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Abstract—Scheduling for the flexible job shop is very important 

in both fields of production management and combinatorial 
optimization. However, it quit difficult to achieve an optimal solution 
to this problem with traditional optimization approaches owing to the 
high computational complexity. The combining of several 
optimization criteria induces additional complexity and new 
problems. In this paper, a Pareto approach to solve the multi 
objective flexible job shop scheduling problems is proposed. The 
objectives considered are to minimize the overall completion time 
(makespan) and total weighted tardiness (TWT). An effective 
simulated annealing algorithm based on the proposed approach is 
presented to solve multi objective flexible job shop scheduling 
problem. An external memory of non-dominated solutions is 
considered to save and update the non-dominated solutions during 
the solution process. Numerical examples are used to evaluate and 
study the performance of the proposed algorithm. The proposed 
algorithm can be applied easily in real factory conditions and for 
large size problems. It should thus be useful to both practitioners and 
researchers. 
 

Keywords—Flexible job shop, Scheduling, Hierarchical 
approach, simulated annealing, tabu search, multi objective. 

I. INTRODUCTION 
HE job shop scheduling problem is to determine a 
schedule of jobs that have pre-specified operation 

sequences in a multi-machine environment. In the classical job 
shop scheduling problem (JSP), n jobs are processed to 
completion on m unrelated machines. For each job, 
technology constraints specify a complete, distinct routing 
which is fixed and known in advance. Processing times are 
fixed and known in advance. Each machine is continuously 
available from time zero, and operations are processed without 
preemption. The general JSP is strongly NP-hard [1]. In order 
to match nowadays market requirements, manufacturing 
systems have to become more flexible and efficient. To 
achieve these objectives, the systems need not only the 
automated and flexible machines, but also the flexible 
scheduling systems. The flexible job shop scheduling problem 
(FJSP) extends JSP by assuming that, for each given 
operation, there is at least one instance of the machine type 
necessary to perform it. The scheduling problem of a FJSP 
consists of a routing sub-problem, that is assigning each 
operation to a machine out of a set of capable machines and 
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the scheduling sub-problem, which consists of sequencing the 
assigned operations on all machines in order to obtain a 
feasible schedule minimizing a predefined objective function. 
The FJSP mainly presents two difficulties. The first one is to 
assign each operation to a machine, and the second one is to 
schedule these operations in order to make a predefined 
objective minimal [2]. The FJSP is a much more complex 
version of the JSP, so the FJSP is strongly NP-hard and 
combinatorial. It incorporates all of the difficulties and 
complexities of its predecessor JSP and is more complex than 
JSP because of the addition need to determine the assignment 
of operations to machines [3].  

Since scheduling began to be studied at the beginning of 
this century, numerous papers have been published. Almost all 
of them optimize a single objective. Many industries such as 
aircraft, electronics, semiconductors manufacturing, etc., have 
tradeoffs in their scheduling problems where multiple 
objectives need to be considered in order to optimize the 
overall performance of the system. Optimizing a single 
objective generally leads to deterioration of another objective. 
For example, increasing the input rate of product into a system 
generally leads to higher throughput, but also to increased 
work-in-process (WIP) [4].  

The most of the contributions reported in the literature 
dealing with multi-objective scheduling problems have 
divided to these categories: 

• Review of the multi criteria scheduling problem. 
Hoogeveen [5] presented a comprehensive review of the 
published literature on the multi criteria scheduling. He 
presented that the following performance criteria appeared 
frequently in the literature: maximum completion time or 
makespan ( )(max σC ), total weighted completion time 
(∑

=

n

j
jjCw

1
)(σ ), maximum lateness ( )(max)(max σσ jj

LL = ), 

maximum tardiness ( )(max)(max σσ jj
TT = ), maximum cost 

( ))((max)(max σσ jjj
Cff = ), total weighted tardiness 

(∑
=

n

j
jjTw

1

)(σ ), maximum earliness ( )(max)(max σσ jj
EE = ), 

total weighted earliness (∑
=

n

j
jj Ew

1

)(σ ), weighted number of 

tardy jobs (∑
=

n

j
jjUw

1

)(σ ). 

• Pareto approach for multi objective scheduling. In 
such multi-objective scheduling problems, it is common to 
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obtain a set of Pareto-optimal or efficient solutions such that 
at least one such solution is not inferior to any other given 
solution not contained in the set, and the solutions in the set 
do not dominate each other. This approach is applied for 
single machine scheduling [10],[11], flow shop scheduling 
[12], parallel machine [13] and job shop scheduling [4].  

