
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1335

Abstract—Flow-shop scheduling problem (FSP) deals with the

scheduling of a set of jobs that visit a set of machines in the same
order. The FSP is NP-hard, which means that an efficient algorithm
for solving the problem to optimality is unavailable. To meet the
requirements on time and to minimize the make-span performance of
large permutation flow-shop scheduling problems in which there are
sequence dependent setup times on each machine, this paper
develops one hybrid genetic algorithms (HGA). Proposed HGA
apply a modified approach to generate population of initial
chromosomes and also use an improved heuristic called the iterated
swap procedure to improve initial solutions. Also the author uses
three genetic operators to make good new offspring. The results are
compared to some recently developed heuristics and computational
experimental results show that the proposed HGA performs very
competitively with respect to accuracy and efficiency of solution.

Keywords—Hybrid genetic algorithm, Scheduling, Permutation
flow-shop, Sequence dependent

I. INTRODUCTION
HE flow-shop scheduling problems (FSP) have been
studied for over five decades. The classical flow-shop

problem with the make-span minimization criterion has
always attracted the attention of researchers because of its
applications in practice. For example, a typical ship builder
builds a number of different ship models, but the individual
parts that go into each ship follow similar processes. A
shipyard can be thought of as a collection of several flow-shop
s. In particular, almost all parts, i.e. the big metal blocks, go
through a panel shop in a ship yard where they are cut or
welded together. Panel shops are typically treated as flow-
shop s. The flow-shop problem is easy to describe and
formulate, yet computationally it is rather challenging.
Therefore, this problem has inspired the development of a
number of solution procedures [1].In an m machine flow shop,
there are m stages in series, where there exist one or more
machines at each stage. Each job has to be processed in each
of the m stages in the same order. That is, each job has to be
processed first in stage 1, then in stage 2, and so on.
Processing times for each job in different stages may be
different. We classify flow shop problems as (i) flow shop
(there is one machine at each stage), (ii) no-wait flow shop (a
succeeding operation starts immediately after the preceding
operation completes), (iii) flexible (hybrid) flow shop (more
than one machine exist in at least one stage), and (iv)

Mohammad Mirabi is with the Industrial Engineering Department, Islamic
Azad University-Ashkezar Branch, Ashkezar, Iran (phone: (98)3523625955;
fax: (98)3523625952; email: m.mirabi@yahoo.com).

assembly flow shop (each job consists of m-1 specific
operations, each of which has to be performed on a pre-
determined machine of the first stage, and an assembly
operation to be performed on the second stage machine) [2].In
the flow-shop literature, one can find an overwhelming
number of papers for the regular flow-shop problem with the
objective of minimizing the maximum completion time across
all jobs (also called make-span and denoted by Cmax).
However, the Sequence Dependent Setup Time Flow-shop
Problem (SDST flow-shop problem in short) has attracted
much less attention especially before 2000. Specific to the
SDST flow-shop are the setup times.The objective in flow-
shop scheduling problems is to find a sequence for processing
the jobs on the machines so that a given criterion is optimized.
This yields a total of n! possible orderings of the operations on
each machine and a total of (n!)m possible processing
sequences. In flow-shop scheduling research usually only so
called permutation sequences are considered, where the
processing order of operations is the same for all machines.
Here, the author also adopts this restriction. In this paper, the
author considers sequence dependent flow-shop scheduling
problem with the make-span minimization criterion.Regarding
the computational complexity, the SDST flow-shop with the
Cmax objective has been shown to be NP-hard by Gupta [3]
even when m = 1 and also when m = 2 and setups are present
only on the first or second machine [4]. For m = 1, the SDST
flow-shop is known to be a special case of the Traveling
Salesman Problem (TSP) that is also well known to be NP-
hard which means that an efficient algorithm for solving the
problem to optimality is unavailable. Therefore, solving the
problem by an exact algorithm is time consuming and
computationally intractable. To deal with the problem
efficiently and effectively, one hybrid genetic algorithms
(HGA) is developed in this paper.The paper is organized as
follows. Section 2 surveys on the relevant literature.
Formulation is given in section 3. Section 4 discusses the
principles of the algorithms used to solve the FSP. Section 5
compares the performance of the algorithms. Finally, Section
6 concludes the paper.

