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observation is also discussed. The performance of the presented 
diagnosis schemes is demonstrated using batch process data. 
This paper is organized as follows: an introduction of 
multivariate statistical techniques followed by a case study on a 
batch process. Finally, concluding remarks are given. 

II. METHODOLOGIES 

A.  Principal Component Representation 
A linear version of principal component representation, i.e., 

principal component analysis (PCA), is used to decompose 
correlated original variables into an uncorrelated set of linear 
principal components. In most cases, only several components 
are enough to explain the data variability. On the other hand, a 
nonlinear PCA, i.e., kernel PCA (KPCA), can be derived by 
solving λv = CFv, where CF indicates the covariance matrix in 
the feature space F. Furthermore, the eigenvalue equation can 
be written as [10] 
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Finally, the principal components for x are given by: 
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B. Discriminant Analysis  
The goal of linear Fisher discriminant analysis (FDA) is to 

find certain directions in original variables, along which hidden 
groups are discriminated as clearly as possible [8]. As an 
extension of linear FDA, nonlinear kernel FDA (KFDA) 
executes linear FDA in the feature space F. As a result, the 
discriminant weight vector is determined by maximizing 
between-class scatter matrix Φ

bS   while minimizing total scatter 
matrix Φ

tS , which are defined in F as follows:  
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By maximizing the Fisher criterion 
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and solving the eigenvalue problem of ψSψS Φ

t
Φ
b λ= we can 

obtain the optimal discriminant vectors, which are actually the 
eigenvectors of  ψSψS Φ

t
Φ
b λ= . 

 

 
Fig. 2 Trajectories of a process variable 

C. Classification-based Analysis  
In general, classification tree classifier represents a statistical 

technique for the classification of data of interest. Basically it 
constructs trees by recursively partitioning predictor space. 
Such processes utilize training data sets in which classes are 
given and known in advance. During model building, a class is 
assigned to each of terminal nodes. For the new data processed, 
their predicted classes are the ones related to the terminal node 
to which the new data are assigned using their predictor values 
[11]. The class assigned to each terminal node t minimizes the 
misclassification cost, which is given by: 

 
∑= ji

tjpjictr )()(min)(            (8) 

 
where  )( jic  represents the cost misclassifying a class j as a 

class i and  )( tjp  the estimated probability of the class j in 

node t. The Gini diversity index is one of the commonly used 
functions for node impurity  
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The goodness of a split can also be evaluated by the deviance 
for a node t  
 

∑−= j tj tjpntd )(log2)(         (10) 

III. RESULTS AND PERFORMANCE COMPARISON 
In this section, the diagnosis performance of the proposed 

scheme based on nonlinear kernel method combined with tree 
classifier is demonstrated. The test process is a polyvinyl 
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