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Abstract—Firefly algorithm (FA) and Sine Cosine algorithm 

(SCA) are two very popular and advanced metaheuristic algorithms. 
However, these algorithms applied to multi-objective optimization 
problems have some shortcomings, respectively, such as premature 
convergence and limited exploration capability. Combining the 
privileges of FA and SCA while avoiding their deficiencies may 
improve the accuracy and efficiency of the algorithm. This paper 
proposes a hybridization of FA and SCA algorithms, named 
multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop 
a more efficient meta-heuristic algorithm than FA and SCA. 
 

Keywords—Firefly algorithm, hybrid algorithm, multi-objective 
optimization, Sine Cosine algorithm.  

I. INTRODUCTION 

WARM intelligence algorithm has become an effective tool 
for numerical optimization. Up to now, a number of swarm 

intelligence algorithms have been mentioned in literature, such 
as Particle Swarm Optimization (PSO) [1], Ant colony 
optimization (ACO) [2], Artificial Bee Colony (ABC) [3], etc. 
FA [4] and SCA [5] are well known optimization algorithms in 
this category. 

Recently, FA as an advanced metaheuristic algorithm was 
proposed by [4]. This algorithm simulates the behavior of 
fireflies based on their flash characteristics. Compared with 
some widely used metaheuristic algorithms, FA has the 
characteristics of fast convergence speed and simplicity. Thus, 
FA was widely used in optimization problems, such as flow 
shop scheduling problem and electric power plant planning 
problem. Multi-objective firefly algorithm (MOFA) was 
extended by Yang [6] for multi-objective optimization 
problem. Following this work, Marichelvam et al. [7] 
introduced a discrete FA to solve the multi-objective hybrid 
flow shop scheduling problem. Karthikeyan et al. [8] proposed 
a hybrid discrete FA to solve the multi-objective flexible job 
shop scheduling problem. Hidalgo-Paniagua et al. [9] used 
MOFA to solve the multi-objective path planning problem. 
Bozorg-Haddad et al. [10] used an extended multi-objective 
developed FA for hydropower energy generation. Lu et al. [11] 
proposed a hybrid MFA-SCA to solve a multi-objective 
multi-period regret minimization uncertain portfolio selection 
model with bankruptcy constraint. 

Although FA algorithm has been widely used in optimization 
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problems, there are still many shortcomings. Some researches 
showed that FA has the defects of premature convergence and 
easy to fall into local optimum [12], [13]. And the step sizes 
moved in the firefly are highly random, which may result in 
skipping the optimal solution. Moreover, SCA is a new 
population-based intelligent optimization algorithm proposed 
by [5]. The SCA algorithm includes several random variables 
and adaptive variables, and guarantees the diversity of the 
search solution as much as possible on the premise of ensuring 
the optimal solution vector. Therefore, inspired by the SCA 
search mechanism, we hybridize FA and SCA, termed 
MFA-SCA, for overcoming the shortcomings. In the hybrid 
MFASCA, a search strategy is proposed to update the dominant 
individuals. Besides, non-dominant individuals move towards 
other non-dominant individuals by employing the SCA 
movement strategy. 

II. THE BASIC FA 

FA is an advanced metaheuristic algorithm proposed by [4], 
which comes from the simplification and simulation of firefly 
group behavior. The FA follows the three rules: (I) Fireflies are 
unisex; (II) The attraction of a firefly is directly proportional to 
its brightness. For any two fireflies, a firefly with low 
brightness will be attracted to a firefly with high brightness. 
This attraction is inversely proportional to the distance between 
fireflies. As the distance between fireflies increases, the 
attraction gradually decreases; (III) The brightness of the firefly 
is determined by the objective function to be optimized. 

The attractiveness is determined by the distance between two 
fireflies, so the attraction for firefly 𝑖  and firefly 𝑗  can be 
expressed as 

 

𝛽 , 𝑟 , 𝛽 𝑒 , ,         (1) 
  
where 𝛽  is the maximum attraction, which is the attraction at 
the light source 𝑟  0 . 𝛾 is the light absorption coefficient 
and represents the change of attraction. Its value has a great 
influence on the convergence speed of the algorithm. 𝑟 , is the 
cartesian distance between two fireflies, 
 

𝑟 ,  ||𝑥   𝑥 ||   ∑ 𝑥 ,   𝑥 , ,    (2) 

 
where 𝐷  is the dimension of the objective function to be 
optimized, 𝑥 ,  and 𝑥 ,  are the 𝑘th component element of 𝑥  
and 𝑥 , respectively. 
 