II. LITERATURE REVIEW
Compared to the regular flow-shop, on which hundreds of

papers have been published, the literature on the SDST
counterpart is scarce.

In the pioneering work of Johnson [5], the author proposed
a simple rule to obtain optimal sequences for the permutation
flow-shop problem (PFSP) with two machines. This work

Mohammad Mirabi

A Hybrid Genetic Algorithm for the Sequence
Dependent Flow-Shop Scheduling Problem

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1336

raised significant interest in the PFSP and was followed by
several attempts for solving the PFSP with more than two
machines. Due to the NP-completeness of the PFSP [6],
researchers have mainly focused on the development of
effective heuristics and meta-heuristics. Salient heuristics are
due to Campbell et al. [7] (also called CDS method) and the
well-known NEH heuristic by Nawaz et al. [8]. Some
noteworthy meta-heuristics have also been proposed, for
example the simulated annealing by Osman and Potts [9], the
tabu search of Widmer and Hertz [10] and the genetic
algorithm of Reeves [11]. Srikar and Ghosh [12] introduced
the first MILP model (SG/SDST model) for the SDST flow-
shop . Stafford and Tseng [13] reported minor corrections to
the SG/SDST model, and showed that the revised model
(SGST/SDST) was robust with regard to the triangular
inequality relationship of setup times. Mercado and Bard [14]
showed that the SGST/SDST model performed better than
their new MILP model for the SDST flow-shop. Tseng and
Stafford [15] extended the Stafford MILP model to solve both
the SDST and the SDST/NIQ flow-shop problems. Mercado
and Bard published two papers for the sequence dependent
flow-shop problem with make-span criterion (denoted as
Fm/STsd/Cmax). In the first paper [16], they presented a branch
and bound algorithm, incorporating lower and upper bounds
and dominance elimination criterion, to solve the problem.
They provided test results for a wide range of problem
instances. In the second paper [17], they proposed a heuristic
for the same problem, which transforms an instance of the
problem into an instance of the traveling salesman problem by
introducing a cost function that penalizes both large setup
times and bad fitness of a given schedule. Ruiz et al. [18]
proposed two heuristics for the same problem, and showed
that their heuristics outperform that of Mercado and Bard [17]
and others. Ruiz and Stutzle [19] presented two simple local
search based iterated greedy algorithms, and showed that their
algorithms perform better than those of Ruiz et al. [18].
Mercado and Bard [20] studied the polyhedral structure of two
different mixed-integer programming formulations for the
same problem. One is related to the asymmetric traveling
salesman problem and the other is derived from an earlier
proposed model. The two approaches were evaluated using a
branch and cut algorithm, which indicated that the approach
related to the asymmetric traveling salesman problem, was
inferior in terms of the computational time. Stafford and
Tseng [20] also proposed two mixed integer linear
programming models, which are based on the work of Tseng
and Stafford [18], for the same problem. The mixed-integer
programming models proposed by Mercado and Bard [20] and
Stafford and Tseng [21] were independently developed, and
hence, remain to be compared to each other. Tseng et al. [22]
developed a penalty-based heuristic algorithm for the same
problem and compared their heuristic with an existing index
heuristic algorithm. Sun and Hwang [23] addressed a related
problem of F2/STsd/Cmax, where the setup times are present
only on the second machine and the setup time of a job
depends on k (k>1) immediately preceding jobs. They

proposed a dynamic programming formulation and a genetic
algorithm for the problem. Li et al. [24] presented partial
enumeration method (PEM) to minimize the make-span
performance of large flow-shop scheduling problems. The
PEM run in short time and was able to easily combine with
other algorithms or rules to improve performance. In their
research two priority rules, variance method and variance-
mean method were developed. Laha and Chakraborty [25]
developed an efficient stochastic hybrid heuristic (H3) for
flow-shop scheduling problem and showed the superiority of
their work against other researches. Finally Sheibani [26]
described a polynomial-time heuristic (PH) for the
permutation flow-shop scheduling problem with the make-
span criterion. His method consists of two phases: arranging
the jobs in priority order and then constructing a sequence. He
employed a fuzzy greedy evaluation function to prioritize the
jobs for incorporating into the construction phase of the
heuristic.

