query ID, path ID, level) pair.

Fig. 4 Hash-based implementation of value-based predicate NFA

Pfilter and ACfilter can be defined based on the

representation of the value-based predicate, the automata
construction method, and its implementation as explained
above.

Definition 1 (Pfilter) Pfilter is defined as the

document-centric XML filtering technique implementing the
predicate set as a hash-based single NFA form using the
insertion/deletion algorithm of Fig. 3 after removing the
value-based predicate processing part of Yfilter for effective
filtering of the value-based predicate. Pfilter converts the
Aho-Corasick dictionary matching tree [5] from DFA to NFA.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

711

Definition 2 (ACfilter) ACfilter is defined as the
document-centric XML filtering technique that replaces the
value-based predicate processing part with the Aho-Corasick
dictionary matching tree and implements it into the linked
list-base for rational comparison between Pfilter and Yfilter,
which does not permit the special matching character ‘%’.

4) Execution of the value-based predicate NFA
Let us examine the execution of the value-based predicate

NFA machine implemented using a hash table. The value-based
predicate NFA considers a single character as an event and
executes the predicate with the event-driven method. When the
XML document to filter arrives at the Pfilter, the content of the
element can be obtained with the Characters() method of the
SAX parser [15]. The element is read sequentially from the first
character to the last while generating an event for each
character. The generated event is sent to the handler and
generates transition in the value-based predicate NFA. For
reference, the ACfilter can apply the NFA execution algorithm
almost without any modification. Therefore, the execution
algorithm of the ACfilter will not be discussed anymore.

a) Start Element Content Handler
When the element content starts, the algorithm prepares to

begin transition in the initial state of the value-based predicate
NFA. If the number of self-loop transitions is 0, the initial state
is stored in the objective state linked list.

b) Character Handler
This handler is activated every time a character is read from

the element content. Value-based predicate NFA execution
performs transition when there is matching for each state
currently activated. For a more detailed explanation, let us
assume that the number of self-loop transitions thus far is SL,
and the number of remaining characters not inputted to the
operand is RC. Then the following three procedures are carried
out under each activated state.
(1) Search the current state (i.e., hash table) using the

character key input to the value-based predicate NFA. If a
next state ID that corresponds to the character key exists,
we insert the state ID into the objective state linked list
and reduce the RC.

(2) If a next state ID does not exist in the hash table, the
current state ID is removed from the objective state
linked list. However, if the current state ID is the initial
state, it is not removed from the objective linked list, and
SL is incremented.

(3) After transition, if the state is the accept state, we refer to
SL and RC, and insert the (query ID, path ID, level) pair
into an adequate place in one of the four following hash
sets.

- If SL=0∧RC=0, insert the (query ID, path ID, level)
pair into the equal hash set (EHS).

- If SL>0∧RC=0, insert the (query ID, path ID, level)
pair into the pure prefix hash set (PPHS).

- If SL=0∧RC>0, insert the (query ID, path ID, level)
pair into the pure suffix hash set (PSHS).

- If SL>0∧RC>0, insert the (query ID, path ID, level)
pair into the pure prefix-suffix hash set (PPSHS).

c) End Element Content Handler
When each character of the element content is inputted into

the value-based predicate NFA, the four hash sets will have the
(query ID, path ID, level) pair which considers the special
matching character ‘%’ for the current element content. The
(query ID, path ID, level, matching character info) set can be
recognized from the structural NFA, and the value-based
predicate processing can be completed according to the
following procedures.

(1) For operands without the prefix, suffix, and prefix-suffix

‘%’ (i.e., the matching character info is “N”), we check if
there is a (query ID, path ID, level) pair in the EHS. If
there is, the pair satisfies the value-based predicate.

(2) For operands with the prefix ‘%’ (i.e., the matching
character info is “P”), we check if there is a (query ID,
path ID, level) pair in the EHS and PPHS. If there is, the
pair satisfies the value-based predicate.

