
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:7, 2011

1335

 

  
Abstract—Flow-shop scheduling problem (FSP) deals with the 

scheduling of a set of jobs that visit a set of machines in the same 
order. The FSP is NP-hard, which means that an efficient algorithm 
for solving the problem to optimality is unavailable. To meet the 
requirements on time and to minimize the make-span performance of 
large permutation flow-shop scheduling problems in which there are 
sequence dependent setup times on each machine, this paper 
develops one hybrid genetic algorithms (HGA). Proposed HGA 
apply a modified approach to generate population of initial 
chromosomes and also use an improved heuristic called the iterated 
swap procedure to improve initial solutions. Also the author uses 
three genetic operators to make good new offspring. The results are 
compared to some recently developed heuristics and computational 
experimental results show that the proposed HGA performs very 
competitively with respect to accuracy and efficiency of solution. 
 

Keywords—Hybrid genetic algorithm, Scheduling, Permutation 
flow-shop, Sequence dependent 

I. INTRODUCTION 
HE flow-shop scheduling problems (FSP) have been 
studied for over five decades. The classical flow-shop 

problem with the make-span minimization criterion has 
always attracted the attention of researchers because of its 
applications in practice. For example, a typical ship builder 
builds a number of different ship models, but the individual 
parts that go into each ship follow similar processes. A 
shipyard can be thought of as a collection of several flow-shop 
s. In particular, almost all parts, i.e. the big metal blocks, go 
through a panel shop in a ship yard where they are cut or 
welded together. Panel shops are typically treated as flow-
shop s. The flow-shop problem is easy to describe and 
formulate, yet computationally it is rather challenging. 
Therefore, this problem has inspired the development of a 
number of solution procedures [1].In an m machine flow shop, 
there are m stages in series, where there exist one or more 
machines at each stage. Each job has to be processed in each 
of the m stages in the same order. That is, each job has to be 
processed first in stage 1, then in stage 2, and so on. 
Processing times for each job in different stages may be 
different. We classify flow shop problems as (i) flow shop 
(there is one machine at each stage), (ii) no-wait flow shop (a 
succeeding operation starts immediately after the preceding 
operation completes), (iii) flexible (hybrid) flow shop (more 
than one machine exist in at least one stage), and (iv) 
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assembly flow shop (each job consists of m-1 specific 
operations, each of which has to be performed on a pre-
determined machine of the first stage, and an assembly 
operation to be performed on the second stage machine) [2].In 
the flow-shop literature, one can find an overwhelming 
number of papers for the regular flow-shop problem with the 
objective of minimizing the maximum completion time across 
all jobs (also called make-span and denoted by Cmax). 
However, the Sequence Dependent Setup Time Flow-shop 
Problem (SDST flow-shop problem in short) has attracted 
much less attention especially before 2000. Specific to the 
SDST flow-shop are the setup times.The objective in flow-
shop scheduling problems is to find a sequence for processing 
the jobs on the machines so that a given criterion is optimized. 
This yields a total of n! possible orderings of the operations on 
each machine and a total of (n!)m possible processing 
sequences. In flow-shop scheduling research usually only so 
called permutation sequences are considered, where the 
processing order of operations is the same for all machines. 
Here, the author also adopts this restriction. In this paper, the 
author considers sequence dependent flow-shop scheduling 
problem with the make-span minimization criterion.Regarding 
the computational complexity, the SDST flow-shop  with the 
Cmax objective has been shown to be NP-hard by Gupta [3] 
even when m = 1 and also when m = 2 and setups are present 
only on the first or second machine [4]. For m = 1, the SDST 
flow-shop  is known to be a special case of the Traveling 
Salesman Problem (TSP) that is also well known to be NP-
hard which means that an efficient algorithm for solving the 
problem to optimality is unavailable. Therefore, solving the 
problem by an exact algorithm is time consuming and 
computationally intractable. To deal with the problem 
efficiently and effectively, one hybrid genetic algorithms 
(HGA) is developed in this paper.The paper is organized as 
follows. Section 2 surveys on the relevant literature. 
Formulation is given in section 3. Section 4 discusses the 
principles of the algorithms used to solve the FSP. Section 5 
compares the performance of the algorithms. Finally, Section 
6 concludes the paper.  

II. LITERATURE REVIEW  
Compared to the regular flow-shop, on which hundreds of 

papers have been published, the literature on the SDST 
counterpart is scarce.  