• Scalar approach for multi objective scheduling. One 
common approach in dealing with such situations is to 
establish a weighted (composite) objective function based 
on the significance of individual objectives, or equivalently, 
the criticality of deviating from the optimal value of each 
individual objective. This approach is applied for single 
machine scheduling [7], [10] and job shop scheduling [11].  

• Various objectives in job shop scheduling. The 
following performance criteria appeared frequently in the 
single objective job shop scheduling literature:  maximum 
completion time or makespan [12]-[14], various tardiness 
objectives [15], [16], penalty cost [17] and various earliness 
objectives [18]. Two objectives representing the general 
performance of a manufacturing system are considered in 
this study. They are minimizing makespan and minimizing 
total weighted tardiness (TWT). 
The multi objective scheduling is strongly NP-hard and 

combinatorial. No method is able to generate optimal 
solutions for the multi-objective case in polynomial time. This 
limits the quality of design and analysis that can be 
accomplished in a fixed amount of time. For this reason many 
studies have focused on developing heuristic procedures for 
this problem. Effectively, Meta heuristics, like simulated 
annealing (SA), Tabu search and genetic algorithms have 
demonstrated their ability to solve combinatorial problems. 
So, some authors suggested adapting Meta heuristics in order 
to solve multi-objective combinatorial problems [20]. In 
particular Ulungu et al. [21] conceived a multi-objective 
simulated annealing (MOSA) algorithm for solving 
combinatorial optimization problems. 

The literature of FJSP is considerably sparser than the 
literature of JSP. Bruker and Schile [19] were among the first 
to address this problem. They developed a polynomial 
algorithm for solving the flexible job shop problem with two 
jobs. For solving the realistic case with more than two jobs, 
two types of approaches have been used: hierarchical 
approaches and integrated approaches. In hierarchical 
approaches assignment of operations to machines and the 
sequencing of operations on the resources or machines are 
treated separately,  i.e. assignment and sequencing are 
considered independently, where in integrated approaches, 
assignment and sequencing are not differentiated. Hierarchical 
approaches are based on the idea of decomposing the original 
problem in order to reduce its complexity. This type of 
approach is natural for FJSP since the routing and the 
scheduling sub-problem can be separated [3].  

In this paper, the model presented with the Fattahi, Saidi, 
Jolai [3] is developed to present a multi objective algorithm 
for the job shop scheduling. So, the problem of developing 
heuristically efficient (or non-dominated) solutions with the 

objectives of minimize the overall completion time 
(makespan) and total weighted tardiness (TWT) of jobs is 
considered. A Pareto approach based on simulated annealing 
algorithm is presented to solve the multi objective flexible 
job-shop scheduling problem. The aim is to generate a good 
set of approximation non-dominated solutions. The paper is 
organized as follows: the problem description and the multiple 
objectives flexible job-shop scheduling model is described in 
Section 2 and the notations are introduced. Section 3 gives a 
description of the multi objective hybrid algorithm (MOHA) 
and the solution procedure. Section 4 reports some 
computational results and their analysis; conclusions and 
further research directions are presented in Section 5. 

II. PROBLEM DESCRIPTION AND FORMULATION  

A. Flexible Job Shop Scheduling Problem 
Flexible job shop scheduling problem (FJSP) has m 

machine and n jobs. Each job consists of a sequence of 
operation jhj hhO ,,1,, …= , where hjO ,  and jh denote that hth 

operation of job j and the number of operations required for 
job j, respectively. The machine set is 
noted },...,,{, 21 mMMMMM = . Unless stated otherwise, 
index i denotes a machine, index j denote jobs and index h 
denote operations throughout the paper. The execution of each 
operation h of a job j (noted hjO , ) requires one machine out of 

a set of given machines called MM hj ⊂, and a process 

time, hjiP ,, , for each alternative machine.  The set hjM , is 

defined by hjia ,, as described below. An index k is assigned 

for each machine that determines the sequence of the assigned 
operations on it.  
 

B.  Multi Objective Optimization 
We consider a general optimization problem with two 

objectives, where we want to minimize functions 
)(1 xf and )(2 xf subject to a constraint Sx ∈ . We denote 

the vector of objective functions by 
TxfxfxF ))(),(()( 21= . The vector ),...,,( 21 nxxxx =  is 

called a decision vector and nS ℜ⊂ is the feasible region. 
The feasible region is formed by constraint functions. The 
image of the feasible region )(SFZ =  is called the feasible 
objective region. Vectors belonging to the feasible objective 
region Z are called objective vectors and they are denoted 
by 2)( ℜ∈xF . 