𝑥 𝑥 𝛽 , 𝑟 , 𝑥   𝑥 𝛼 𝜖 ,   (3) 
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where 𝛼  is a random number, and 𝜖  is a random number 
vector from a Gaussian, a uniform distribution, or some other 
distributions. 

III. THE HYBRID MFA-SCA 

A. Initialization 

Population initialization is the first step of population-based 
meta-heuristic algorithms. Meanwhile, it is a crucial task 
because it can affect the convergence speed and the quality of 
the final solutions. In most meta-heuristic algorithms, the initial 
population is randomly generated. This method is widely used 
in most population-based meta-heuristic algorithms due to its 
simplicity. For simplification, random initialization is also used 
in this paper. Random population of SN fireflies are generated 
using 

 
𝑥 , 𝑙𝑏 ∗ 𝑊 𝑟𝑎𝑛𝑑 0,1 ∗ 𝑢𝑏 ∗ 𝑊 𝑙𝑏 ∗ 𝑊 , 

 
where 𝑥 ,  is the amount of the 𝑘th portfolio’s asset of the 𝑖th 
agent, 𝑟𝑎𝑛𝑑 0, 1  is a random number uniformly distributed 
between 0 and 1, 𝑊  is the initial wealth, and 𝑢𝑏  and 𝑙𝑏  are 
upper and lower weight bounds of the 𝑘th asset, respectively. 

If the initially generated value for the 𝑘th parameter of the 
𝑖th firefly does not fit in the scope 𝑙𝑏 ∗ 𝑊 , 𝑢𝑏 ∗ 𝑊 , it is 
modified using the following expression: 
 if 𝑥 , 𝑢𝑏 ∗ 𝑊 , then 𝑥 , 𝑢𝑏 ∗ 𝑊 , 
 if 𝑥 , 𝑙𝑏 ∗ 𝑊 , then 𝑥 , 𝑙𝑏 ∗ 𝑊 . 

B. The Movement of Dominant Fireflies 

In order to improve the performance of basic FA, a search 
strategy for dominant fireflies is proposed. For a dominant 
firefly 𝑖, it moves towards the firefly 𝑗 that dominates itself. 
The position update formula is described as 

 
𝑥 𝑥 𝛽 , 𝑟 , 𝑥   𝑥  𝑟1  𝑠𝑖𝑛 𝑟2 𝜖 , 𝑟4  0.5, 

  (4) 
 

𝑥 𝑥 𝛽 , 𝑟 , 𝑥   𝑥  𝑟1  𝑐𝑜𝑠 𝑟2 𝜖 , 𝑟4 

 0.5, (5) 
 
where parameters 𝑟1 , 𝑟2  and 𝑟4  are the three parameters 
introduced by SCA. Parameters 𝑟2 and 𝑟4 are random numbers 
in different intervals. Parameter 𝑟2 represents the size of the 
disturbance, while 𝑟4 determines whether the individual moves 
sinusoidal or cosine. Parameter 𝑟1  is an adaptive variable, 
which represents the direction of the disturbance. The 
expression for the parameter 𝑟1 is 
 

𝑟1  𝑎  𝑡 ,           (6) 
 
where 𝑇 is the maximum number of iterations preset and 𝑎 is a 
constant. 

C. The Movement of Non-Dominant Fireflies 

For non-dominant individuals, Yang [6] weights multiple 
objectives into single objective via the method of random 

weighted sum. If firefly 𝑖  is not dominated by any other 
fireflies, its location is updated as below: 

 

𝜑 𝑥 ∑ 𝜔 𝑓 , ∑ 𝜔 1, 𝑥 𝑔 𝛼 𝜖 , (7) 
 
where 𝜔  is a random number between 0 and 1, 𝑓  is the 𝑙th 
objective function, and 𝑔  is the optimal obtained by (7). 
However, this mechanism may lead to incomplete exploration. 
According to [5], SCA not only has good exploration 
capability, but also performs well in exploitation. So we 
introduce the movement strategy of SCA for non-dominant 
fireflies. The movement formula of the non-dominant 
individual can be expressed as 
 

𝑥 𝑥 𝑟1  𝑠𝑖𝑛 𝑟2 |𝑟3𝑃   𝑥 |, 𝑟4  0.5,  (8) 
 

𝑥 𝑥 𝑟1  𝑐𝑜𝑠 𝑟2 |𝑟3𝑃   𝑥 |, 𝑟4  0.5,  (9) 
 
where 𝑥  represents the current position of the 𝑖th dimensional 
solution vector of the individual in the tth iteration. 
Respectively, 𝑟1, 𝑟2 and 𝑟4 are adaptive and random variables 
as explained above. The parameter 𝑟3  represents a random 
weight, which is a random number from [0, 2]. If 𝑟3  1, it 
indicates that this iteration has significant influence on the 
approximation to the optimal value; otherwise, it is not 
significant. 𝑃  is the position of any non-dominant individual 
in iteration 𝑡. 