III. HYBRID GENETIC ALGORITHM
Genetic algorithm (GA) developed by John Holland in the

1960s, is a stochastic optimization technique. Similar to other
artificial intelligence heuristics like SA and TS, GA can avoid
getting trapped in a local optimum by the aid of one of the
genetic operations called mutation. The basic idea of GA is to
maintain a population of candidate solutions that evolves
under selective pressure. Hence, it can be viewed as a class of
local search based on a solution generation mechanism
operating on attributes of a set of solutions rather than
attributes of a single solution by the move-generation
mechanism of the local search methods, like SA and TS [27].
In recent years, GA has been applied successfully to a wide
variety of hard optimization problems. The success is mainly
due to its simplicity, easy operation, and great flexibility.
These are the major reasons why GA is selected as an
optimization tool in this paper. Flow-shop scheduling problem
can be regarded as a hard optimization problem. A simple GA
may not perform well in this situation. Therefore, the GA
developed in this paper is hybridized with several heuristics to
improve the solution further.Fig.1 shows the flowchart of
HGA for the FSP. HGA hybridizes an improved heuristic
called the iterated swap procedure (ISP). Besides the ISP, it
also hybridizes the modified NEH_RMB proposed by Ruiz at
al. [18] to generate a population of initial chromosomes. Also
the author uses three genetic operators to make good new
offspring.

The procedure of the HGA is described as follows: After
the GA parameters, such as the iteration number, the
population size, the crossover rate, and the mutation rate, have
been set; the HGA generates the initial chromosomes of the
problem. In HGA the NEH is used to determine the sequence
of jobs in each schedule. After the predetermined number of
initial chromosomes is generated, the ISP is adopted to
improve all chromosomes.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1337

Fig. 1 The flowchart of the HGA

Each chromosome is then measured by an evaluation
function. The roulette wheel selection operation is adopted to
select some chromosomes for the genetic operations,
including the order crossover, the heuristic mutation, and the
inversion mutation. After a new chromosome or offspring is
produced, its links are improved by the ISP. The fitness of the
offspring is measured and the offspring may become a
member of the population if it possesses a relatively good
quality. These steps form iteration, and then the roulette wheel
selection is performed again to start the next iteration. The
HGA will not stop unless the predetermined number of
iterations is conducted.

A. Initialization
The initial solution for HGA is ideally generated by a high

performance construction heuristic. For the sequence
dependent flow-shop scheduling with make-span criterion, the
author uses the NEHT_RMB heuristic and a modified
NEHT_RMB heuristic proposed by Ruiz et al. [18] for the
initialization of the population. Recall that NEH is an insertion
heuristic, where at each step the next unscheduled job is
tentatively inserted in each possible position of some partial
solution. The job is then finally inserted into the position
where the objective function takes the lowest value. For
executing such an insertion heuristic, the jobs need to be
ordered in some way. For more details how this is done in
NEHT_RMB and modified NEHT_RMB, the reader is
referred to Ruiz et al. [18].

B. Improvement
The 2-opt local search heuristic is generally used to improve

the solutions of the hard optimization problems. However, it
increases the computational time because every two swaps are
examined. If a new solution generated is better than the
original one, or parent, in terms of quality, it will replace and

become the parent. All two swaps are examined again until
there is no further improvement in the parent. To increase
efficiency, the ISP [28, 29] shown in Fig. 2, is used to
improve the links of each initial solution and each offspring
generated by the three genetic operators. The principle of the
ISP is similar to that of the 2-opt local search heuristic, except
that some instead of all two swaps are examined. The
procedure of the ISP is as follows:

Step 1: Select two genes randomly from a link of a parent.
Step 2: Exchange the positions of the two genes to form an

offspring.
Step 3: Swap the neighbors of the two genes to form four

more offspring.
Step 4: Evaluate all offspring and find the best one.
Step 5: If the best offspring is better than the parent, replace

the parent with the best offspring and go back to Step 1;
otherwise, stop.