In the pioneering work of Johnson [5], the author proposed 
a simple rule to obtain optimal sequences for the permutation 
flow-shop problem (PFSP) with two machines. This work 
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raised significant interest in the PFSP and was followed by 
several attempts for solving the PFSP with more than two 
machines. Due to the NP-completeness of the PFSP [6], 
researchers have mainly focused on the development of 
effective heuristics and meta-heuristics. Salient heuristics are 
due to Campbell et al. [7] (also called CDS method) and the 
well-known NEH heuristic by Nawaz et al. [8]. Some 
noteworthy meta-heuristics have also been proposed, for 
example the simulated annealing by Osman and Potts [9], the 
tabu search of Widmer and Hertz [10] and the genetic 
algorithm of Reeves [11]. Srikar and Ghosh [12] introduced 
the first MILP model (SG/SDST model) for the SDST flow-
shop . Stafford and Tseng [13] reported minor corrections to 
the SG/SDST model, and showed that the revised model 
(SGST/SDST) was robust with regard to the triangular 
inequality relationship of setup times. Mercado and Bard [14] 
showed that the SGST/SDST model performed better than 
their new MILP model for the SDST flow-shop. Tseng and 
Stafford [15] extended the Stafford MILP model to solve both 
the SDST and the SDST/NIQ flow-shop problems. Mercado 
and Bard published two papers for the sequence dependent 
flow-shop problem with make-span criterion (denoted as 
Fm/STsd/Cmax). In the first paper [16], they presented a branch 
and bound algorithm, incorporating lower and upper bounds 
and dominance elimination criterion, to solve the problem. 
They provided test results for a wide range of problem 
instances. In the second paper [17], they proposed a heuristic 
for the same problem, which transforms an instance of the 
problem into an instance of the traveling salesman problem by 
introducing a cost function that penalizes both large setup 
times and bad fitness of a given schedule. Ruiz et al. [18] 
proposed two heuristics for the same problem, and showed 
that their heuristics outperform that of Mercado and Bard [17] 
and others. Ruiz and Stutzle [19] presented two simple local 
search based iterated greedy algorithms, and showed that their 
algorithms perform better than those of Ruiz et al. [18]. 
Mercado and Bard [20] studied the polyhedral structure of two 
different mixed-integer programming formulations for the 
same problem. One is related to the asymmetric traveling 
salesman problem and the other is derived from an earlier 
proposed model. The two approaches were evaluated using a 
branch and cut algorithm, which indicated that the approach 
related to the asymmetric traveling salesman problem, was 
inferior in terms of the computational time. Stafford and 
Tseng [20] also proposed two mixed integer linear 
programming models, which are based on the work of Tseng 
and Stafford [18], for the same problem. The mixed-integer 
programming models proposed by Mercado and Bard [20] and 
Stafford and Tseng [21] were independently developed, and 
hence, remain to be compared to each other. Tseng et al. [22] 
developed a penalty-based heuristic algorithm for the same 
problem and compared their heuristic with an existing index 
heuristic algorithm. Sun and Hwang [23] addressed a related 
problem of F2/STsd/Cmax, where the setup times are present 
only on the second machine and the setup time of a job 
depends on k (k>1) immediately preceding jobs. They 

proposed a dynamic programming formulation and a genetic 
algorithm for the problem. Li et al. [24] presented partial 
enumeration method (PEM) to minimize the make-span 
performance of large flow-shop scheduling problems. The 
PEM run in short time and was able to easily combine with 
other algorithms or rules to improve performance. In their 
research two priority rules, variance method and variance-
mean method were developed. Laha and Chakraborty [25] 
developed an efficient stochastic hybrid heuristic (H3) for 
flow-shop scheduling problem and showed the superiority of 
their work against other researches. Finally Sheibani [26] 
described a polynomial-time heuristic (PH) for the 
permutation flow-shop scheduling problem with the make-
span criterion. His method consists of two phases: arranging 
the jobs in priority order and then constructing a sequence. He 
employed a fuzzy greedy evaluation function to prioritize the 
jobs for incorporating into the construction phase of the 
heuristic. 