Finally, the pseudo-code of hybrid MFA-SCA is presented in 
Algorithm 1. 

 
Algorithm 1: The pseudo-code of MFA-SCA 

1: Objective functions 𝑓 𝑥 , ⋯ , 𝑓 𝑥 , 𝑥 𝑥 , 𝑥 , ⋯ , 𝑥  
2: Randomly generate 𝑆𝑁 fireflies 𝑥  𝑖 1, 2, ⋯ , 𝑆𝑁  
3: Initialize parameters in MFA-SCA 
4: While 𝑡 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
5:    For 𝑖 1: 𝑆𝑁 all 𝑆𝑁 fireflies 
6:        For 𝑖 1: 𝑆𝑁 all 𝑆𝑁 fireflies 
7:            If 𝑥  dominates 𝑥  

8:                Update 𝑟 , , 𝛽 , 𝑟 , , 𝑟1, 𝑟2, 𝑟4 
9:                Update the 𝑖th firefly → the 𝑗th firefly by (4) or (5) 
10:           End if 
11:           If non-dominated solution fulfilled 
12:               Update 𝑟1, 𝑟2, 𝑟3, 𝑟4 
13:               Update the 𝑖th firefly → the 𝑗th firefly by (8) or (9) 
14:           End if 
15:        End for 
16:     End for 
17:     Put the non-dominate solutions in external archive 
18: End while 
19: Select the Pareto front from the external archive 
20: Postprocess results and visualization 

IV. NUMERICAL EXAMPLE 

In this section, a numerical experiment is presented to 
demonstrate the effectiveness of the MFA-SCA algorithm. To 
evaluate the performance of the designed MFA-SCA 
algorithm, we compare it with the basic FA, SCA, PSO and 
GA.  
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Six widely adopted metrics are used to evaluate the 
performance of the proposed MFA-SCA algorithm. Moreover, 
we select five ZDT functions as benchmarks. The details of the 
five ZDT functions are listed in Table I. 

 
TABLE I 

MULTI-OBJECTIVE TEST FUNCTIONS UTILIZED IN THIS PAPER 
Problem Definition 

ZDT1 𝑓 𝑥 𝑥   

𝑓 𝑥 𝑔 𝑥 ∗ 1.0   

𝑔 𝑥 1.0 ∑ 𝑥   

0 𝑥 1, 𝑖 1, ⋯ , 𝑛  
ZDT2 𝑓 𝑥 𝑥   

𝑓 𝑔 𝑥 ∗ 1.0 𝑥 /𝑔 𝑥   

𝑔 𝑥 1 ∑ 𝑥   

0 𝑥 1, 𝑖 1, ⋯ , 𝑛  
ZDT3 𝑓 𝑥 𝑥   

𝑓 𝑔 𝑥 1 𝑥 𝑔 𝑥⁄ 𝑥 𝑔 𝑥 sin 10𝜋𝑥⁄   

𝑔 𝑥 1 ∑ 𝑥   

0 𝑥 1, 𝑖 1, ⋯ , 𝑛  
ZDT4 𝑓 𝑥 𝑥   

𝑓 𝑔 𝑥 1 𝑥 /𝑔 𝑥   
𝑔 𝑥 1 10 𝑛 1 ∑ 𝑥 10 cos 4𝜋𝑥   

0 𝑥 1, 5 𝑥 5, 𝑖 1, ⋯ , 𝑛
ZDT6 𝑓 𝑥 1 𝑒 ∗ sin 6𝜋𝑥   

𝑓 1   

𝑔 𝑥 1 9 ∗ ∑ 𝑥 𝑛 1⁄ .   
0 𝑥 1, 𝑖 1, ⋯ , 𝑛  

 

The real Pareto optimal fronts of all benchmark functions 
involved are known. The Inverted Generation Distance (IGD) 
[14], the Generation Distance (GD) [14], the Maximum Spread 
(MS) [15] and the Spacing [16] are used as evaluation 
parameters. 
(1) Inverted Generation Distance (IGD) 
 