We want to minimize simultaneously both objective 
functions. Generally, it is not possible to find a solution in 
which both objective functions attain minimum values. This 
means that the objective functions are conflicting. Besides, the 
feasible objective region Z is only partially ordered. In other 
words, we cannot compare all the objective vectors 
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mathematically. For example, we cannot distinguish which is 
a better objective vector, T)5,1(  or T)1,5( . However, we can 

say that T)5,1( is better than T)5,2(  or T)6,1( . 
This leads us to the concept of Pareto optimality. A 

decision vector Sx ∈* and the corresponding objective 

vector )( *xF are Pareto optimal if there does not exist another 

decision vector Sx ∈ such that )()( *xfxf ii ≤ for i=1, 2 

and )()( *xfxf ii <  for at least one i [22]. A set containing 
all the Pareto optimal solutions of the problem is called the 
Pareto optimal set or non-dominated solutions set. As an 
example, in Figure 1, we consider a two objective functions 
case. The solutions C, D and F are dominated and {A, B, E, 
G} is the pareto-optimal set of solutions. The main aim of 
such an approach is to find all the elements of this set in order 
to give more choice to the decision-maker [23].   

Now the solution we are looking for is a non-dominated 
solution set. This guarantees that we cannot improve any of 
the objective function values of the solutions without 
deteriorating the other objective function value. This, which 
Pareto optimal solution is the best, depends usually on a 
decision maker. So, we present an algorithm that searches the 
non-dominated solutions set for the multi objective 
optimization problem considered.  

 
Fig. 1 An illustration example of a non-dominated set 

 

C. Mathematical Model 
The model presented by Fattahi, Saidi and Jolai [3] is 

developed to present a multi objective flexible job shop 
scheduling problem (MFJSP). Under the assumptions and 
notations presented in previous sections, the problem is to 
both determine an assignment and a sequence of the 
operations on all machines that minimizes the overall 
completion time (makespan) and total weighted tardiness 
(TWT) given hjhjihj ovaOmn ,,,, ,,,, and hjip ,, . The 

following additional notations are used in the mixed integer 
linier program formulation of MFJSP with overlapping 
operations.  

⎪
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maxC : Makespan time 

Ta : Total tardiness of schedule 

jTa : The tardiness of job j 

jd  : The due date of job j 
L: A large number. 

⎩
⎨
⎧

=
otherwise

kpriorityinimachineonperformedisOifx hj
khji 0

1 ,
,,,

 

hjt , : Start time of the processing of operation hjO , . 

kiTm , : Start of working time for machine i in priority k . 

ik : The number of assigned operations to machine i. 

hjps , : Processing time of operation hjO , after select a 
machine. 

A mixed integer linier program for the FJSP with 
overlapping operations is then given as 
 
Min maxC                                                                                                      

Min ∑
=

=
n

j
jjTawTa

1

   

s.t. 
( ) )( ;,...10,max ,, njfordpstTa jhjhjj jj

=−+≥   (1) 

;,...,1,,max njforpstC
jj hjhj =+≥                         (2) 

∑ ===
i
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j
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;,..,1;,..11,, j
i

hji hhnjfory ===∑                     (11) 

∑ ====
k

jhjikhji hhnjmiforyx ;,,1;,...,1;,...,1,,,,, …    (12) 

 ;,,1;,,10, jhj hhnjfort …… ==≥      (13) 

{ } ;,..,1;,..,1;,..,1;,..,11,0,,, ijkhji kkhhnjmiforx ====∈  (14) 

{ } ;,..,1;,..,1;,..,11,0,, jhji hhnjmifory ===∈         (15) 

Constraints (1, 2) determine the two objectives. Constraint 
(3) determines the processing time of operation hjO , by 

selected machine. Constraints (4, 5) enforce each job to follow 
a specified operation sequence and consider the overlapping 
constraints. Constraint (6) forces each machine to process one 
operation at a time. Constraints (7) and (8) force each 
operation hjO , can be start after its assigned machine is idle 

and previous operation 1, −hjO is completed. Constraint (9) 

determines the alternative machines for each operation.  
Constraint (10) assigns the operations to a machine and 
sequence assigned operations on all machines. Constraints 
(11) and (12) force each operation can be performed only on 
one machine and at one priority. Results of khjix ,,, yield an 

assignment each operation on a machine and sequence 
assigned operations on all machines.  

