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A Hybrid Particle Swarm Optimization-Nelder-
Mead Algorithm (PSO-NM) for Nelson-Siegel-

Svensson Calibration
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Abstract—Today, insurers may use the yield curve as an indicator
evaluation of the profit or the performance of their portfolios;
therefore, they modeled it by one class of model that has the ability
to fit and forecast the future term structure of interest rates. This class
of model is the Nelson-Siegel-Svensson model. Unfortunately, many
authors have reported a lot of difficulties when they want to calibrate
the model because the optimization problem is not convex and has
multiple local optima. In this context, we implement a hybrid Particle
Swarm optimization and Nelder Mead algorithm in order to minimize
by least squares method, the difference between the zero-coupon
curve and the NSS curve.

Keywords—Optimization, zero-coupon curve, Nelson-Siegel-
Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

I. INTRODUCTION

ANY investor is exposed to rate risk, and he should

anticipate rate movements in the future. Constructing

a term structure of interest rates most often refers to the

concept of zero-coupon. The zero coupon curves are calculated

through the yield curves of the market and are used mainly

for evaluating financial contracts. The calibration of the zero

coupon curve consists in reconstructing the yield curve using

data observed in the market. This reconstruction is necessary

due to the fact that there is not enough zero-coupon bonds

(strips) listed on the market. In addition, zero coupon bonds

often have less liquidity than coupon bonds. In this context,

various curve fitting methods have been introduced. The most

popular approaches to the term structure modeling are various

curve fitting spline methods initiated by McCulloch [12]

and who fit a cubic Spline to the discount curve and also

Vasicek and Fong [15] who model the discount curve with

exponential Spline. Indeed Bliss and Fama [1] developed an

iterative method for fitting the forward rate curves, sometimes

called unsmoothed Fama-Bliss. Hence, these methods have

been criticized for not having economic properties. Therefore,

Nelson and Siegel [13] and Svensson [14] proposed parametric

curves that are flexible enough to describe the whole family

of observed term structure shapes. Despite the absence of

the no-arbitrage restriction, the function developed by Nelson

Siegel and its augmented version by Svensson matches the

yield curve quite well and is widely used by many central

banks for yield curve modeling.
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In this paper, we restrict ourselves to the

Nelson-Siegle-Svensson model in order to reconstruct

and forecast the term structure of interest rates, and this can

help the investor to better manage a portfolio of products rate.

Many authors founded a lot of difficulties in calibrating the

model since the function is not convex, especially those who

use methods based on derivatives of the objective function.

Gilli, Grosse and Schumann [5] analyze the calibration of

the model and implement and test an optimization heuristic,

Differential Evolution, to obtain parameters. Differential

Evolution gives solutions that fit the data very well. Gimeno

et al. [6] proposed the use of genetic algorithms as an

alternative optimization methodology to the traditional

methods. They find better results than traditional methods.

We use the hybrid particle swarm optimization and Nelder

Mead algorithm to calibrate the model using Moroccan

Government bonds. We presented a modified PSO using a

direct search complex algorithm to control the PSO heuristic

parameters. The paper is structured as follows: Section II

discusses in detail the calibration of the NSS model using

heuristic optimization methods. Section III concludes and

presents new perspectives on the basis of work done.

II. CALIBRATING THE NELSON-SIEGLE-SVENSSON

MODEL TO CONSTRUCT THE YIELD CURVE

A. Description of the NSS Model

The Nelson-Siegel [13] and its extension developed by

Svensson [14] is a parametric model, which was designed to

describe the movement of the entire range of rates and to

reconstruct the yield curve. Moreover, it is a dynamic method

that uses parameters changing in time. These parameters are

estimated to a high level of accuracy and are considered as

factors that match the level, slope and the interest rate curve

of government bonds. Unlike the model of Nelson-Siegel,

the Svensson can fit different shapes of yield curve that can

be found on the market, especially curve with a bump or

a hollow. See for instance [4]. The resulting Nelson-Siegel

approximating forward curve can be assumed to be the

solution to a second order differential equation with equal

roots for spot rates
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The rate NSSt(τ, β) of maturity t is calculated from

NSSt(τ, β) = β0 + β1
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with the following notations

β0 : factor level

β1 : slope factor

β2 : first curvature factor

β3 : second curvature factor

τ1 : first scale factor

τ2 : second scale factor .