(3) For operands with suffix ‘%’ (i.e., the matching character
info is “S”), we check if there is a (query ID, path ID,
level) pair in the EHS and PSHS. If there is, the pair
satisfies the value-based predicate.

(4) For operands with prefix-suffix ‘%’ (i.e., the matching
character info is “PS”), we check if there is a (query ID,
path ID, level) pair in all hash sets. If there is, the pair
satisfies the value-based predicate.

After checking value-based predicate matching according to

the above procedures, if the remaining structure matching is
satisfied (e.g., nested path matching), the query matches the
current XML document.

Fig. 5 shows an example of a value-based predicate NFA
execution. Each rectangle in Fig. 5 (b) stores the (active state
ID, the number of self-loop transitions) pair for the character
input. The figure confirms that the execution of the value-based
predicate NFA does not use a failure function necessary for
executing the Aho-Corasick dictionary matching tree.

IV. EXPERIMENT AND EVALUATION

A. Experiment Setup
Pfilter and ACfilter are implemented using Java. In the case

of Yfilter, there is an open source code1. All experiments for
this paper were conducted using Java virtual machine 1.5
running on PentiumIV 3.2GHz processor, 1GB of memory, and
Windows Server 2003. In order to avoid the influence of the
garbage collector in the Java virtual machine, a new process
was used for each experiment, and the results were evaluated.

1) Workload Generation
If the Yfilter query generator was used without modification,

the value-based predicate path expression according to the

1 http://yfilter.cs.berkeley.edu

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

712

parameters will be generated. However, there is the problem of
the operand not being generated correctly according to the
parameters, and thus the Yfilter query generator was modified.

One of the notable points in the modification of the Yfilter
query generator is that only 1,000 of the 3,000 words become
operands to the value-based predicates.

In order to perform a more accurate generation of the

value-based predicate, it must be generated by reflecting the
skewness of the characters that occurred in each operand. Such
requirements are also applied to XML element contents
synthesized for matching the queries and XML. Our
experiment used the Zipf distribution [16]. The number of paths
for queries and the number of predicates for each path were
fixed in our experiment to 1, which also fixed the probability of
‘*’ and ‘//’ appearing in each location step to 0.2. Although the
number of paths for queries was fixed at 1, Pfilter and ACfilter
are supporting the execution of nested path queries. Table 1
lists the workload parameters for synthesizing XML and
value-based predicates.

To briefly explain P, Prefix, Suffix, and PS among the
parameters in Table I, P denotes the probability of ‘%’
appearing in the value-based predicate operand regardless of
the

prefix ‘%’, suffix ‘%’, or prefix-suffix ‘%’. Prefix (Suffix, PS)
is the probability of a value-based predicate operand with ‘%’
appearing to be a prefix ‘%’ (suffix ‘%’, prefix-suffix ‘%’),
respectively. Therefore, Prefix+Suffix+PS=1 is always
satisfied.

The experimental result provided hereafter is the average
time it takes to process 200 XMLs. An XML document is read
one by one from the disk, and the execution result of the XML
with respect to a value-based predicate becomes the
value-based predicate ID that matches the corresponding XML.

<rss><pubDate>Sun, 25 Sep 2005 22:52:11 EDT</pubDate></rss>
(a) An XML fragment

Element content: “Sun, 25 Sep 2005 22:52:11 EDT”

(1,0)
initial

(1,1), (2,0) (1,2), (30,0) (1,3), (32,0)
match (Q16,0,1)
insert into PSHS

(1,4)

(1,9), (2,8) (1,8) (1,7)
fail in (2,5)

(1,6), (2,5) (1,5)

read ‘S’ read ‘u’ read ‘n’ read ‘,’

read ‘ ’

read ‘2 ’read ‘5 ’read ‘ ’read ‘S’

(1,10)
fail in (2,8)

(1,11) (1,12) (1,13), (2,12) (1,14)
fail in (2,12)

(1,19), (2,18), (19,17) (1,18), (2,17) (1,17) (1,16) (1,15)

read ‘p’ read ‘ ’ read ‘2’ read ‘0’

read ‘0’

read ‘5 ’read ‘ ’read ‘2’read ‘2’

read ‘e’