Select two genes randomly
 Parent 1 4 5 2 3

 Offspring 1 1 2 5 4 3
 Offspring 2 2 1 5 4 3
 Offspring 3 1 5 2 4 3
 Offspring 4 1 2 5 3 4
 Offspring 5 1 2 4 5 3
 Offspring 1 1 2 5 4 3

Fig. 2 The iterated swap procedure

C. Evaluation
As mentioned before, the fitness function is minimizing the

maximum completion time across all jobs (also called make-
span and denoted by Cmax).

D. Selection
The roulette wheel selection operation [30] is adopted to

choose some chromosomes to undergo genetic operations. The
approach is based on an observation that a roulette wheel has
a section allocated for each chromosome in the population,
and the size of each section is proportional to the
chromosome’s fitness. The fitter the chromosome, the higher
the probability of being selected. Although one chromosome
has the highest fitness, there is no guarantee it will be selected.
The only certain thing is that, on average, a chromosome will
be chosen with the probability proportional to its fitness.
Suppose the population size is sizeP , then the selection
procedure is as follows:

Step 1: Calculate the total fitness of the population:

()∑
=

=
Psize

h
hCF

1
max

Step 2: Calculate the selection probability hP for each

chromosome hX :

Input GA parameters

Initialization: NEH_RMB heuristic

Improvement: Iterated
swamp procedure

Evaluation: Minimization
of make-span

Selection: Roulette
wheel method

Genetic operations:
1. Order crossover
2. Heuristic mutation
3. Inversion mutation

Improve new chromosomes
(offspring) using iterated
swap procedure

Measure fitness of
offspring and compare
with that of parents

Retain the best
population of
chromosomes

Terminate?

Output the best
solution

1

1

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1338

()
()1*

max

−
−

=
size

h PF
hCFP h=1, 2, …, sizeP

Step 3: Calculate the cumulative probability hQ for each

chromosome hX :

∑
=

=
h

j
jh PQ

1

 h=1, 2, …, sizeP

Step 4: Generate a random number r in the range (0, 1].
Step 5: If hQ -1<r≤ hQ , then chromosome hX is selected.

E. Genetic Operation
The genetic search progress is obtained by two essential

genetic operations, including exploitation and exploration.
Generally, the crossover operator exploits a better solution
while the mutation operator explores a wider search space.
The genetic operators used in the algorithms for the flow-shop
problem are one crossover and two mutations, which are
called the heuristic mutation and the inversion mutation,
respectively.

E. 1. The Order Crossover
The crossover operator adopted in the HGA is the classical

order crossover [31], and two offspring will be generated at
each time. The procedure of the order crossover operation is:

Step 1: Select a substring from the first parent randomly.
Step 2: Produce a protochild by copying the substring into

the corresponding positions in the protochild.
Step 3: Delete those genes in the substring from the second

parent. The resulting genes form a sequence.
Step 4: Place the genes into the unfilled positions of the

protochild from left to right according to the resulting
sequence of genes in Step 3 to produce an offspring, shown in
Fig. 3.

Step 5: Repeat Steps 1–4 to produce another offspring by
exchanging the two parents.

E. 2. The heuristic mutation
A heuristic mutation [31] is designed with the

neighborhood technique to produce a better offspring. A set of
chromosomes transformed from a parent by exchanging some
genes is regarded as the neighborhood. Only the best one in
the neighborhood is used as the offspring produced by the
mutation. However, the purpose of the mutation operation is
to promote diversity of the population. Therefore, it is
necessary to change the original heuristic mutation for the
FSP. The modification is that all neighbors generated are used
as the offspring. The procedure of the heuristic mutation
operation, shown in Fig. 4, is taken as follows:

Step 1: Pick up three genes in a parent at random.
Step 2: Generate neighbors for all possible permutations of

the selected genes, and all neighbors generated are regarded as
the offspring.