III. THE PROPOSED APPROACH 
The scheduling problem of a FJSP consists of a routing 

sub-problem, that is assigning each operation to a machine out 
of a set of capable machines and the scheduling sub-problem, 
which consists of sequencing the assigned operations on all 
machines in order to obtain a feasible schedule minimizing the 
predefined objective functions. As discussed previously, in 
hierarchical approaches assignment of operations to machines 
and the sequencing of operations on the resources or machines 
are treated separately, i.e. assignment and sequencing are 
considered independently. Hierarchical approaches are based 
on the idea of decomposing the original problem in order to 
reduce its complexity. In this section, we develop the FJSP 
algorithm presented by Fattahi, Saidi and Jolai [3] to present a 
multi objective hybrid algorithm (MOHA) for MFJSP. They 
compare various hybrid algorithms for FJSP and conclude that 
the HTSSA algorithm is better than other presented 
algorithms. HTSSA uses the tabu search algorithm in 
sequencing algorithm and simulated annealing algorithm in 
scheduling algorithm based on a hierarchical approach. We 
develop this algorithm to present a multi objective algorithm 
which presented in figure2. This algorithm consists of two 
algorithms: assignment algorithm and scheduling algorithm. 
The objective functions of each assignment are computed by 
scheduling algorithm and the initial solution of scheduling 
algorithm is obtained from the assignment algorithm. An 
external memory of non-dominated solutions is considered to 

save and update the non-dominated solutions during the 
solution process.  

IV. COMPUTATIONAL RESULTS 
This section describes the computational experiments which 

are used to evaluate the effectiveness and performance of the 
proposed algorithm in finding good quality solutions. For this 
purpose, we tested the algorithm versus the mathematical 
model. Although there is a large variety of methods in the 
literature of multi objective decision making problems to 
generate the Pareto frontier (such as variants of the parametric 
method, and the adaptive search method), in this study we use 
the e-constraint method, since this method is very simple to 
apply and it is applicable to non convex feasible region 
problems as well. The e-constraint method can be formulated 
as follows:  
                                     

 
Fig. 2 The proposed MOHA algorithm 

 

Xx
xZst
xZMin

∈
≤ ε)(:

)(

2

1

                             (16) 

Whereε is a parameter. With varying the value of e 
systematically, the optimal solutions of this problem give the 
points of the Pareto frontier. By repeatedly relaxing the upper 
bound on )(2 xZ , and re-optimizing )(1 xZ  each time, the 

points ),( 21 zz provide the Pareto frontier [24]. This 
procedure is illustrated in Fig. 3. 

To validate the performance of the proposed algorithm, five 
problems (MOFJ1:2.3.3, MOFJ2:3.2.3, MOFJ3:4.2.3, 
MOFJ4:3.3.3 & MOFJ5:5.3.5 that are shown in table1, 2, 3, 4 
& 5) of multi objective flexible job shop scheduling based on 
practical data have been selected. These problems are 
represented by MOFJ (multi objective flexible job shop), n 
(No. of jobs), h (No. of operations) and m (No. of machines). 

These problems are solved by the proposed algorithm to 
evaluate the performance of it. The algorithm was run on a PC 
that has a Pentium-IV 1.80 GHz processor, with 512 Mb 

Start

Neighborhood search

Create and initial assignment

Create an initial sequence

Compute the objectives

Neighborhood search

Compute the objectives

Change the current solution 
(if solution is accepted)

Markov chain

Run scheduling algorithm of 
MOHA

Compare the solutions

Neighborhood chain

Stopping criteria

Return the pareto optimal solutions

Update the pareto optimal solutions

Stopping criteria

Back to Sequencing 
MOHA algorithm

 Sequencing algorithm of MOHA 
 Scheduling algorithm of MOHA

Update the pareto optimal solutions



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:2, 2009

166

 

 

RAM. Their results are shown in Table VI. Moreover, the 
mathematical model and ε -constraint method is used to 
evaluate the performance of the MOHA algorithm and its 
result is presented in Table VII.  

A review of the results in Table VI and VII show that, the 
proposed algorithm is capable to obtain near the optimal 
solutions. Moreover, the proposed algorithm can obtain all of 
Pareto solution in a small time. Therefore, the proposed 
algorithm is useful in multi objective flexible job shop 
scheduling problems.  The non-dominated set for the problem 
MOJ5 is obtained through the solution process and shown in 
figure 4. This figure shows that the non-dominated set will be 
updated during the solution process and the final non-
dominated set will be presented. 