𝐼𝐺𝐷
∑

,  

 
where 𝑚 is the number of solutions in the true Pareto front, and 
𝑑  is the Euclidean distance between each of the solutions and 
the nearest member from the set of non-dominated solutions 
found by the algorithm. If 𝐼𝐺𝐷  0, the solutions are evenly 
distributed on the true Pareto frontier. If 𝐼𝐺𝐷  0, it means 
that the solutions may have poor diversity. 
(2) Generation Distance (GD) 
 

𝐺𝐷
∑

, 

 
where 𝑛 is the number of non-inferior solutions obtained by the 
algorithm, and 𝑑  is the minimum distance from the 𝑖th solution 
to the real Pareto optimal solution set. If 𝐺𝐷  0, the resulting 
non-dominated solution belongs to the real Pareto optimal 
solution set. It reflects the degree of approximation between the 
optimal solution set obtained by the algorithm and the real 
Pareto optimal solution set. 
(3) Maximum Spread (MS) 
 

𝑀𝑆 ∑ 𝛿 , 𝛿
, ,

, 

 

where 𝑓  and 𝑓  are the maximum and minimum values 
of the function value of the 𝑙th objective function of the Pareto 
optimal frontier obtained by the algorithm, 𝐹  and 𝐹  are 
the maximum and minimum values of the function value of the 
𝑙th objective function of the real Pareto frontier. k is the number 
of objective functions. If 𝑀𝑆  1, it indicates that the true 
Pareto frontier is completely covered by the solutions obtained 
by the algorithm. MS is the metric representing the coverage of 
the Pareto frontier of the algorithm to the true Pareto front. 

 
TABLE II 

COMPARISON OF PERFORMANCE RESULTS FOR FIVE ALGORITHMS 
 MFA-SC FA SCA PSO GA 

IGD ZDT1 Mean 0.002860 0.007234 0.011792 0.007075 0.007508
Std 0.000891 0.002542 0.013664 0.002217 0.002873

ZDT2 Mean 0.010632 0.022029 0.013231 0.016450 0.021813

Std 0.003643 0.008579 0.004674 0.018346 0.006953

ZDT3 Mean 0.006444 0.009099 0.009827 0.015636 0.013884

Std 0.002278 0.002955 0.003067 0.003950 0.005253

ZDT4 Mean 0.005079 0.020723 0.018165 0.007822 0.012304

Std 0.001426 0.006166 0.007885 0.002793 0.004667

ZDT6 Mean 0.006666 0.010397 0.013167 0.014693 0.008145

Std 0.001389 0.006323 0.005836 0.003770 0.006140

GD ZDT1 Mean 0.000556 0.000581 0.000684 0.000572 0.001092

Std 0.000101 0.000160 0.000132 0.000028 0.000158

ZDT2 Mean 0.001406 0.001504 0.000934 0.000630 0.003081

Std 0.000379 0.000836 0.000563 0.000066 0.000861

ZDT3 Mean 0.000466 0.000559 0.000730 0.001284 0.001546

Std 0.000116 0.000158 0.000131 0.000309 0.000497

ZDT4 Mean 0.000715 0.000430 0.000949 0.000814 0.001461

Std 0.000116 0.000179 0.000266 0.000156 0.000337

ZDT6 Mean 0.000202 0.000311 0.000275 0.000216 0.000761

Std 0.000022 0.000059 0.000059 0.000030 0.000112

MS ZDT1 Mean 0.999082 0.932220 0.812656 0.830495 0.896555

Std 0.002445 0.097031 0.201386 0.094205 0.073931

ZDT2 Mean 0.868995 0.748130 0.759269 0.738695 0.762865

Std 0.073443 0.153958 0.096346 0.255171 0.126673

ZDT3 Mean 0.967455 0.951600 0.960974 0.724964 0.918257

Std 0.046204 0.073045 0.067321 0.114628 0.114019

ZDT4 Mean 0.919843 0.762493 0.667330 0.847205 0.915493

Std 0.062578 0.159058 0.107288 0.075307 0.094733

ZDT6 Mean 0.792226 0.785368 0.725480 0.505887 0.786655

Std 0.065450 0.149158 0.156857 0.097615 0.140393

Spacing ZDT1 Mean 0.049482 0.092751 0.051762 0.052032 0.131580

Std 0.014376 0.027327 0.029388 0.015624 0.041059

ZDT2 Mean 0.133252 0.303143 0.068866 0.040232 0.357714

Std 0.044552 0.182032 0.034969 0.016414 0.144461

ZDT3 Mean 0.064085 0.100596 0.104284 0.137508 0.243071

Std 0.019687 0.028600 0.031787 0.026083 0.075723

ZDT4 Mean 0.066580 0.100126 0.097518 0.093033 0.236209

Std 0.015129 0.040062 0.038292 0.021954 0.080608

ZDT6 Mean 0.030920 0.044462 0.047643 0.022111 0.104623

Std 0.005296 0.012522 0.023382 0.006233 0.025939

 