E. 3. The Inversion Mutation
The inversion operator [31], shown in Fig. 5, selects a

substring from a parent and flips it to form an offspring.
However, the inversion operator works with one chromosome
only. It is similar to the heuristic mutation and thus lacks the
interchange of characteristics between chromosomes. So, the
inversion operator is a mutation operation, which is used to
increase the diversity of the population rather than to enhance
the quality of the population.

 Selected
substring

 Parent
1

1 2 5 4 3

 Parent
2

1 4 3 2 5

 Offspring 1 1 2 5 4 3

Fig. 3 The order crossover operator

 Select three genes
randomly

 Parent 1 2 5 4 3

 Offspring 1 1 2 3 4 5
 Offspring 2 3 2 1 4 5
 Offspring 3 3 2 5 4 1
 Offspring 4 5 2 1 4 3
 Offspring 5 5 2 3 4 1
 Offspring 1 1 2 3 4 5

Fig. 4 The heuristic mutation operator

 Selected

substring

 Parent
1

1 2 5 4 3

 Offspring 1 1 4 5 2 3

Fig. 5 The inversion mutation operator

IV. RESULT ANALYSIS
In this section, a computational study is carried out to

compare the HGA with three best recently developed
heuristics. I mean PEM presented by Li et al. [24]; H3
developed by Laha and Chakraborty [25] and PH described by
Sheibani [26]. Four methods are compared using different
problem sizes (n=10, 20, 30, 40, 50, 100 and m=5, 10, 15, 20).
For each class of the problem defined by given (n, m), 10
instances of problem are randomly generated. Thus we obtain
a total of 280 problem instances. Processing time and setup
time are given from Uniform random U(1, 99) and U(1, 9)
discrete distributions respectively. The numerical results are
averaged through each ten instances.

The parameters of the HGA for the problems are:
Population size=20, Crossover rate=0.5 and Mutation

rate=0.2.
Therefore, five pairs of chromosome are selected to perform

the order crossover operation, whereas four chromosomes

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1339

perform the heuristic mutation operation and the inversion
mutation operation. The total number of offspring produced
per iteration will be 34 (10 from the order crossover operation,
20 from the heuristic mutation operation, and 4 from the
inversion mutation operation). The platform of our
experiments is a personal computer with a Pentium-III 1.2 Hz
CPU and 512 MB RAM. The programs are coded in
MATLAB. Also to have equal condition between four
methods all algorithms are run 10 independent times with a
stopping criterion based on an elapsed CPU time given by

10/mn× seconds. This allows for more time as the number
of jobs n and the number of machines m grows.

The make-span values appearing in Table 1 are averages of
10 make-spans obtained from as many problem instances. The
results indicate that HGA produces solutions of a better
quality than other methods.

For evaluating the different algorithms, the author used the
performance measure (PM) stated as:

sol

solsol

Best
BestHeuPM −

=

(1)
where Heusol is the make-span obtained by a given

algorithm and Bestsol is the make-span of the best solution
obtained by all algorithms.

V. CONCLUSIONS
In this paper the author studies the flow-shop scheduling

problem in sequence dependent condition to challenge a large
number of real world problems. FSP is a hard optimization
problem and the author develops one meta-heuristic approach
based on genetic algorithm called HGA to solve it. Genetic
algorithm hybridized with an improved heuristic called the
iterated swap procedure (ISP). Besides the ISP, it also
hybridized the modified NEH_RMB proposed by Ruiz at al.
to generate a population of initial chromosomes. Also the
author uses three genetic operators to make good new
offspring. Computational results demonstrate the performance
of our method compared to some of the strong methods
recently developed. It is noticeable when we see the most
differences between HGA and the best method among
considered approaches are also significant in the level of

05.0=α .