 
Fig. 3 Illustration of the ε -constraint method [24] 

 
TABLE I 

THE DATA OF PROBLEM MOFJ1:2.3.3 
Operation 3 Operation 2 Operation 1   

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  * 

Due 
Date Jobs 

95 
86 
125 

1 
2 
3 

55 
48 

2 
3 

85 
96 

1 
2 200 1 

83 
90 

2 
3 

54 
38 

1 
2 

26 
48 

1 
2 150 2 

* Mach. No. : Machine number, Pro. time: Process time 
 

TABLE II 
THE DATA OF PROBLEM MOFJ2:3.3.3 

Operation 2 Operation 1   
Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  * 

Due 
Date Jobs 

45 
56 

2 
3 

65 
85 

1 
2 100 1 

54 
68 

2 
3 

45 
64 

1 
2 130 2 

90 
80 

2 
3 

95 
75 

1 
3 150 3 

 
TABLE III 

THE DATA OF  PROBLEM MOFJ3:4.2.3 
Operation 2 Operation 1   

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  * 

Due 
Date Jobs 

45 
64 

1 
3 

65 
75 

1 
2 150 1 

54 
68 

2 
3 

65 
44 

1 
2 110 2 

90 
80 

2 
3 

84 
75 

1 
3 170 3 

110 
80 

2 
3 

120 
75 

1 
2 150 4 

 
 

TABLE IV 
THE DATA OF PROBLEM MOFJ4:3.3.3 

Operation 3 Operation 2 Operation 1   
Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  * 

Due 
Date Jobs 

95 
86 

125 

1 
2 
3 

55 
48 

2 
3 

85 
96 

1 
2 200 1 

83 
90 

2 
3 

54 
38 

1 
2 

26 
48 

1 
2 150 2 

100 
90 

2 
3 

90 
70 

2 
3 

87 
60 

1 
3 250 3 

 
TABLE V 

THE DATA OF PROBLEM MOFJ5:5.3.5 
Operation 3 Operation 2 Operation 1   

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  

Pro. 
time 

Mach. 
No.  * 

Due 
Date Jobs 

95 
110 
125 

3 
4 
5 

55 
88 

3 
4 

85 
96 

1 
2 300 1 

120 
90 

4 
5 

54 
68 

2 
3 

26 
48 

1 
2 250 2 

87 
64 

120 

3 
4 
5 

45 
56 

3 
4 

68 
47 

1 
2 150 3 

99 
110 

4 
5 

66 
88 

3 
4 

55 
48 

2 
3 200 4 

110 
90 

4 
5 

100 
120 

2 
4 

87 
60 

1 
3 250 5 

 
TABLE VI 

THE FINAL NOM-DOMINATED SETS OBTAINED BY THE PROPOSED ALGORITHM 
MOFJ1 MOJ2 MOJ3 MOJ4 MOJ5 

Cmax, TWT Cmax, TWT Cmax, TWT Cmax, TWT Cmax, TWT 
245    45 
228    47 
227    53 
223    92 

155       60 
164      49 
 

209      134 
219      98 

235     108 
241     106 
268     82 
273     73 

324     155 
303     235 
316     234 

CPU time (s): 
30 

CPU time (s): 
30 

CPU time (s): 
30 

CPU time (s): 
30 

CPU time (s): 
64 

 
TABLE VI 

THE FINAL NOM-DOMINATED SETS OBTAINED BY THE 
E-CONSTRAINT METHOD 

MOFJ1 MOJ2 MOJ3 MOJ4 
Cmax, TWT Cmax, TWT Cmax, TWT Cmax, TWT 
245       45 
228       47 
227       53 
223       92 

155       60 
164      49 
 

209     134 
219     98 

235      108 
241      106 
268       82 
273       73 

Var:  167 
Cons:  308 

Var:  146 
Cons: 285 

Var:  216 
Cons: 474 

Var:  299 
Cons: 612 

CPU time: 
80 

CPU time: 
70 

CPU time (s): 
3600 

CPU time (s): 
7200 

 

V. CONCLUSION 
In this paper, a Pareto approach is proposed to solve the 

multi objective flexible job shop scheduling problems. The 
objectives considered are to minimize the overall completion 
time (makespan) and total weighted tardiness (TWT). An 
effective simulated annealing algorithm based on the proposed 
approach is presented to solve multi objective flexible job 
shop scheduling problem. An external memory of non-
dominated solutions is considered to save and update the non-
dominated solutions during the solution process. Numerical 
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experiments show that the proposed algorithm is capable to 
obtain the solution near the optimal solution. Moreover, the 
proposed algorithm can obtain all of Pareto solution in a small 
time. Therefore, the proposed algorithm is useful in multi 
objective flexible job shop scheduling problems. In this paper 
two well known objectives are used for the multi objective 
flexible job shop scheduling problems, so a review on another 
objectives and methods in this field can be supposed as further 
research.  
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Fig. 4 The Pareto set which is updated during the algorithm for MOFJ5 
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