III. HYBRID GENETIC ALGORITHM 
Genetic algorithm (GA) developed by John Holland in the 

1960s, is a stochastic optimization technique. Similar to other 
artificial intelligence heuristics like SA and TS, GA can avoid 
getting trapped in a local optimum by the aid of one of the 
genetic operations called mutation. The basic idea of GA is to 
maintain a population of candidate solutions that evolves 
under selective pressure. Hence, it can be viewed as a class of 
local search based on a solution generation mechanism 
operating on attributes of a set of solutions rather than 
attributes of a single solution by the move-generation 
mechanism of the local search methods, like SA and TS [27]. 
In recent years, GA has been applied successfully to a wide 
variety of hard optimization problems. The success is mainly 
due to its simplicity, easy operation, and great flexibility. 
These are the major reasons why GA is selected as an 
optimization tool in this paper. Flow-shop scheduling problem 
can be regarded as a hard optimization problem. A simple GA 
may not perform well in this situation. Therefore, the GA 
developed in this paper is hybridized with several heuristics to 
improve the solution further.Fig.1 shows the flowchart of 
HGA for the FSP. HGA hybridizes an improved heuristic 
called the iterated swap procedure (ISP). Besides the ISP, it 
also hybridizes the modified NEH_RMB proposed by Ruiz at 
al. [18] to generate a population of initial chromosomes. Also 
the author uses three genetic operators to make good new 
offspring. 

The procedure of the HGA is described as follows: After 
the GA parameters, such as the iteration number, the 
population size, the crossover rate, and the mutation rate, have 
been set; the HGA generates the initial chromosomes of the 
problem. In HGA the NEH is used to determine the sequence 
of jobs in each schedule. After the predetermined number of 
initial chromosomes is generated, the ISP is adopted to 
improve all chromosomes. 
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Fig. 1 The flowchart of the HGA 
 

Each chromosome is then measured by an evaluation 
function. The roulette wheel selection operation is adopted to 
select some chromosomes for the genetic operations, 
including the order crossover, the heuristic mutation, and the 
inversion mutation. After a new chromosome or offspring is 
produced, its links are improved by the ISP. The fitness of the 
offspring is measured and the offspring may become a 
member of the population if it possesses a relatively good 
quality. These steps form iteration, and then the roulette wheel 
selection is performed again to start the next iteration. The 
HGA will not stop unless the predetermined number of 
iterations is conducted. 

A. Initialization 
The initial solution for HGA is ideally generated by a high 

performance construction heuristic. For the sequence 
dependent flow-shop scheduling with make-span criterion, the 
author uses the NEHT_RMB heuristic and a modified 
NEHT_RMB heuristic proposed by Ruiz et al. [18] for the 
initialization of the population. Recall that NEH is an insertion 
heuristic, where at each step the next unscheduled job is 
tentatively inserted in each possible position of some partial 
solution. The job is then finally inserted into the position 
where the objective function takes the lowest value. For 
executing such an insertion heuristic, the jobs need to be 
ordered in some way. For more details how this is done in 
NEHT_RMB and modified NEHT_RMB, the reader is 
referred to Ruiz et al. [18]. 

B. Improvement 
The 2-opt local search heuristic is generally used to improve 

the solutions of the hard optimization problems. However, it 
increases the computational time because every two swaps are 
examined. If a new solution generated is better than the 
original one, or parent, in terms of quality, it will replace and 

become the parent. All two swaps are examined again until 
there is no further improvement in the parent. To increase 
efficiency, the ISP [28, 29] shown in Fig. 2, is used to 
improve the links of each initial solution and each offspring 
generated by the three genetic operators. The principle of the 
ISP is similar to that of the 2-opt local search heuristic, except 
that some instead of all two swaps are examined. The 
procedure of the ISP is as follows: 

Step 1: Select two genes randomly from a link of a parent. 
Step 2: Exchange the positions of the two genes to form an 

offspring. 
Step 3: Swap the neighbors of the two genes to form four 

more offspring. 
Step 4: Evaluate all offspring and find the best one. 
Step 5: If the best offspring is better than the parent, replace 

the parent with the best offspring and go back to Step 1; 
otherwise, stop. 
 

Select two genes randomly  
  Parent 1 4 5 2 3   
          
 Offspring 1 1 2 5 4 3   
 Offspring 2 2 1 5 4 3   
 Offspring 3 1 5 2 4 3   
 Offspring 4 1 2 5 3 4   
 Offspring 5 1 2 4 5 3   
 Offspring 1 1 2 5 4 3   

 
Fig. 2 The iterated swap procedure 

 

C. Evaluation 
As mentioned before, the fitness function is minimizing the 

maximum completion time across all jobs (also called make-
span and denoted by Cmax). 