(1,20), (20,17)
fail in (2,18)

(1,21), (21,17) (1,22), (2,21), (26,17) (1,23), (27,17)
fail in (2,21)

(1,24), (28,17)read ‘5’ read ‘2’ read ‘:’ read ‘1’

read ‘:’

(1,29) (1,28) (1,27) (1,26) (1,25), (29,17)
match (Q14,0,1)

insert into PPSHS

read ‘1’

read ‘ ’read ‘E ’read ‘D’read ‘T’

(b) Value-based predicate matching part

(c) Four type of hash set after (b)

Because of (Q13,0,1,PS), search EHS, PPHS, PSHS, and PPSHS → no match!
Because of (Q14,0,1,PS), search EHS, PPHS, PSHS, and PPSHS → match!
Because of (Q15,0,1,S), search EHS and PSHS → no match!
Because of (Q16,0,1,S), search EHS and PSHS → match!

(d) Query matching using four hash sets
Fig. 6 An example of value-based predicate NFA execution

no pair! no pair! (Q16,0,1) (Q14,0,1)
EHS PPHS PSHS PPSHS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

713

TABLE I
WORKLOAD PARAMETERS FOR CONSTRUCTING QUERIES AND DOCUMENT

Parameter Range Description
Q

ZC
LO

LC

P

Prefix

Suffix

PS

1,000 ~
500,000

0 ~ 2
2 ~ 64

2 ~ 1,000

0 ~ 1

0 ~ 1

0 ~ 1

0 ~ 1

Number of distinct queries

Skewness of characters in operand
Average length of operand in all
value-based predicates
Average length of element contents
in all XML documents
Probability of ‘%’ occurring at
operands of all value-based
predicates
Probability that the operand with
‘%’ is prefix ‘%’
Probability that the operand with
‘%’ is suffix ‘%’
Probability that the operand with
‘%’ is prefix-suffix ‘%’

2) Metric
The metric for our experiments is the multi-query

processing time (MQPT), which is defined as follows.

Definition 3 (MQPT) Let us denote the time of a

document-centric XML input into the filtering system as tstart,
the time of SAX parsing the completion of input XML as
tparsing, and the time of transition completion of structure NFA
and value-based predicate NFA using SAX parsing event and
finding the final matching query as tend. Then MQPT can be
defined as tend-tparsing.

In order to correctly understand MQPT, one must note that
unlike the definition of the filtering time tend-tstart, MQPT does
not include the time it takes for parsing the XML.

B. Experiment 1: Maintenance Cost of Pfilter and ACfilter
This experiment examines the insertion cost of the operand

in the value-based predicate automata of Pfilter and ACfilter.
Due to spatial restrictions, a discussion about the deletion cost,
which renders similar results as the insertion cost, has been
omitted.

There is no need to generate the synthesized XML to search
for matching in order to assess the maintenance costs of Pfilter
and ACfilter. Therefore, the related parameter LC’s change is
not considered for this experiment. Moreover, the special
matching character ‘%’ has no role in inserting/deleting
operands into/from value-based predicate automata,
respectively. Since it is only related in terms of which hash set
the (query ID, path ID, level) pair should be inserted into when
executing a value-based predicate, P=0 is fixed. Moreover, an
increase of the parameter LO in a value-based predicate is
fixed at 8 since it generally increases the insertion/deletion
cost for the two systems. Since the number of paths is fixed at
1 for all synthesized value-based predicates, the parameter Q is
identical to the number of operands. Therefore, the results of
Experiment 1 signify the time required for inserting/deleting
4,000 queries or 4,000 operands.