(3)

This model defines following constraints⎧⎪⎪⎨
⎪⎪⎩

β0 ≥ 0
β0 + β1 ≥ 0

τ1 ≥ 0
τ2 ≥ 0

(4)

In the rest of this paper we denote the Nelson-Siegel[13]

and its extension developed by Svensson[14] by NSS model.

1) Interpretation of the Model Parameters: The NSS model

is consistent with having economic factors: Level, slope, two

curvatures and two scales. Although these parameters are

significant since each parameter has a particular influence

on the behavior of the curve; they are also parsimonious in

the sense that a small number of parameters are used to

represent the curve. According to Diabold and Li [3], these

parameters explain a range of term structure shapes and their

dynamics. Hautsch and Ou [7] demonstrate that the factors of

NSS model and their volatilities are linked to macroeconomic

variables and their variances. Diebold et al.[4] examine the

macroeconomic variables that affect the term structure. Their

empirical work shows that the GDP growth rate and the

unemployment rate are the preachers of the relative risk of the

level and the slope of the yield curve of the US government

Bond. This model consists of four parts reflecting six factors:

β0, β1, β2, β3, τ1 and τ2 .

− β0 is a constant that represents the (long term) interest rate

level, hence the name ”factor level”. So it is the limit of the

functional NSS model when maturity tends to infinity.

lim
t→+∞NSSt(τ, β) = β0 (5)

− β1: Economically β1 is interpreted as the difference between

short rates and long rates. β1 is positive for small maturities,

but, decreases exponentially to 0 when maturity increased.

lim
t→0

NSSt(τ, β) = β0 + β1 (6)

− β2 represents the first curvature of the curve, for short

maturities. The functional NSS model generates a hump for

β2 > 0 or a trough for β2 < 0.

− β3: β3 as β2, influences the amplitude and direction of the

second curvature, for long maturities.

− τ1 determines the exact position of the maximum or

minimum of the curve. It must be positive, because it is

homogeneous in time.

− τ2 specifies the position of the second curvature.

Furthermore, r = β0 + β1 = β0 − (−β1) is the instantaneous

short rate. The long-term rates are more persistent and less

volatile than short rates. The long-term rate depends only on

β0 while the short-term rate depends on β0 and β1. To resume,

this model defines following constraints

⎧⎪⎪⎨
⎪⎪⎩

β0 ≥ 0
β0 + β1 ≥ 0

τ1 ≥ 0
τ2 ≥ 0

(7)

B. Methodology of Calibration

In this section, we deal with the optimization problem,

so our aim will be to estimate six factors of the model, by

minimizing the difference between the NSS curve and the

zero-coupon curve, using least square method.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Minimize f(τ, β) =
∑
i∈I

(NSSt(τi)− ZCt(τi))
2

subject to:

β0 ≥ 0
β0 + β1 ≥ 0
τ1 ≥ 0
τ2 ≥ 0

(8)

where

− NSSt(ti) is the rate calculated by the NSS model,

for maturity τi at time t.
− ZCt(τi) is the observed rate, for maturity τi at time t.
− I are all rates available in the market at time t.

As we can see, the optimization problem is based mainly

on the construction of the zero-coupon curve. To construct

the zero-coupon curve, we need to convert currency rates

in actuarial rates, because they are already considered as

zero-coupon rates, then we transform actuarial rates to

zero-coupon rates by using the linear interpolation method and

the bootstrapping method.

1) Linear Interpolation Method: We consider the rate

r(t, T1) of maturity T1, and the rate r(t, T2) of maturity

T2, and we want to know the rate r(t, T ) of maturity T ,

with T1 < T < T2. For this, we use the following linear

interpolation formula:

r(t, T ) =
(T2 − T )r(t, T1) + (T − T1)r(t, T2)

T2 − T1
(9)

2) Bootstrapping Method: Bootstrapping consists to

reconstruct a zero-coupon curve in spot, segment by segment

maturity.