D. Selection 
The roulette wheel selection operation [30] is adopted to 

choose some chromosomes to undergo genetic operations. The 
approach is based on an observation that a roulette wheel has 
a section allocated for each chromosome in the population, 
and the size of each section is proportional to the 
chromosome’s fitness. The fitter the chromosome, the higher 
the probability of being selected. Although one chromosome 
has the highest fitness, there is no guarantee it will be selected. 
The only certain thing is that, on average, a chromosome will 
be chosen with the probability proportional to its fitness. 
Suppose the population size is sizeP , then the selection 
procedure is as follows: 

Step 1: Calculate the total fitness of the population: 

( )∑
=

=
Psize

h
hCF

1
max

 

Step 2: Calculate the selection probability hP  for each 

chromosome hX : 

Input GA parameters 

Initialization: NEH_RMB heuristic 

Improvement: Iterated 
swamp procedure 

Evaluation: Minimization 
of make-span 

Selection: Roulette 
wheel method 

Genetic operations: 
1. Order crossover 
2. Heuristic mutation 
3. Inversion mutation

Improve new chromosomes 
(offspring) using iterated 
swap procedure

Measure fitness of 
offspring and compare 
with that of parents

Retain the best 
population of 
chromosomes

Terminate? 

Output the best 
solution 

1

1
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Step 3: Calculate the cumulative probability hQ  for each 

chromosome hX : 

∑
=

=
h

j
jh PQ

1

         h=1, 2, …, sizeP  

Step 4: Generate a random number r in the range (0, 1]. 
Step 5: If hQ -1<r≤ hQ , then chromosome hX  is selected. 

E. Genetic Operation 
The genetic search progress is obtained by two essential 

genetic operations, including exploitation and exploration. 
Generally, the crossover operator exploits a better solution 
while the mutation operator explores a wider search space. 
The genetic operators used in the algorithms for the flow-shop 
problem are one crossover and two mutations, which are 
called the heuristic mutation and the inversion mutation, 
respectively.  

E.  1. The Order Crossover 
The crossover operator adopted in the HGA is the classical 

order crossover [31], and two offspring will be generated at 
each time. The procedure of the order crossover operation is: 

Step 1: Select a substring from the first parent randomly. 
Step 2: Produce a protochild by copying the substring into 

the corresponding positions in the protochild. 
Step 3: Delete those genes in the substring from the second 

parent. The resulting genes form a sequence. 
Step 4: Place the genes into the unfilled positions of the 

protochild from left to right according to the resulting 
sequence of genes in Step 3 to produce an offspring, shown in 
Fig. 3. 

Step 5: Repeat Steps 1–4 to produce another offspring by 
exchanging the two parents. 

E.  2. The heuristic mutation 
A heuristic mutation [31] is designed with the 

neighborhood technique to produce a better offspring. A set of 
chromosomes transformed from a parent by exchanging some 
genes is regarded as the neighborhood. Only the best one in 
the neighborhood is used as the offspring produced by the 
mutation. However, the purpose of the mutation operation is 
to promote diversity of the population. Therefore, it is 
necessary to change the original heuristic mutation for the 
FSP. The modification is that all neighbors generated are used 
as the offspring. The procedure of the heuristic mutation 
operation, shown in Fig. 4, is taken as follows: 

Step 1: Pick up three genes in a parent at random. 
Step 2: Generate neighbors for all possible permutations of 

the selected genes, and all neighbors generated are regarded as 
the offspring. 

E.  3. The Inversion Mutation 
The inversion operator [31], shown in Fig. 5, selects a 

substring from a parent and flips it to form an offspring. 
However, the inversion operator works with one chromosome 
only. It is similar to the heuristic mutation and thus lacks the 
interchange of characteristics between chromosomes. So, the 
inversion operator is a mutation operation, which is used to 
increase the diversity of the population rather than to enhance 
the quality of the population. 
 

    Selected 
substring 

   

  Parent 
1 

1 2 5 4 3   

  Parent 
2 

1 4 3 2 5   

 Offspring 1 1 2 5 4 3   
 

Fig. 3 The order crossover operator 
 

   Select three genes 
randomly 

  

  Parent  1 2 5 4 3   
          
 Offspring 1 1 2 3 4 5   
 Offspring 2 3 2 1 4 5   
 Offspring 3 3 2 5 4 1   
 Offspring 4 5 2 1 4 3   
 Offspring 5 5 2 3 4 1   
 Offspring 1 1 2 3 4 5   