0

10

20

30

40

50

60

70

80

90

8 16 32 64 128

Number of distinct queries (×1,000)

4,
00

0
In

se
rt

io
ns

 (
m

s)

Pfilter

ACfilter

Fig. 7 Cost of inserting 4,000 queries (varying Q, ZC=0)

Fig. 7 shows the time required for inserting 4,000

value-based predicates. As the number of the queries
registered in Pfilter increases, the probability of the character
key being shared also increases, and the number of insertions
of the (character key, next state ID) pair into the hash table
decreases. However, ACfilter needs to search the linked list to
prevent redundancy in the linked list and to check whether or
not there is a string to insert into the linked list. Therefore, an
increase in the number of queries increases the number of
operands, the length of each state linked list in the value-based
predicate DFA, the search time, and even the insertion time.

C. Experiment 2: Efficiency and Scalability of Pfilter and
ACfilter

In order to focus on the execution of the value-based
predicate operand, the number of paths to the parameter
Q=50,000> If the special matching character ‘ %’ exists,
matching between the value-based predicate and XML can
occur when LO≤ LC, so the default values were set as LO=8
and LC=100, which were adequately modified when LO and
LC became independent variables.

610

620

630

640

650

660

670

0 1.0 2.0

Skewness of characters

M
Q

PT
 (

m
s)

Pfilter

ACfilter

Fig. 8 Varying skewness of characters (LO=8, LC=100, P=0.7,

Prefix=Suffix=PS=1/3)

Fig. 8 shows that the MQPT of the two filtering systems as

skewness of the characters is varied in the operand. As ZC
increases, the difference between the MQPTs of Pfilter and
ACfilter is reduced. However, the MQPTs of the two filtering
techniques display an increasing tendency. It is due to the fact
that the number of the matching value-based predicates also

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

714

increases, as well as the number of insertions of the (query ID,
path ID, level) pairs into the four hash sets.

600

610

620

630

640

650

660

670

680

690

700

2 4 8 16 32 64
Average length of operands

M
Q

PT
 (

m
s)

Pfilter

ACfilter

Fig. 9 Varying average length of operands (ZC=0, LC=100, P=0.7,

Prefix=Suffix=PS=1/3)

Fig. 9 shows the MQPTs of the two filtering systems as the
average operand length increases. If LO is short, then the
number of matching between value-based predicates and
XML increases. In turn, the number of insertions of the (query
ID, path ID, level) pairs in the four hash sets increases, which
heightens the MQPT.

Fig. 10 shows the MQPTs of the two techniques as the
average element length of synthesized XML increases. An
increase in LC escalates the input to the value-based predicate
automata, which increases the number of transition tests as
well as the MQPT. Since Pfilter using the hash table has
constant access time to each state’s hash table, its MQPT
improves as compared to ACfilter using a linked list.
Moreover, it was verified in this experiment that LC is the
parameter with the most significant impact on the MQPT of
the Pfilter technique.

0

200

400

600

800

1,000

1,200

1,400

10 100 1,000

Average length of element contents

M
Q
PT

 (
m

s)

Pfilter

ACfilter

Fig. 10 Varying average length of element contents (ZC=0, LO=8,

P=0.7, Prefix=Suffix=PS=1/3)

V. CONCLUSION
We proposed Pfilter, which is adequate for the

document-centric XML. Since Pfilter shares common prefix
characters in order to effectively process the value-based
predicate, this approach can have many advantages in the real
world in terms of value-based predicate matching. In the case
of value-based predicates used in most article searches, there

are words that are searched frequently at specific times. As the
number of these words registered in the filtering system
increases, the probability of the common prefix character
sharing becomes higher.

Pfilter has been implemented by separating structure
matching and value-based predicate matching, and the
structure matching technique can be selectively deployed. This
signifies that since most structure matching techniques have
different characteristics, they can be replaced with adequate
structure matching techniques according to the circumstances.

The Aho-Corasick dictionary matching tree algorithm is to
solve the problem of the static dictionary matching, but not to
solve the problem of the dynamic dictionary matching which
should consider changing the operand set. Future studies will
be focused on dynamic environments, in which subscribers are
likely to join and leave, and that the data interests of existing
subscribers may also evolve over time. We will implement a
system which reacts quickly to query changes without
adversely affecting the processing of incoming XML
documents.

REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible

Markup Language (XML) 1.0 Second Edition W3C Recommendation.
Technical Report REC-xml-200010006, World Wide Web Consortium.

[2] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson, “Best-match
Query form Document-centric XML,” In Proc. Int. Workshop on the
Web and Databases, pp. 55-60, 2004.

[3] J. Clark, and S. DeRose. XML Path Language (XPath) Version 1.0 W3C
Recommendation. Technical Report REC-xpath-19991116, World Wide
Web Consortium.

[4] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J.
Siméon. XQuery 1.0: An XML Query Language W3C Working Draft.
Technical Report WD-xquery-20050404, World Wide Web Consortium.

[5] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Communications of the ACM, Vol. 18, Issue 6,
pp. 333-340, 1975.

[6] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, “Path
Sharing and Predicate Evaluation for High-Performance XML
Filtering,” ACM Trans. Database Systems, Vol. 28, Issue 4, pp. 467-516,
2003.

[7] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu, “Processing
XML Streams with Deterministic Automata and Stream Indexes,” ACM
Trans. Databases Systems, Vol. 29, Issue 4, pp. 752-788, 2004.

[8] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava, “Navigation- vs.
Index-based XML Multi-query Processing,” In Proc. IEEE Int. Conf.
Data Engineering, pp. 139-150, 2003.

[9] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient Filtering
of XML Documents with XPath Expressions,” In Proc. IEEE Int. Conf.
Data Engineering, pp. 235, 2002.

[10] V. Josifovski, M. Fontoura, and A. Barta, “Querying XML Streams,” Int.
J. Very Large Data Bases, Vol. 14, Issue 2, pp. 197-210, 2005.

[11] J. Kwon, P. Rao, B. Moon, and S. Lee, “FiST: Scalable XML Document
Filtering by Sequencing Twig Patterns,” In Pro. Int. Conf. Very Large
Data Bases, pp. 294-315, 2005.

[12] A. K. Gupta and D. Suciu, “Stream Processing of XPath Queries with
Predicates,” In Proc. ACM SIGMOD Int. Conf. Management of Data, pp.
419-430, 2003.

[13] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymaki,
“Implementing A Scalable XML Publish/Subscribe System Using
Relational Database Systems,” In Proc. ACM SIGMOD Int. Conf.
Management of Data, pp. 479-490, 2004.

[14] F. Peng, and S. S. Chawathe, “XSQ: A Streaming XPath Engine,” ACM
Trans. Databases Systems, Vol. 30, Issue 2, pp. 577-623, 2005.

[15] D. Megginson. SAX: A Free API for Event-based XML Parsing.
Available: http://www.saxproject.org, 2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

715

[16] C. D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

Changwoo Byun received the B.S. and M.S. degrees in the Department of
Computer Science from Sogang University, Seoul, Korea, in 1999 and 2001,
respectively. Since 2001, he has been studying for a Ph.D. at the Department of
Computer Science of Sogang University. His areas of research include
role-based access control model, access control for distributed systems, access
control for XML data, Dynamic access control, and XML Data Stream
Processing.

Kyounghan Lee received the B.S. and M.S. degrees in the Department of
Computer Science from Sogang University, Seoul, Korea, in 2001 and 2006,
respectively. Since 2006, he has been working at Samsung Electronics. His
areas of research include XML Data Stream Processing, XML Indexing, and
Embedded software development.

Seog Park is a Professor of Computer Science at Sogang University. He
received the B.S degree in Computer Science from Seoul National University
in 1978, the M.S. and the Ph.D. degrees in Computer Science from Korea
Advanced Institute of Science and Technology (KAIST) in 1980 and 1983,
respectively.

Since 1983, he has been working in the Department of Computer Science of
the College of Engineering, Sogang University. His major research areas are
database security, real-time systems, data warehouse, digital library,
multimedia database systems, role-based access control and Web database. Dr.
Park is a member of the IEEE Computer Society, ACM and the Korea
Information Science Society. Also, he has been a member of Database Systems
for Advanced Application (DASFAA) steering committee since 1999.