- Method of Calculating the Short Term
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For currency rates Tm of maturities T < 365, we just need

to transform them into actuarial rates Ta using:

Ta =

(
1 +

Tm ∗Mat

360

) 365
Mat

− 1 (10)

- Method of Calculating the Long Term

To determine the zero-coupon rate of maturities T > 365,

we accept the hypothesis that the theoretical price of a bond is

the sum of its cash flows discounted at the zero-coupon rate,

for each refund.

P =
c

1 + a
+

c

(1 + a)2
+ ...

c

(1 + a)n
+

N

(1 + a)n

=
c

1 + ZC1
+

c

(1 + ZC2)2
+ ...

c

(1 + ZCn)n
+

N

(1 + ZCn)n
(11)

Moreover, we assume that nominal rates are equal to actuarial

rates, so, the nominal interest rate Tf for maturity i is the rate

of return Tr of the same maturity.

for 1 year : Tf = Tr(1 year)

for 2 years : Tf = Tr(2 years)

... ...
for n years : Tf = Tr(n years)

so : ZC1 = Tr(1 year)

(12)

We deduce ZC2(2 years) from the following form of

equality

P =
c

1 + a
+

c+N

(1 + a)2
=

c

1 + ZC1
+

c+N

(1 + ZC2)2
.

(13)

giving

ZC2 =

⎛
⎜⎜⎝ 1 + Tr2

1− Tr2
1 + ZC1

⎞
⎟⎟⎠

1

2

− 1,
(14)

we continue by iterative process to determine the

”zero-coupon rate” of other maturities, and we also use the

linear interpolation method on the actuarial curve. So, for n
years, we find

ZCn =

⎛
⎜⎜⎝ 1 + Trn

1−
n−1∑
i=1

Trn
1 + ZCi

⎞
⎟⎟⎠

1

n

− 1. (15)

After constructing the zero coupon curve, we are now

able to estimate NSS parameters. As we can see, we

are dealing with a nonlinear and no convex least-square

problem featuring a well-defined objective. The functional

implementation, although linear in slope factors and

curvature, is not compared to the scale factors. Hence, the

nonlinear model structure seems to pose serious difficulties for

optimization procedures to arrive at reasonable estimates. This

difficulty stems from the coexistence of local minimum near

the global minimum. Furthermore, we would like to fit a term

structure with some reasonable degree of smoothness. So, it

is preferable to choose appropriate procedures of optimization

that provide us with a good, possibly near-optimal, solution.

There are different approaches to overcome this problem.

An example is shown and discussed in Bonnin et al. [2]

for the Svensson model. They solve this problem using

linear regressions and they address numerical problems and

estimation issues when estimating the Svensson model. Gilli

et al. [5] run 500 times a gradient search algorithm using

different parameter values of the model. They see a strong

instability of the parameters estimated, although the resulting

curve fits with precision the yield curve observed at the

market. Here we chose to apply meta-heuristic methods to

solve this problem. More specifically we chose to apply the

hybrid Particle Swarm Optimization (PSO) and Nelder-Mead

algorithm for two main reasons:

- The objective function is multimodal hence the importance

of a global search method.

- Nelder- Mead algorithm improves much more the result

found with the optimization of PSO.

3) Particle Swarm Optimization: Particle Swarm

Optimization algorithm is a member of the wide category of

swarm intelligence methods which are an alternative class of

stochastic search algorithms to solve non-linear programming

problems. It was proposed by Kennedy and Eberhart [9].

In PSO algorithm, the individual is called particle which

has no mass and volume. The particles of the swarm are

randomly arranged in the search space and each particle is

associated with a velocity, which is constantly updated by the

particle’s previous best performance and by the previous best

performance of the particle’s neighbors. The next iteration

takes place after all particles have been moved. In this

iteration, each member of the swarm updates its position and

its velocity, and the objective function is recalculated for

each individual, which help to determine the minimum of

the problem, before reaching the stopping criterion. See for

instance article [9]. The principle of the PSO algorithm relies

on 3 components, they are:

- The current position of the particle represents the coordinates

of the particle in the search space.

- The best position of the particle is the value that represents

the best solution of the particle.

- The speed of movement of a given particle determines the

next position of this particle.