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1340

REFERENCES
[1] B. Ekşioğlu, S.D. Ekşioğlu and P. Jain, "A tabu search algorithm for the

flow-shop scheduling problem with changing neighborhoods",
Computers & Industrial Engineering, Vol. 54, 2008, pp. 1-11.

[2] Allahverdi, C.T. Ng, T.C.E. Cheng and M.Y. Kovalyov, "A survey of
scheduling problems with setup times or costs", European Journal of
Operational Research, Vol. 187, 2008, pp. 985–1032.

[3] J.N.D. Gupta, "Flow-shop schedules with sequence dependent setup
times" Journal of the Operations Research Society of Japan, Vol. 29,
1986, pp. 206–219.

[4] J.N.D. Gupta and W.P. Darrow, "The two-machine sequence dependent
flow-shop scheduling problem", European Journal of Operational
Research, Vol. 24, 1986, pp. 439–446.

[5] S.M. Johnson, "Optimal two- and three-stage production schedules with
setup times included", Naval Research Logistics Quarterly, Vol. 1, 1954,
pp. 61–68.

[6] M.R. Garey, D.S. Johnson and R. Sethi, "The complexity of flow-shop
and jobshop scheduling", Mathematics of Operations Research, Vol. 1,
1976, pp. 117–129.

[7] H.G. Campbell, R.A. Dudek and M.L. Smith, "A heuristic algorithm for
the n job, m machine sequencing problem", Management Science, Vol.
16, 1970, pp. B630–B637.

[8] M. Nawaz, E.E. Enscore and I. Ham, "A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem", OMEGA, The
International Journal of Management Science, Vol. 11, 1983, pp. 91–95.

[9] I.H. Osman and C.N. Potts, "Simulated annealing for permutation flow-
shop scheduling", OMEGA, The International Journal of Management
Science, Vol. 17, 1989, pp. 551–557.

[10] M. Widmer and A. Hertz, "A new heuristic method for the flow shop
sequencing problem", European Journal of Operational Research, Vo.
41, 1989, pp. 186–193.

[11] C.R. Reeves, "A genetic algorithm for flow-shop sequencing"
Computers and Operations Research, Vol. 22, 1995, pp. 5–13.

[12] B.N. Srikar and S. Ghosh, "A MILP model for the n-job M-stage flow-
shop with sequence dependent set-up times", International Journal of
Production Research, Vo. 24, 1986, pp. 1459–1474.

[13] E.F. Stafford and T.F. Tseng, "On the Srikar–Ghosh MILP model for
the N×M SDST flow-shop problem", International Journal of
Production Research, Vol. 28, 1990, pp. 1817–1830.

[14] R.Z. Ríos-Mercado and J.F. Bard, "Computational experience with a
branch-and-cut algorithm for flow-shop scheduling with setups",
Computers & Operations Research, Vol. 25, 1998, pp. 351–366.

[15] F.T. Tseng and E.F. Stafford, "Two MILP models for the N×M SDST
flow-shop sequencing problem", International Journal of Production
Research, Vol. 39, 2001, pp. 1777–1809.

[16] R.Z. Ríos-Mercado and J.F. Bard, "A branch-and-bound algorithm for
permutation flow shops with sequence-dependent setup times", IIE
Transactions, Vol. 31, 1999a, pp. 721–731.

[17] R.Z. Ríos-Mercado and J.F. Bard, An enhanced TSP-based heuristic for
makespan minimization in a flow shop with setup times, Journal of
Heuristics, Vol. 5, 1999b, pp.53–70.

[18] R. Ruiz, C. Maroto and J. Alcaraz, "Solving the flow-shop scheduling
problem with sequence dependent setup times using advanced
metaheuristics", European Journal of Operational Research, Vol. 165,
2005, pp. 34–54.

[19] R. Ruiz and T. Stutzle, "An iterated greedy heuristic for the sequence
dependent setup times flow-shop with makespan and weighted tardiness
objectives", European Journal of Operational Research, Vol. 87, 2008,
pp. 1143-1159.