(4) Spacing 
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𝑆𝑝𝑎𝑐𝑖𝑛𝑔 ∑ �̅� 𝑑 ,  

 
where 𝑛 is the number of non-dominated solutions obtained by 
the algorithm, 𝑑  is the distance between the 𝑖th non-dominated 
solution corresponding to the target vector and the nearest 
target vector, and 𝑑  is the mean of the �̅� . If 𝑆𝑝𝑎𝑐𝑖𝑛𝑔  0, it 
means that the solutions are evenly distributed. 

Table II summarizes means and standard deviations of IGD, 
GD, MS and Spacing in all algorithms for the five test 
functions. The best results are marked in hold. We observed 
that MFA-SCA outperforms the other four algorithms in terms 
of IGD and MS. For GD and Spacing, MFA-SCA algorithm is 
superior to the other algorithms in most cases, although PSO 
have better performance than the proposed algorithm for ZDT2. 
In general, in most cases, the results obtained by the hybrid 
MFA-SCA algorithm are better than those obtained by the other 
algorithms in terms of above four metrics. That is to say, the 
proposed MFA-SCA algorithm outperforms the other 
meta-heuristic algorithms. 

Finally, the correlation coefficient 𝜔 of IGD, GD, MS and 
Spacing obtained by five algorithms are evaluated by 
conducting Shapiro-Wilk W test under the confidence level of 
95%. The closer to 1, the more normally distributed the dataset 
is. Table III also shows that the values of IGD, GD, MS and 
Spacing obtained by MFA-SCA are relatively more normally 
distributed than those obtained by other algorithms in most 
cases. 

 
TABLE III 

THE CORRELATION COEFFICIENT W OF DIFFERENT PERFORMANCE METRICS 

OBTAINED BY CONDUCTING SHAPIRO-WILK W TEST 
 MFA-SC FA SCA PSO GA 

ZDT1 IGD 0.973090 0.907640 0.623230 0.960430 0.885480
GD 0.979540 0.889190 0.914480 0.976770 0.965520

MS 0.628200 0.752110 0.744260 0.937880 0.853500

Spacing 0.978830 0.879420 0.675940 0.959040 0.895000

ZDT2 IGD 0.975550 0.965390 0.962110 0.628890 0.967280

GD 0.975690 0.875730 0.661220 0.970000 0.972540

MS 0.951090 0.879500 0.948670 0.836870 0.948010

Spacing 0.988680 0.959740 0.873860 0.978860 0.953260

ZDT3 IGD 0.954230 0.922540 0.954050 0.949700 0.871460

GD 0.977100 0.914950 0.953970 0.942840 0.886540

MS 0.593570 0.634330 0.507230 0.946760 0.653810

Spacing 0.962260 0.941120 0.880730 0.883920 0.847310

ZDT4 IGD 0.958360 0.942900 0.930220 0.909490 0.919210

GD 0.959400 0.954320 0.888270 0.958490 0.924580

MS 0.896430 0.929500 0.983330 0.988300 0.563980

Spacing 0.968410 0.953660 0.871880 0.961900 0.928230

ZDT6 IGD 0.881740 0.836080 0.886150 0.944470 0.981350

GD 0.963350 0.947740 0.922330 0.958440 0.957350

MS 0.953880 0.883790 0.934570 0.951150 0.984310

Spacing 0.974070 0.902000 0.829550 0.970230 0.911520

V. CONCLUSIONS 

In this paper, we design a hybrid MFA-SCA algorithm 
combing FA and SCA. Then, we present a numerical example 
to illustrate the effectiveness of the proposed approach. The 
experimental results demonstrate that the proposed MFA-SCA 

algorithm has better performance than the other algorithms. In 
future work, we may apply the proposed MFA-SCA to solve 
more real-world multi-objective optimization problems, such 
as vehicle routing problem. 
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