The particles are manipulated according to the following

vectorial equations:

⎧⎨
⎩

Vt+1 = ωt.Vt + C1.rand()(pbest−Xt)+
C2.rand()(vbest−Xt)

Xt+1 = Vt+1 +Xt

(16)

• Xi(t): Its position in the search space.

• Vi(t): Its velocity.

• Xpbesti : The position of the best solution of the particle.

• Xvbesti : The position of the best solution of its

neighborhood.

• pbesti: The value of the fitness of its best solution.
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• vbesti: The value of the fitness of the best solution in the

neighborhood.

• ω: An inertia factor, defines the exploration capacity of

each particle.

• C1, C2: Constants, they are considered as accelerators.

4) Nelder-Mead Algorithm: Nelder-Mead algorithm, also

called downhill Simplex is a deterministic search strategy

relying on functions evaluations only. It is an optimization

method for non-linear problems, which uses a simplex of n+1
points.

The principle of the algorithm consists to evaluate the

objective function by moving the simplex until a minimum

is found. The operations of this method are to rescale the

simplex based on the local behavior of the function by using

three basic procedures: reflection, expansion and contraction.

Although the simplex search procedure has its merit, it does

not overcome the possible difficulties due to the non-convexity

of the objective function.

5) The Hybrid PSO-Nelder Mead Algorithm: PSO-NM

optimization method integrates evolutionary algorithm (PSO)

and traditional algorithm (Nelder Mead algorithm). In recent

years, many authors have reported this hybrid [11], [10]. The

PSO optimization finds the local best solution easily, but it

requires many particles in an optimal process, which reduces

the speed of computation. Combining the two algorithms

has been a very popular approach to speed up convergence.

The NM-PSO algorithm enables feasible optimal solutions

that satisfy the constraint conditions [8]. At first, we applied

the global minimization algorithm PSO, then we introduce

Downhill Simplex for the problem (8). The algorithm that we

have adopted for solving this problem is:

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
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∥
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∥
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∥
∥

***PSO algorithm***
1: Initialization
Initialize positions Xi and velocities Vi of each particle.
2: Assignment
Pi = Xi

3: Iteration
as the stopping test is not verified, do:

Vi
iter+1 = wVi

iter + c1r1
iter(Pb

iter − Xi
iter)+

c2r2
iter(Pg

iter − Xi
iter)

Xi
iter+1 = Xi

iter + Vi
iter

4: Evaluation
if f(Xi) < f(Pi)
Pi = Xi

End if
End as
5: Return X∗

*** Nelder-Mead algorithm ***
6: Calculating f(X0) with X0 = X∗

7: Evaluation
Xr = X0 + (X0 − XN+1)
if f(Xr) < f(XN )
Xe = X0 + 2(X0 − XN+1)
if f(Xe) < f(Xr)
XN+1 = Xe

else XN+1 = Xr , return to step 6.
if f(XN ) < f(Xr)
Xc = XN+1 = 1

2 (X0 − XN+1)
if f(Xc) < f(XN )
XN+1 = Xc ,return to step 6.

else Xi = X1 + 1
2 (X0 − X1), return to step 6.

8: Return X∗∗

(17)

With the following notations:

X : a particle (β0, β1, β2, β3, τ1, τ2)
X∗ : optimum returned by the PSO method
X∗∗ : optimum returned by the hybrid algorithm
Pg : position of the global particle
Pb : best position of the particle

c1, c2 : random factors, accelerators
ω : inertia
Xr : reflection point of the simplex
Xc : contraction point of the simplex
Xe : expansion point of the simplex

(18)

The Nelder-Mead algorithm is defined as an unconstrained

non-linear mathematical programming problem, so, in order to

satisfy the constraints of our problem (8), we need to penalize

the objective function, by introducing a penalty constant (λ),

as following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(X) =
∑
i∈I

(NSSt(τi)− ZCt(τi))
2
+

λ([C1(X)]−[C2(X)]− + [C3(X)]−+
[C4(X)]−)

with

[C1(X)]
−
= max (0,−β0)

[C2(X)]
−
= max (0,−β0 − β1)

[C3(X)]
−
= max (0,−τ1)

[C4(X)]
−
= max (0,−τ2)

(19)

with λ is a penalty parameter which varies between 50 and

500.