[20] R.Z. Ríos-Mercado and J.F. Bard, "The flow shop scheduling
polyhedron with setup times", Journal of Combinatorial Optimization,
Vol. 7, 2003, pp. 291–318.

[21] E.F. Stafford and F.T. Tseng, "Two models for a family of flow-shop
sequencing problems", European Journal of Operational Research, Vol.
142, 2002, pp. 282–293.

[22] F.T. Tseng, J.N.D. Gupta and E.F. Stafford, "A penalty-based heuristic
algorithm for the permutation flow-shop scheduling problem with
sequence-dependent set-up times", Journal of the Operational Research
Society, Vol. 57, 2005, pp. 541–551.

[23] J.U. Sun, and H. Hwang, "Scheduling problem in a twomachine flow
line with the N-step prior-job-dependent set-up times", International
Journal of Systems Science, Vol. 32, 2001, pp. 375–385.

[24] X. Li, Y. Wang and C. Wu, "Heuristic algorithms for large flow-shop
scheduling problems", Intelligent Control and Automation, Vol. 4, 2004,
pp. 2999 – 3003.

[25] D. Laha and U.K. Chakraborty, "An efficient stochastic hybrid heuristic
for flow-shop scheduling", Engineering Applications of Artificial
Intelligence, Vol. 20, 2007, pp. 851–856.

[26] K. Sheibani, "A fuzzy greedy heuristic for permutation flow-shop
scheduling" Journal of the Operational Research Society, Vol. 61, 2010,
pp. 813-818.

[27] I.H. Osman and J.P. Kelly, Meta-heuristics: Theory and Applications.
Kluwer Academic Publishers, Boston, 1996.

[28] W. Ho and P. Ji, "Component scheduling for chip shooter machines: a
hybrid genetic algorithm approach", Computers and Operations
Research, Vol. 30, 2003, pp. 2175–2189.

[29] W. Ho and P. Ji, "A hybrid genetic algorithm for component sequencing
and feeder arrangement", Journal of Intelligent Manufacturing, Vol. 15,
2004, pp. 307–315.

[30] D.E. Goldberg, "Genetic Algorithms in Search, Optimization and
Machine Learning", Addison-Wesley, New York, 1989.

[31] M. Gen and R. Cheng, "Genetic Algorithms and Engineering Design",
Wiley, New York, 1997.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1341

TABLE I
PM VALUES FOR COMPARISON STUDIES BETWEEN ALGORITHMS (TIMES ARE

IN SECOND)
HGA

Average Class of
problem n m

Min
PM PM Time

Max
PM

1 10 5 06 0.075 1.05 0.241

2 10 10 07 0.037 1.21 0.199

3 10 15 05 0.215 2.39 0.581

4 10 20 06 0.154 5.11 0.765

5 20 5 07 0.050 1.55 0.470

6 20 10 06 0.179 1.76 0.673

7 20 15 09 0.029 3.86 0.093

8 20 20 05 0.114 6.87 0.325

9 30 5 05 0.118 1.77 0.673

10 30 10 07 0.131 3.22 0.550

11 30 15 05 0.160 4.48 0.301

12 30 20 09 0.010 8.00 0.081

13 40 5 08 0.028 2.20 0.216

14 40 10 06 0.267 2.86 0.886

15 40 15 07 0.098 4.37 0.390

16 40 20 04 0.104 9.41 0.321

17 50 5 06 0.072 2.92 0.329

18 50 10 010 0.000 5.47 0.00

19 50 15 05 0.260 8.94 0.795

20 50 20 05 0.285 11.15 0.767

21 100 5 09 0.037 4.50 0.258

22 100 10 07 0.047 9.64 0.335

23 100 15 05 0.168 17.38 0.459

24 100 20 04 0.084 31.27 0.221

25 200 5 06 0.094 11.22 0.218

26 200 10 07 0.068 32.54 0.286

27 200 15 07 0.130 43.36 0.516

28 200 20 09 0.019 78.78 0.103