 
Fig. 4 The heuristic mutation operator 

 
    Selected 

substring 
   

  Parent 
1 

1 2 5 4 3   

 Offspring 1 1 4 5 2 3   
 

Fig. 5 The inversion mutation operator 

IV. RESULT ANALYSIS 
In this section, a computational study is carried out to 

compare the HGA with three best recently developed 
heuristics. I mean PEM presented by Li et al. [24]; H3 
developed by Laha and Chakraborty [25] and PH described by 
Sheibani [26]. Four methods are compared using different 
problem sizes (n=10, 20, 30, 40, 50, 100 and m=5, 10, 15, 20). 
For each class of the problem defined by given (n, m), 10 
instances of problem are randomly generated. Thus we obtain 
a total of 280 problem instances. Processing time and setup 
time are given from Uniform random U(1, 99) and U(1, 9) 
discrete distributions respectively. The numerical results are 
averaged through each ten instances. 

The parameters of the HGA for the problems are: 
Population size=20, Crossover rate=0.5 and Mutation 

rate=0.2.  
Therefore, five pairs of chromosome are selected to perform 

the order crossover operation, whereas four chromosomes 
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perform the heuristic mutation operation and the inversion 
mutation operation. The total number of offspring produced 
per iteration will be 34 (10 from the order crossover operation, 
20 from the heuristic mutation operation, and 4 from the 
inversion mutation operation). The platform of our 
experiments is a personal computer with a Pentium-III 1.2 Hz 
CPU and 512 MB RAM. The programs are coded in 
MATLAB. Also to have equal condition between four 
methods all algorithms are run 10 independent times with a 
stopping criterion based on an elapsed CPU time given by 

10/mn×  seconds. This allows for more time as the number 
of jobs n and the number of machines m grows. 

The make-span values appearing in Table 1 are averages of 
10 make-spans obtained from as many problem instances. The 
results indicate that HGA produces solutions of a better 
quality than other methods. 

For evaluating the different algorithms, the author used the 
performance measure (PM) stated as: 

 
 

sol

solsol

Best
BestHeuPM −

=  

(1) 
where Heusol is the make-span obtained by a given 

algorithm and Bestsol is the make-span of the best solution 
obtained by all algorithms. 

V. CONCLUSIONS 
In this paper the author studies the flow-shop scheduling 

problem in sequence dependent condition to challenge a large 
number of real world problems. FSP is a hard optimization 
problem and the author develops one meta-heuristic approach 
based on genetic algorithm called HGA to solve it. Genetic 
algorithm hybridized with an improved heuristic called the 
iterated swap procedure (ISP). Besides the ISP, it also 
hybridized the modified NEH_RMB proposed by Ruiz at al. 
to generate a population of initial chromosomes. Also the 
author uses three genetic operators to make good new 
offspring. Computational results demonstrate the performance 
of our method compared to some of the strong methods 
recently developed. It is noticeable when we see the most 
differences between HGA and the best method among 
considered approaches are also significant in the level of 

05.0=α .  
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TABLE I 
PM VALUES FOR COMPARISON STUDIES BETWEEN ALGORITHMS (TIMES ARE 

IN SECOND) 
HGA 

Average Class of 
problem n m 

Min 
PM PM Time 

Max 
PM 

1 10 5 06 0.075 1.05 0.241 

2 10 10 07 0.037 1.21 0.199 

3 10 15 05 0.215 2.39 0.581 

4 10 20 06 0.154 5.11 0.765 

5 20 5 07 0.050 1.55 0.470 

6 20 10 06 0.179 1.76 0.673 

7 20 15 09 0.029 3.86 0.093 

8 20 20 05 0.114 6.87 0.325 

9 30 5 05 0.118 1.77 0.673 

10 30 10 07 0.131 3.22 0.550 

11 30 15 05 0.160 4.48 0.301 

12 30 20 09 0.010 8.00 0.081 

13 40 5 08 0.028 2.20 0.216 

14 40 10 06 0.267 2.86 0.886 

15 40 15 07 0.098 4.37 0.390 

16 40 20 04 0.104 9.41 0.321 

17 50 5 06 0.072 2.92 0.329 

18 50 10 010 0.000 5.47 0.00 

19 50 15 05 0.260 8.94 0.795 

20 50 20 05 0.285 11.15 0.767 

21 100 5 09 0.037 4.50 0.258 

22 100 10 07 0.047 9.64 0.335 

23 100 15 05 0.168 17.38 0.459 

24 100 20 04 0.084 31.27 0.221 

25 200 5 06 0.094 11.22 0.218 

26 200 10 07 0.068 32.54 0.286 

27 200 15 07 0.130 43.36 0.516 

28 200 20 09 0.019 78.78 0.103 