C. Results

The Moroccan government issues bonds called Treasury

Bills to cover its financing needs and repay its debt. Bank

Al Maghrib regularly publishes a yield curve taking into

account the operations of most primary and secondary recent

markets. The published rates are, for every term, average

rates balanced by the prices. Yields are expressed in currency

rates for maturities ≤ 1year and in actuarial rates for

maturities ≥ 1year. The calculation of interest rates include

interpolation and transformation rates mentioned in Sections

B1 and 2. So, to illustrate our Nelson-Siegel term structure

fitting procedure we use Moroccan treasury bills. We consider

the Morrocan yield curve issued on 28/04/2014, like an

example, to simulate our program calibration. For this date,

the calibration algorithm gives the following parameters:

TABLE I
NSS PARAMETERS FOR THE DAY 28/04/2014

β0 β1 β2 β3

0.1201775 -0.088363897 -0.037750091 -0.1384461
τ1 τ2

2.999999902 9.916963315

The program of calibration has been validated for an error

about 10−4.1

The following table provides a comparison between the NSS

curve and the zero-coupon curve.

1The error represents the absolute difference between the NSS rate and the
ZC rate.
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TABLE II
COMPARISON BETWEEN NSS RATES AND ZC RATES FOR THE DAY

28/04/2014

Maturity(in
year)

ZC rate NSS rate Error*104

0.0301 3.191% 3.186% 0.567
0.2219 3.182% 3.215% 3.302
0.4684 3.216% 3.254% 3.835
0.4986 3.250% 3.259% 0.879
0.6136 3.275% 3.278% 0.318
0.8027 3.336% 3.310% 2.595
1 3.363% 3.345% 1.824
2 3.536% 3.529% 0.627
3 3.730% 3.719% 1.101
4 3.894% 3.904% 1.006
5 4.059% 4.081% 2.225
6 4.227% 4.249% 2.181
7 4.399% 4.407% 0.791
8 4.576% 4.557% 1.915
9 4.757% 4.698% 5.880
10 4.831% 4.834% 0.252
11 4.938% 4.964% 2.565
12 5.066% 5.090% 2.441
13 5.198% 5.213% 1.542
14 5.335% 5.334% 0.109

Results indicated at Table II were plotted as Fig. 1.

Fig. 1 Comparison between NSS curve and ZC curve for the day
28/04/2014

In Fig. 1, we clearly see that the ”NSS yield curve” fits

the ”ZC yield curve”. As a result, the NSS curve in blue,

does not seem because it is adjusted under the zero-coupon

curve, and this on the interval of maturities going from 1 day

to 15 years. The calibration algorithm has been validated for

580 yield curve which 83% are fitted to an average error is

about 5.10−4, and 17% with a maximum average error is about

9.10−4.

We chose to do the calibration for the curve over the range

of maturities from 1 day up to 15 years for two main reasons:

- Moroccan curve generally represents actuarial rates for

maturities ≤ 25years, so a linear interpolation to

construct zero-coupon curve for a maturity of more than

this limit will not exist. In this case, our program returns

an exception saying that the interpolation is not allowed,

and extrapolation is not recommended because it will be

uncertain rates.

- The BAM curve shows bumps and troughs particularly

for long term rate (maturity ≥ 15years). However, it

loses accuracy during calibration.

III. CONCLUSION

In this paper, we have analyzed the calibration of the

Nelson-Siegel-Svensson model to construct and forecast the

Moroccan yield curve. This model is widely used, but it is

rarely discussed because that fitting often causes problems,

specially, if we do not use heuristic optimization methods.

We proposed the hybrid between Particle Swarm Optimization

and Nelder-Mead algorithm as an alternative optimization

methodology to the traditional methods. These heuristics

optimizations gave results that were reliably better than those

obtained by a traditional method based on the derivatives of

the objective function.

Based on our researches and our experiment, we propose

to study the dynamic of the the NSS model and to

choose appropriate methods to forecast the yield curve.

We propose also to more improve the calibration with

Nelson-Siegel-Svensson model, and this, by controlling the

volatility of the model parameters, by expressing them as

stochastic processes, in order to control the volatility and

liquidity problems in Moroccan market.
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